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Abstract—Existing rate adaptation protocols have advocated
training to establish the relationship between channel conditions
and the optimum modulation and coding scheme. However, in-
nate with in-field operation is encountering scenarios that the
rate adaptation mechanism has not yet encountered. Frequently,
protocols are optimally tuned for indoor environments but, when
taken outdoors, perform poorly. Namely, the decision structure
formed by offline training, lacks the ability to adapt to a new
situation on the fly. The changing wireless environment calls for
a rate adaption scheme that can quickly infer the channel type and
adjust accordingly. Typical SNR-based rate adaptation schemes
do not capture the nuance of the performance variable in different
channel types. In this paper, we propose a novel scheme that allow
SNR-based rate selection algorithms to be trained online in the
environment in which they are operating. Inspired by the idea that,
to do well, an athlete must train for the type of athletic event and
environment in which they are competing, we propose FIT, an
on-the-fly, in-situ training mechanism for SNR-based protocols.
To do so, we first propose the FIT framework which addresses the
challenges of making rate decisions with unpredictable fluctuation
and lack of repeatability of real wireless channels. To distinguish
between channel types in the training, we then characterize wireless
channels according to the link-layer performance and introduce
a novel, computationally-efficient, channel performance manifold
matching technique to infer the channel type given a sequence of
throughput measurements for various link-level parameters. To
evaluate our methods, we implement rate selection which uses FIT
for training alongside channel performance manifold matching. We
then perform extensive experiments on emulated and in-field wire-
less channels to evaluate the online learning process, showing that
the rate decision structure can be updated as channel conditions
change using existing traffic flows. The experiments are performed
over multiple frequency bands. The proposed FIT framework can
achieve large throughput gains compared to traditional SNR-based
protocols (8X) and offline-training-based methods (1.3X), partic-
ularly in a dynamic wireless propagation environments that lack
appropriate training.
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I. INTRODUCTION

I EEE 802.11 networks typically use significantly larger pack-
ets and resulting channel access times than cellular networks

to overcome the overhead of transmitting the packet header.
To overcome channel fading in this context requires some
form of feedback to the transmitter to alert the need for rate
changes as the channel quality fluctuates. Hence, a number
of rate adaptation approaches have been proposed to improve
the spectral efficiency when the channel quality improves and
simply remain connected when channel quality degrades. One
class of rate adaptation mechanism used in practice is loss-based
and suffers from poor rate decisions due to a confusion between
collision-based and channel-based losses [3]–[7]. A second type
of rate adaptation uses channel quality directly (i.e., SNR-based
protocols) and can distinguish between such losses. However,
to perform optimally, SNR-based schemes need to be trained in
each environment in which it is used [8]–[12]. If the training
is done offline, even excessive levels of training may not cover
all scenarios. Further, even with a comprehensive rate decision
structure for all contexts, the training still may not be similar
across device types (i.e., the decision structure is likely hardware
dependent).

Rate adaptation protocols are just beginning to use context
information, considering vehicular or pedestrian speed, or the
direction of motion [13]–[15], and/or channel type information.
Machine learning techniques can be used to extract relationships
between the context information, the settings of the transmitter
and receiver, and the resulting wireless performance [16]–[19].
The established rate decision structure can suggest the potential
optimal settings for the transmitter-receiver pair according to the
channel condition efficiently without adding overhead. More-
over, even with such a comprehensive decision structure, the rate
adaptation mechanism still has the challenge of distinguishing
between environments to leverage the training. To recognize
these different contexts in which training has occurred, a mech-
anism might isolate training to given geographical regions and/or
times of day. However, such a splitting of training data would
require an extensive database (and extensive training).

To address the aforementioned challenges, in this paper, we
propose on-the-fly, in-situ training (FIT) for SNR-based rate
selection protocols. FIT can leverage an existing decision struc-
ture to look up the optimal transmitter-receiver settings and
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simultaneously update the decision structure using the measured
performance of existing data transmissions as training for the
immediately-upcoming rate decisions. In essence, FIT lever-
ages the no-overhead advantage of loss-based rate adaptation
protocols to adapt the SNR-based rate adaptation protocol. We
implement the FIT training mechanism, and SNR-based proto-
col structure on a hardware platform to experimentally evaluate
our approach with emulated and in-field training. The proposed
framework is the first framework for SNR-based rate adaptation
that trains in an online manner, immediately using in-field data.
The main contributions of this paper are as follows:
� We propose FIT, an online classification-based rate adap-

tation framework. We utilize online machine learning tech-
niques to make quick and reliable decisions about the mod-
ulation and coding scheme. The decision structure for rate
adaptation is adjusted to the dynamic fluctuations of wire-
less channels efficiently when new context information
is collected using wireless performance information from
existing data transmissions (i.e., no additional overhead
packets to train for rate decisions are needed). To do so, the
training process has been modified from optimal transmis-
sion mode prediction to quantized throughput prediction
to efficiently use training data and due to the inability of
the channel to stay the same while progressing through all
transmission schemes.

� The wireless performance changes with the context setting
such as indoor, outdoor, or vehicular environments. In
order to address the potentially infinite different scenarios
that might be encountered, we define the notion of chan-
nel type. Channel type (details in Section III) is used to
conveniently categorize the channels based on their mea-
sured link-layer performance rather than low-level chan-
nel tap-delay profile/Doppler information. We introduce a
computationally-efficient, channel performance manifold
matching framework to infer channel type given a sequence
of throughput measurements for various link-level param-
eters. This proposed method succinctly captures the rela-
tionships between the performance of the various modula-
tion and coding schemes without any additional overhead
on data transmission.

� Based on the channel type inference, we decipher which
online decision structure to contribute to in the knowledge
of the optimal modulation and coding scheme to use in that
particular context. Such an approach removes confusion
of the decision structure that occurs when training the
same structure across diverse wireless environments. This
approach also allows previously encountered channels to
pick up the training where it left off and form new decision
structures where there is a lack of training.

� We implement the proposed FIT framework on an off-the-
shelf platform and test its performance to demonstrate the
impact of in-situ training updates on rate selection perfor-
mance. FIT improves the throughput of rate adaptation by
up to 822.08% over a purely SNR-based method (i.e., one
that does not use context information) and by 38.64% over
an offline-based method.

The remainder of this paper is organized as follows. In
Section II, we first discuss the system model and offline training
method for rate selection using decision tree. Then, we pro-
pose an online learning framework for rate adaptation and data
collection procedure for the online training. In Section III, we
propose a channel performance manifold matching algorithm to
classify an unknown channel into one of the channel models in
the training set. In Section IV, we evaluate the performance of
the online training for rate selection and channel performance
manifold matching strategy with experiments on emulated and
in-the-field channels. Related work is presented in Section V,
and the paper concludes in Section VI.

II. SYSTEM MODEL

The objective of this paper is to develop a framework for
online learning in adaptive wireless protocol. First, we introduce
the notations used. Let setA = {A1, A2, . . . , AL} represents the
various attributes or contextual information that are available in
a particular system. For instance, SNR, velocity, and channel
type are considered as the attributes in our offline training
schemes as we will discuss later. Let M = {m1,m2, . . . ,mM}
represents the set of transmission modes (i.e., modulation and
coding schemes) available in a given system. For instance, for
the Ubiquiti XR2, a mini-PCI WLAN card [20] employed in our
experimental section for radio communication, MUbiquiti repre-
sents the supported 802.11a/g-compliant coding and modulation
pairs.

In this paper, the optimization metric of interest is the mea-
sured throughput G. We use the notation G(mi) to denote the
throughput of the i-th transmission mode. This throughput is
calculated as

G(mi) = (1 − PER(mi)) ·Rth(mi) ·
lpayload(mi)

l packet(mi)
(1)

where PER(mi) is the measured packet error rate, Rth(mi) is
the physical layer data rate, and lpayload(mi) and lpacket(mi) are
the size of the payload and packet, respectively.

In traditional SNR-based adaptation, the objective is to select
the optimal transmission mode, m∗ as

m∗ = argmax
mi

G(mi), givenA1 ≡ SNR (2)

This problem is typically solved using prior training to generate
a look-up table from the set of attributes to the optimal mode
selected. In case the received SNR is the sole attribute, the look-
up table is efficiently represented by a set of thresholds on the
SNR where each mode is optimal.

The attributes we consider are received SNR, node velocity
and channel type (which is formally defined in Section III). In
short, two different channel conditions are said to belong to the
same channel type if their effective performance (as measured
by the throughput) of the various modes exhibit similar behavior
for all values of the various attributes.

We propose two different approaches to solve the new opti-
mization problem. In the first method, we use offline training
to generate an appropriate mapping from the set of attributes to
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Fig. 1. A decision tree for rate adaptation.

the optimal mode selected. Two different flavors of this method,
which differ in their computational complexity and amount of
training required, are discussed. In the second method, we use
online, in-situ training to continually refine the mapping from
attributes to the optimal mode choice. In the sequel, we describe
the details of the proposed offline and online training methods.

A. Offline Training for Attribute Based Rate Selection

Adaptive learning algorithms have been widely investigated
in the literature [21]–[23]. Among classical learning methods,
the decision tree is popular due to its low complexity and high
accuracy of prediction. Such algorithms typically use training
data to derive an empirical relationship between the desired out-
put (class) and the inputs (attributes). The resulting relationship
is represented using a decision tree as shown in Fig. 1. Once the
tree-based classifier is generated, adapting its structure requires
a repetition of the training process with a newer or enlarged
training set.

The offline learning algorithm that we use is the popular C4.5
algorithm that is based on the entropy gain ratio. During the
offline training phase, the C4.5 algorithm is used to partition
the labeled training instances based on the information entropy
metric, until all instances have been assigned to the leaf node
of the tree [24]. Each leaf node has a specified class label.
The ability of the decision tree to handle multiple classes and
missing values makes it suitable for our application. During the
adaptation phase, this tree serves as the look-up table to decide
the optimal transmission mode for each set of attributes. For
instance, when the received SNR is between (15 dB, 32 dB] and
the velocity is higher than 45 kmph, Mode 3 is suggested as
the optimal mode. We now describe two different approaches to
generate this decision tree.

Training With Exhaustive Information: In this case, we
consider that the training set includes the knowledge of the
optimum transmission mode to use for each combination of
attribute values. For instance, the training data could include
X records of A = {SNR, velocity, channel-type} values and
the optimal transmission mode in each of these cases.

Training with Partial Information: In this case, the train-
ing set includes knowledge of the throughput (or any desired
performance metric) for only a random subset of modes for
each combination of the attributes. Since there are |M| modes
available in the system, we restrict the amount of training data
for each combination of the attributes to no greater than |M|.
One key advantage of using this method is that it lends itself to
an immediate online extension.

Fig. 2. The flow chart of learning a new data.

B. In-Situ Training

We develop an online version of the decision tree based learn-
ing algorithm to adapt the classifier to changing environments.
Our algorithm is based on the incremental learning algorithm
in [23] and is able to efficiently update the existing tree with
new training data. Since only one rate can be used at a given
time, the optimal transmission mode is not available on-the-fly.
Consequently, we alter the input and the output of the training
so that the algorithm now takes the current transmission mode
as an input and the quantized version of the throughput as the
output (instead of the optimal mode).

The classifier resulting from our algorithm is represented as
a binary tree, which means every decision node can lead to two
outcomes. Each branch can be further divided into sub-trees.
The general procedure and example of incorporating new data
into an existing tree is shown in Fig. 2. The merit of efficiently
updating only the sub-tree would become more clear when the
decision structure grows with more training data. As shown
in the example in Fig. 2, a test condition based on one of the
attributes of the training data is saved at each decision node.
Data D1 is learned when the tree is empty. Therefore, the tree
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is represented as a leaf node, which indicates the class of data
D1. If new training data is ready when the tree is not empty, the
data is first classified following branches in the existing tree-like
classifier. If the existing tree is not able to classify the data
correctly, the current leaf node will be converted into a decision
node using the test condition based on the attribute selection
metric. In the example, the only leaf node formed in Step 1, is
converted into a decision node to classify data D1 and data D2

in Step 2. If the classifier can predict the class label with its
attributes correctly, the data will be added to the set of retained
data related to the leaf node. Further, the test condition as well as
the structure of the sub-tree involved in the classification of the
new data, will be adjusted based on the changed data set using
Quinlan’s information gain ratio as the metric [24]. In Step 3 of
the example, data D3 is added and the test condition is adjusted.

If the value for one of the attributes is missing, the data will be
passed down the branch that does not satisfy the test condition.
If any operations change a data group, the algorithm will check
if test condition based on the data group is the optimal condition.
The order for checking the optimality is from the root node to
its sub-trees. The updating process can be paused and resumed,
and the tree-like classifier can be saved at any time.

C. Training Data Collection

Let R = {r1, r2, . . . , rR}, V = {v1, v2, . . . , vV }, and S =
{s1, s2, . . . , sS} represent, respectively, the sets of channel
types, velocities, and SNR values in the training set. In the
training phase, we measure the throughput Gm,s,v,r that the
system can achieve using mode m in the channel type r with
the velocity v and SNR s. For each model r, the V · S ·M
throughput values constitute the performance data pr. A com-
plete training set P = {p1, p2, . . . , pR} contains R · V · S ·M
throughput values, which describes the system performance in
these R channels.

The decision structure in the offline method models the rela-
tionship between the contextual information and the optimum
mode. To derive the decision structure, the offline-training-based
method requires the knowledge of the best mode m∗ in the
training data which can be obtained as,

m∗ = argmax
mi

G(mi)

givenA1 ≡ SNR,A2 ≡ velocity, A3 ≡ ch-type (3)

One major challenge for in-situ training is that the optimal
mode is unknown in practical situation. Typically, only the
performance of one or at best a subset of modes is available in
each dynamically changing context. Our solution is to directly
learn the relationship between the context information and the
throughput of each mode. Each training data is just the raw
measured data which is represented as,

{SNR, velocity, channel type,mc, G(mc)} (4)

wheremc is the mode used in current scenario. The accumulative
training process will result in a trained decision structure, with
which the throughput for all modulation and coding schemes
under a certain scenario can be predicted.

Fig. 3. FIT framework.

D. In-Situ-Training for SNR-Based Rate Selection

Based on our solutions, we propose, FIT, our in-situ training
framework for SNR-based rate selection. Instead of directly
deriving the function of link adaptation by learning algorithm as

foffline : {si, vi, ri} → m∗, (5)

first, we derive the function below using online learning algo-
rithm as

fonline : {si, vi, ri,mi} → G(mi), (6)

Then, given the collected context information, (6) is able to
predict the throughput for all the modes. Subsequently, the best
mode m∗ is selected by comparing the predicted throughput
values of all modes.

The framework of FIT is depicted in Fig. 3. With the collected
context information {A1, A2, . . . , AL}, the decision tree pre-
dicts all the throughput values {G(m1), G(m2), . . . , G(mM )}
corresponding to the transmission modes. After comparing those
values, the mode m∗ with the highest throughput is employed
by the transmitter/receiver. Finally, the binary decision tree
partially updates the decision structure with the new training
data, {si, vi, ri,m∗, G(m∗)}.

For the proposed FIT, we add the mode index as one attribute
and directly predict the throughput. This strategy makes the
in-situ training data collection possible and also substantially
distinguishes our proposed framework from the existing link
adaptation framework based on offline training. Compared to
the existing offline methods, the advantages of FIT are clearly
evident. First, FIT can save computational resources both for
the initial training data collection and subsequent periodic re-
training. Further, through incrementally learning from the newly
collected data, our proposed framework adapts to the dynamic
environment.

We observe that, given a particular environment, all training
data points based on the context information, SNR, velocity,
and mode are equally important to model the throughput perfor-
mance. Hence, the proposed FIT based rate decision structure
equally weights data points for each observed environment. In
the next section, we propose a mechanism, which is useful to
detect a new environment, such that a new rate decision structure
is constructed based on new data points in that environment.
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III. CHANNEL PERFORMANCE MANIFOLD MATCHING

As noted in Section II, the proposed FIT framework re-
quires knowledge of the channel type to distinguish various
environments as well as knowledge of SNR and velocity for
the rate decision training. Channel type is a simpler way to
represent the main characteristics of the infinitely varied prop-
agation environment, such as fading, multipath, and doppler.
In a wireless system, SNR can be measured by the channel
estimation module. Additionally, many mobile devices can now
obtain velocity using an on-board GPS module. However, the
channel type information cannot be directly obtained. In this
section, we introduce a channel performance manifold matching
algorithm that leverages the geometrical structure of the perfor-
mance curves and classifies an unknown channel into one of the
channel models in the training set. The algorithm also provides a
confidence level for this classification, and if a minimum desired
confidence level is not obtained, the algorithm flags the current
measurement location as a new channel type that has not been
previously encountered. Subsequently, an additional decision
tree or sub-tree for the new channel type is trained.

A. Proposed Algorithm

In practical system, depending on available memory, only
the most frequently used channel types can be stored. Let C
denote the countably infinite set of all possible channel real-
izations in the real world. Let P contain the performance data
pci for each ci ∈ C. Each pci is a vector of size |V · S ·M |
that represents the transceiver’s performance using different
transmission parameters in channel ci. Let T represent the set of
all possible tree structures introduced in Section II. Each t ∈ T
can be regarded as the outcome of the following mappings:
c �→ p �→ t. If pci and pcj (i �= j) always have identical trans-
mission modes that achieve maximum throughput, then they are
mapped onto the same tree structure. Our channel performance
manifold matching algorithm is designed to solve the problem
of classifying a random channel c into the subsetCk ⊂ C, within
which all the channels are mapped to the same sub-tree structure
tk. All such channels Ck are defined as belonging to a particular
channel type.

We use the throughput as the performance metric and consider
the same training set as described in Section II. The channel per-
formance manifold matching relates the throughput of different
transmission modes to the context information. Meanwhile, it
also searches for the throughput of all the channel models in the
training set, which have the same context information. Finally, it
calculates the similarity of the geometric shape of the throughput
points measured in a test case with those of different channel
models in the training set. The algorithm selects the most similar
model as the channel model for the current test channel and uses
this result along with other context information for optimal mode
selection using the decision tree.

Using the same training set P as in Section II, we now use
NI(NI ≥ 2) throughput values measured in the real channel,
whose channel type is unknown, and their related context infor-
mation to classify the channel into one of the R channels. For

Fig. 4. Plot of the throughput versus SNR and Velocity for different channels.

each i(i = 1, . . . , NI), Ĝ(mi) denotes the measured through-
put, using mode m̂i, and ŝi, v̂i represent the corresponding SNR
and velocity, respectively. Then, we search the training set and
find the throughput of all the channel models with the same
context information and transmission mode. In other words, we
look for Gr,v̂i,ŝi,m̂i

of all r ∈ R channel models. It is possible
that v̂i is not inV (same for ŝi). In this case, a linearly interpolated
throughput G̃r,v̂i,ŝi,m̂i

is calculated based on the throughput of
the nearest velocity and SNR values.

The training set for a particular channel (pr) is a family of
3-D meshes, where each mesh represents the throughput of a
certain transmission mode with respect to SNR and velocity.
With interpolation, the meshes can be filled and turned into
surfaces. By labeling all the G̃r,v̂i,ŝi,m̂i

, we can draw R curves
as shown in Fig. 4, indicating the throughput variation trend in
the order of i from 1 to NI . Similarly, we plot the throughput
for the unknown test channel. The training set vector and the
measured vector can be expressed as

TSV m =
(
(ŝi+1, v̂i+1, G̃r,v̂i+1,ŝi+1,m̂i+1), (ŝi, v̂i, G̃r,v̂i,ŝi,m̂i

)
)

MV m =
(
(ŝi+1, v̂i+1, Ĝr,v̂i+1,ŝi+1,m̂i+1), (ŝi, v̂i, Ĝr,v̂i,ŝi,m̂i

)
)
,

respectively, and let γr,i be the angle between TSV m and
MV m. The similarity index γr is defined as

γr =

NI−1∑
i=1

γr,i (7)

There are numerous metrics that can be used to measure such
similarities. However, the proposed metric is simple and demon-
strates good performance. The channel performance manifold
matching algorithm computes the channel model γrj0

that most
likely has the same performance as the unknown channel. For-
mally, we have

j0 = argj min γrj (8)

Subsequently, the decision tree for channel model rj0 can be
used for the unknown channel.
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Fig. 5. Confidence of the Channel Performance Manifold Matching with
Various Number of Samples.

Fig. 4 is a representative 3-D plot for R = 4 and N = 5.
We can see that the throughput of the channel model 1 follows
the trend of that of the unknown channel, which results in the
minimum γr compared with other channel models. When NI

grows, more features are provided by {Ĝi} and the resulting
matching is more accurate. Thus, there is a natural trade off be-
tween computation complexity and estimation accuracy, which
is quantified in Fig. 5 and discussed in the next Section.

B. Algorithm Evaluation

Using a channel emulator, we can reproduce the same chan-
nel in multiple tests, providing a useful method to verify the
channel performance manifold matching algorithm. We have
implemented two tests to validate our channel performance
manifold matching algorithm. In the first test, we select NI sets
of (ri, vi, si,mi) where ri = r0, for some fixed r0 ∈ R for all
i = 1, . . . , NI , mi ∈ M but vi /∈ V , si /∈ S . We measure the
throughput Gi = Gri,vi,si,mi

, and using {Gi} and the corre-
sponding {vi}, {si}, {m0} as the input to the algorithm, and
check if the inferred value equals r0.

The second verification test is to generate a new channel
cnew /∈ Rwith a randomly generated power-delay profile, select
N sets of (cnew, si, vi,mi), measure the resulting throughput
{ηi}, and check if the algorithm can choose the model rfit ∈ R
which is most similar to cnew. As stated in Section II, we seek to
select the transmission mode that maximizes throughput. There-
fore, the definition of rfit is the channel model that, once fed
into the decision tree along with the context information, outputs
the transmission mode m∗ ∈ M that achieves the maximum
throughput in cnew. Next, we will introduce the proposed method
to determine rfit and then discuss the evaluation results.

To determine rfit, we first find m∗ by measuring the
throughput of all the mk ∈ M in the unknown channel
with the same context information. In other words, m∗ =
argmaxmk

Gcnew,vi,si,mk
, k = 1, . . . , R. Then, we consider R

scenarios such that rfit = rj , j = 1, . . . , R. For each scenario,
we input (rj , vi, si) into the decision tree and check if the output
transmission mode mj equals m∗. We repeat the procedure by
choosing different v and s and find the mj which has the most
matching instances. We will call this scheme the exhaustive
search algorithm and compare it with the performance of the
channel performance manifold matching algorithm.

TABLE I
CHANNEL PERFORMANCE MANIFOLD MATCHING IN KNOWN CHANNELS

We use the same training set and the decision tree in Section II
where four channel models are involved, i.e., R = 4 in both
evaluations. In the first type of evaluation, for the exhaustive
search algorithm, we choose NI = 16 records to investigate
the effectiveness of the algorithm. The matching accuracy on
average is 40%. Since our manifold matching algorithm can
work with NI(NI ≥ 2) records and it has better performance
with more records, we have done a progressive evaluation while
increasing the record number. Table I shows the result of the
evaluation. The superiority of the proposed channel performance
manifold matching algorithm is clearly evident from the high
accuracy of 74.8% with only 2 test points and over 94% accuracy
with just 7 test points.

In the second evaluation, among 24 results that are given by
the exhaustive search algorithm, 66.7% select channel model 3 in
R as rfit. For our manifold matching algorithm, we have done
the progressive evaluation as shown in Fig. 5. The confidence
of selecting channel model 3 is the highest out of all channels
with just 2 records and a monotonically increasing confidence
with additional records. On the other hand, for the other channel
models the confidence is low with 7 records.

Our experimental evaluation demonstrates several tests where
the proposed channel performance manifold matching method
leads to significant increase in throughput. It should also be
noted that incorrect channel matching does not necessarily mean
lower system throughput. Classifying an unknown channel into
other channel models than rfit may not result in the highest
throughput, but feeding this result into the decision tree may still
increase the throughput over a purely SNR-based rate adaptation
scheme.

C. Complexity Analysis

Here, we provide the worst case computational complex-
ity of the proposed channel performance manifold matching
mechanism integrated with the decision tree structure. In big-O
notation,O(·) is used to evaluate the worst-case time complexity
of the proposed strategy [25]. Let the channel performance
manifold matching algorithm detects a total of R different
channel types during the overall procedure, and the training data
at each channel type r ∈ R, be Dr. Therefore, the total number
of training data points is D =

∑
r∈R Dr.

The computation requirement for classifying an unknown
channel with NI data points to one of the R channels is on
the order of NIR, which can be explained as follows: For each
channel r ∈ R, calculation of γr,i for all i ∈ NI , as well as the
calculation of γr, has time complexity O(NI), and this process
is repeated for all r ∈ R channels. The channel performance
manifold matching mechanism runs a total of D

NI
times and

therefore requires O(DR) time. The time complexity of each
decision tree r ∈ R is O(Dr logDr) [23], and the overall time
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complexity of computing all the decision trees for R channels is
O(maxr∈R(Dr logDr)). Therefore, the time complexity of the
overall procedure is O(DR) +O(maxr∈R(Dr logDr)).

IV. EXPERIMENTAL RESULTS

In this section, we evaluate the performance of FIT with
experiments on emulated and in-the-field channels. Through
experiments, we demonstrate the following key results regarding
FIT: (i) it uses fewer data points to perform almost as well as
methods that use extensive offline training, (ii) it can incremen-
tally update the decision structure effectively and efficiently,
and (iii) it outperforms both the static offline-training-based and
SNR-based methods. To experimentally show these results, we
use an off-the-shelf, 802.11-based Gateworks 2358 platform and
Ubiquiti XR-2 radios as wireless nodes in our experiments.

A. Comparison of Different Classification-Based Link
Adaptation Frameworks With Emulated Data

To collect data for analyzing and comparing the performance
of link adaptation frameworks, we use repeatable and control-
lable emulated channels. We generate emulated channels using
the Azimuth ACE-MX channel emulator to which we connect
our transmit and receive nodes.We compare the link adaptation
frameworks in four channel models specified by International
Telecommunication Union (ITU). We use Channels 1, 2, 3 and
4 to represent the ITU Pedestrian A and B and ITU Vehicular A
and B channel models, respectively [26]. Channel 1 represents
a channel that lacks a strong multipath component (e.g., an
environment that lacks tall buildings or structures). Channel
2 represents an environment where there are some multipath
components. Channel 3 has multiple strong multipath reflections
(e.g., a downtown environment with a line-of-sight component),
while Channel 4 has a multipath component that is stronger than
the line-of-sight component.

For simplicity, we assume that the SNR is available at the
transmitter; in practice this information could be obtained via
a feedback link from the receiver or directly measured at the
transmitter using the channel reciprocity property. A computer
captures the SNR and throughput from the transmitter and the
velocity from the channel emulator. The throughput is calculated
using (1) based on the received ACKs at the transmitter side
to find the PER. Note that different context information from
the transmitter side or the receiver side can also be used in the
proposed framework depending on the users’ need.

The emulator allows us to test the performance of all available
modes under each scenario (the combination of one SNR and one
velocity) to determine the best mode. This exhaustive measure-
ment technique allows calculation of benchmarks for the perfor-
mance of any adaptive scheme. Consequently, we use prediction
accuracy, throughput improvement over a purely-SNR based
rate adaptation method and the throughput gap from maximum
achievable performance as the performance metrics.

Our hardware supports the following 8 transmission rates for
link adaptation: 6, 9, 12, 18, 24, 36, 48 and 54 Mbps. In each
type of channel, we collect the training data under 40 different
scenarios, which are combinations of 8 attenuation values: 0, 6,

TABLE II
UTILIZED CONTEXT INFORMATION AND DATA STRUCTURE

12, 18, 24, 30, 36, 42 dB and 5 velocities: 0, 30, 60, 90, 120 kmph.
The testing data (i.e., the data used to measure effectiveness of
the training) is collected with random velocities and attenuation
values that are different from the training data.

Under each scenario, we consider the channel type, SNR,
velocity, and throughput for all 8 modes as the raw data. We
generate the training data in two ways based on collected raw
data. First, we determine the best mode for each training data
point and prepare the data in structure 1 as shown in Table II
to input to the learning algorithm. Data structure 1 is desirable
for training the decision structure for offline-training-based link
adaptation. Then, to evaluate the proposed structure of the train-
ing data, we prepare the data as structure 2 shown in Table II.

To test the feasibility of the proposed structure of the training
data, we train the classifiers with the C4.5 algorithm [27]–[29].
We compare and evaluate the link adaptation frameworks with
different structures of the training data in 4 different channels.
We also evaluate the frameworks in the situation when combin-
ing the 4 training sets and the 4 testing sets for the 4 channels as
a pair of training and testing sets. Channel 1 and channel 2 have
similar properties, but channel 2 has a larger propagation delay.
Channel 4 is similar to channel 3, but has a larger propagation
delay.

We investigate the accuracy of the rate prediction and the
throughput gap from the maximum achievable throughput. The
results are shown in Table III. We compare their performances
with an SNR-only method, which chooses the rate based on only
SNR information. We then show the throughput improvement
over the SNR-only method in the 3rd and 6th columns of
Table III.

From Table III, we first notice that for channel 1, the two link
adaptation frameworks based on different structures of training
data both perform comparably to the SNR-only method, with
a small gap to the maximum achievable throughput perfor-
mance. The SNR-only method achieves a smaller gap than the
classification-only methods in this channel. Since channel 1 is
a slow-fading channel with a small propagation delay, a purely-
SNR based method performs effectively in this situation. While
the propagation environment grows to be more complicated, the
performance of the SNR-based method degrades. Thus, from
channel 2 to channel 4, the classification-based methods gain
significant improvement over the SNR-based method. For ex-
ample, the offline-training-based framework with training data
in structure 1 and in structure 2 obtain 1675% and 1506% relative
improvement in channel 2, respectively.

Without the best mode in the training data (i.e., with data
structure 2), the offline-training-based framework obtains com-
parable throughput with the framework using data structure 1.
Furthermore, the framework using the training data in structure
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TABLE III
PERFORMANCE OF LINK ADAPTATION

TABLE IV
THROUGHPUT PERFORMANCE COMPARED TO SNR-ONLY METHOD AND THE MAXIMUM ACHIEVABLE THROUGHPUT WITH VARIOUS NQ. NOTE THAT IN THE

TABLE, “I” REPRESENTS IMPROVEMENT OVER SNR-ONLY METHOD AND “G” DENOTES GAP FROM MAXIMUM ACHIEVABLE THROUGHPUT

Fig. 6. Accuracy of rate prediction with various NQ.

2 still obtains higher throughput over the SNR-only method.
These results demonstrate that data structure 2 can maintain the
high accuracy achieved by data structure 1 while also being more
suited for online training.

B. Investigation of the Granularity of Quantized Throughput
and the Performance of Adaptive Tree

In order to treat the continuous values of throughput as the
class label in the proposed framework, we quantize the through-
put intoNQ discrete values. In Table III, we setNQ to 1000. With
a small NQ, the granularity of the quantization is large, and the
classifier can not distinguish between throughput values close
to one another. While a large NQ can improve the resolution,
it leads to a complicated structure of the classifier, which can
deteriorate the efficiency of the in-situ adaptation process. Thus,
to investigate the effect of the granularity of this quantization
process on the performance of the proposed framework, we test
it with different values of NQ. To test the performance of the

adaptive-learning algorithm in parallel, we employ it to derive
the decision structure in this subsection.

We vary NQ over the values in the set {32, 63, 125,
150, 175, 200, 225, 250, 300, 350, 400, 450, 500, 1000} and do
experiments on 4 frequency bands: 700 MHz, 900 MHz, 2.4
GHz and 5.8 GHz. The accuracy of rate prediction and the
throughput performance are averaged across different bands for
each channel, as shown in Fig. 6 and Table IV respectively. It
can be observed that:
� The classification-based rate adaptation framework with

the proposed training data structure outperforms SNR-
only method with varying NQ in most cases. On aver-
age, the classification-based framework with the proposed
data structure obtains 147.59% relative improvement in
throughput.

� As NQ increases, the accuracy of rate prediction first
increases and then decreases. For small values of NQ,
increasing the granularity of the quantization can help the
decision tree to distinguish between roughly equivalent
throughput values. Increasing NQ beyond a certain value
leads to a reduction in accuracy of rate prediction. As
mentioned above, our proposed framework will generate
a binary decision tree. Thus, too many class labels would
results in a complex structure of the binary decision tree.

� To achieve the best performance, we should find a trade-off
between the granularity of the quantization and the com-
plexity of the decision tree.

� A higher improvement in accuracy does not strictly result
in corresponding improvement in throughput. Since the
throughput of each mode as well as the maximum achiev-
able throughput is different between different scenarios,
the throughput improvement of each data point varies.

� In simplistic settings, e.g., for Channel 1, which is a slow-
fading channel with a small propagation delay, FIT may
encounter marginal performance deterioration compared
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TABLE V
PERFORMANCE OF FIT AND OFFLINE-BASED METHOD ON EMULATED DATA. NOTE THAT IN THE TABLE, “A” REPRESENTS THE ACCURACY OF

RATE PREDICTION, “I” REPRESENTS IMPROVEMENT OVER SNR-ONLY METHOD AND “G” DENOTES GAP FROM MAXIMUM ACHIEVABLE THROUGHPUT

to the SNR-only method. This is because performance of
the SNR-only method is close to the maximum achievable
throughput for such a channel, and FIT requires train-
ing before it performs close to the maximum achievable
throughput. For all other channel types, the SNR-only
method is significantly further away from the maximum
achievable throughput, and our proposed FIT framework
performs close to the maximum achievable throughput.

C. Evaluation of FIT With Emulated Data

In this subsection, we test the performance of FIT based
on emulated data. To prepare the training and testing sets, we
model the natural changing process of the context information.
We gradually decrease the SNR by increasing the attenuation
and randomly vary the velocity between 0 and 120 kmph.
The training data set contains 40 data points with the lowest
velocities. The testing data set contains 26 data points with the
highest velocities. We prepare the training and testing set as data
structure 2 in Table II , which means there are 40 ∗ 8 = 320 and
26 ∗ 8 = 208 data points in the generated training set and testing
set, respectively.

We evaluate and compare the offline-based method and FIT
in two kinds of trials. In the first trial, we train the classifier with
the training set and test the performance of the link adaptation
framework with the testing set. In the second trial, we initially
train the classifier using the training set. During testing phase,
for each 8 testing points from one raw data in the testing
set we first test them and then use them as newly collected
data to incrementally train the existing decision tree. In these
experiments, the testing data is learned as the newly collected
data from the regular communication.

In practice, the propagation property of wireless channels
would change due to the variation of the environment, e.g.
seasonal variations, weather variations. To evaluate the case of
changing wireless channels, we implement two kinds of trials:
(1) training and testing in the same channel type; (2) training
and testing in different channel types. We collect training set in
channel type 3 and 4 testing sets in 4 different channel types.

The results are shown in Table V. With the offline-based
method, the link adaptation framework is embedded in the
classifier derived from the training set and tested on the testing
set. FIT updates the link adaptation decision structure during
the testing phase after testing each 8 testing points from one raw
data. It can be observed that the accuracy of rate selection of the
proposed FIT is higher compared to the offline-based method,
particularly, when training and testing in different channel types.
The proposed framework improves the accuracy of rate predic-
tion by up to 65.38%.

The FIT and offline schemes achieve significant throughput
improvement (upto 592% and 822%, respectively) compared to
the SNR-only method. This result suggests that considering all
context information (e.g., velocity, SNR, and channel type) for
rate adaptation can make significant improvement compared to
the rate adaptation based only on SNR information, signaling the
SNR-to-rate relationship does not strictly hold due to the latency
in the feedback mechanism. Context information helps to antic-
ipate changes made to channel quality, even when the feedback
duration forces a mismatch in the SNR reported and that actually
experienced when the data packet is received. Compared to the
offline-based method, FIT improves the throughput performance
by 33% when training and testing in the same channel and by
up to 28% when training in channel 3 and testing in channel
2. These results demonstrate the necessity and effectiveness of
in-situ training.

D. Evaluation of FIT With In-Field Training

In order to evaluate FIT with in-field data, we set up a measure-
ment system with two wireless nodes communicating over the
air. One of the nodes is located on a car and the other is set on top
of a building in town. We collect the throughput data with context
information. Based on the location and surroundings where the
data is collected, we divide the region around the building into
several sub-regions and assume different sub-regions represent
different channel types. To verity the performance of FIT, we
first pick the tuple of channel type, SNR, and velocity values
as the testing scenarios and interpolate the throughput values
for a certain mode based on the records collected in the same
channel type that have similar SNR and velocity values. With
the interpolated throughput values of different modes in one
scenario, we can determine the transmission mode that can
provide the best performance. In parallel, we feed the context
information of the scenario into the decision tree updated by
in-situ training to evaluate if the output agrees with the best
mode we previously inferred.

We collect the source data in data structure 2 directly for
training at sub-region 1 and the source data for testing set at
sub-region 2. The two sub-regions are close to one another.
When the decision structure is not adaptive to the testing data,
the accuracy of rate prediction is 20%. The throughput im-
provement over SNR-only method and gap from maximum
achievable throughput is −33.86% and 46.88%, respectively.
When we embed the online adaptive function and the decision
structure is adaptive to each testing data after testing it (i.e.,
the testing data is then used as training), the accuracy is 60%,
an increase of 200% compared to the non-adaptive framework.
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Fig. 7. Experiment Setup. (a) Transmitter (b) System .

TABLE VI
THROUGHPUT COMPARISON FOR DIFFERENT CHANNEL TRANSITIONS

The throughput improvement and gap from the maximum are
6.64% and 14.35%, respectively.

E. FIT Implementation and Performance

1) Experiment Setup: A Linux computer acts as the backhaul
of the FIT system, which runs the in-situ training and the
channel performance manifold matching based on the received
training data. We build a special version of the Atheros Linux
wireless driver - ath5k, in which the rate control module has
been redesigned to act as an agent between the backhaul and
wireless transmission module. The driver is designed to pass
the performance data to the backhaul and to update the tree
structure along with the inferred channel type generated by the
backhaul. We burn the modified driver onto the Gateworks 2358
board, essentially changing the functionality of the kernel space.
By comparison, the applications running in the user space are
impervious to this change. We use iperf as the tool to measure the
throughput. The node with this special version of wireless driver
is used as the transmitter, and the receiver node is unchanged.

Fig. 7(a) shows the key elements of the transmitter mentioned
above. Our system setup is shown in Fig. 7(b). Note that the
computer in Fig. 7(b) only functions as a controller of the channel
emulator to ensure the consistency of each experiment and it
does not exchange any information with the wireless nodes.

2) Unintentional Channel Transition: As discussed in
Section III, the training sets for different channel types represent
their various characteristics. In other words, if the system is only

Fig. 8. Performance with channel transitions.

trained with the training set from one channel type, without
in-situ training, the accuracy of the rate prediction will be
degraded when the system encounters a different channel type.
In contrast, if in-situ training is employed in such a case, the
system will adapt to the varying channel type and get better
performance.

To show the performance improvement of the in-situ training
over the offline training, we have created several scenarios on
the channel emulator which involve channel type transitions. By
using the channel emulator, we expose both in-situ training and
online training in the same channel-type transitions to show that
the former has a higher adaptability to the environment variation
than the latter.

In this particular experiment (Unintentional Channel Transi-
tion), for each channel transition, the system is only trained with
the training set of the first channel type so that it knows nothing
about its performance in the second channel type.

Fig. 8 plots the throughput (in i second increments) obtained
using iperf in one transition using both training methods. The
transition happens at approximately 35 second. It can be seen
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TABLE VII
THROUGHPUT’S COMPARISON OF DIFFERENT STRATEGIES

that the offline training can (at most) achieve similar perfor-
mance as the in-situ training before the transition. However,
its performance falls below that of the scheme with in-situ
training after the transition. Table VI shows that in-situ training
tends to provide throughput gains over offline training. Once a
channel transition occurs, none of the methods ensure finding the
optimal rate decision initially. Therefore, it is possible that the
offline scheme achieves higher throughput initially. However,
once a sufficient amount of training data in the new channel is
received, FIT achieves higher throughput performance. Such a
phenomenon can be observed for the transition from Channel 1
to 2. In the case of the Channel 3 to 4 transition, we expect to
observe a higher throughput gain for FIT over the offline method
if the experiment is continued for a longer duration and more
time is given for the rewards of the training to be leveraged.

3) Awareness of the Channel Transition: In this experiment,
we continue to compare the performance difference between in-
situ and offline training with the channel performance manifold
matching. With the channel performance manifold matching,
the system is able to detect the channel transitions and adapt.
To demonstrate the performance gain brought by channel per-
formance manifold matching, we design two other strategies.
With the same channel transition as the last experiment, we first
assume that a genie-based channel inference exists in which a
genie can notify the system with the change in real time. The
other strategy is the in-situ training with the aforementioned
channel performance manifold matching.

The impact of Table VII is two-fold. First, each scheme
achieves throughput gains from in-situ training because in-situ
training would adjust the tree structure in real time so that the
decision tree for rate prediction is according to the current real-
ization of the channel. Second, channel performance manifold
matching can have a positive impact in terms of throughput
improvement. Theoretically, the throughput achieved by the
genie-based strategy is the outer bound of that of the channel
performance manifold matching because the former can always
infer the channel type perfectly. From the table, we can see that
the throughput achieved by the channel performance manifold
matching is close to the genie-based case, and it is higher than
the strategy of not known channel transitions.

V. RELATED WORK

Many works have considered rate adaptation via loss statis-
tics [4]–[7], [30] or SNR-based probing [8], [9], [11], [12].
Moreover, other works have used a notion of context informa-
tion to aid rate selection with knowledge of vehicular speed,
pedestrian speed, or the direction of motion [13]–[15], [31]
and/or channel type information. For the former, historical data
is used with a lack of overhead needed, but in the absence of
channel quality or context information. For work related to the

latter mechanisms, training is offline in nature and is subject to
poor performance in scenarios distinct from their training [10].
In contrast to both types, we allow training on-the-fly in the
environment in which the rate adaptation mechanism will be
operating with knowledge of the channel type, quality, and
context information.

Machine learning algorithms have been widely used to opti-
mize wireless system performance. In particular, the resulting
decision structure has been used in cognitive radios for dynamic
spectrum access and capacity maximization in cognitive ra-
dios [17], [32]. Conversely, genetic algorithms have been used to
optimize physical layer parameters [33]. In [34], a deep learning
technique is proposed for routing computation and traffic control
in a software-defined communication system. To solve the power
allocation problem for the downlink transmission in a spectrum
sharing multi-tier 5G environment, an online learning based
approach is employed in [35]. In [36], deep learning was adopted
for direction-of-arrival estimation and channel estimation in
multi-antenna systems, which depends upon a large amount
of offline training. The works which most closely resemble
our works are [16], [37], [38]. In [16], [37], the authors put
constraints on the wireless performance metric to achieve perfor-
mance optimization rather than seeking the optimal realization
directly. Moreover, [37] does not implement a decision structure
which can be updated on-the-fly in the field on newly-observed
performance data. These limitations highlight the need for more
effective online learning algorithms for rate adaptation. In [38],
a rate adaptation strategy based on a deep learning architecture
is proposed for unmanned aerial vehicle (UAV) network, which
can adapt in a new environment. However, unlike our proposed
scheme, offline learning with a large amount of training data is
required to create the decision structure for the rate adaptation.
Furthermore, in [38], the online learning is employed each
time a new environment is detected. Our channel performance
manifold matching algorithm categorize the wide expanse of an
infinite number of possible environments into a countable set of
channel types. Then, the online learning mechanism is activated
only if a new channel type is encountered, and therefore has a
lower computational requirement.

VI. CONCLUSION

In this paper, we discuss the two challenges posed on online
adaptive link adaptation due to the fluctuating wireless channel.
We present our solutions to these challenges by modifying the
data structure for training and applying the online adaptive
infrastructure. Based on our solutions, we propose an online
adaptive link adaptation framework which can conserve the
manpower and resources for preparing infrastructure offline.
A novel channel performance manifold matching strategy is
introduced which synergistically integrate with the online link
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adaptation framework to achieve efficient link adaptation with
low computational requirement. The proposed strategy improves
the accuracy of rate prediction by up to 65.38%. Compared
to the SNR-only method and offline-based method, our pro-
posed framework achieves 822.08% and 33% improvement,
respectively. The experiments show that the adaptive framework
can adapt the decision structure to the changing propagation
environment and improve its performance on rate prediction.

We considered a Ubiquiti family of radios to evaluate perfor-
mance of our proposed channel performance manifold matching
integrated with a rate decision structure. As discussed in this
work, an online mechanism is inherently running on the device
and training on the fly when new channels are experienced,
or an insufficient level of training is observed. We have also
observed through other measurements via crowdsourcing that
users and thereby devices have a bimodal or trimodal location
distribution [39]. We show in this paper, extremely high levels of
gain can be experienced in less than a minute after transitioning
to a new location. Considering all of these factors, we provide
a framework for any type of device to spend an infinitesimal
amount of time making suboptimal decisions (while still sending
data) in exchange for a very large majority of time that near
optimality will be achieved. Our proposed framework is flexible
to support additional attributes in the future, if necessary.

Lastly, we have used two decision tree algorithms from
the ID3/C4.5 family, C4.5 and ITI [23], since these are well-
established algorithms, provide high training accuracy, and have
been applied to many research fields [40]–[43]. Furthermore,
the C4.5 algorithm has been applied to many research fields.
Across all these applications where a time-varying environment
is experienced, our channel performance manifold matching al-
gorithm could be used. In other words, detecting the environment
for C4.5 based decision trees has applicability beyond just the
field of wireless communications and networking. Our proposed
framework can be extended with other incremental decision tree
based algorithms if the proper conditions hold. Namely, these
conditions have to do with the ability of the decision tree to
handle multiple classes and missing values.
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