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Abstract
The next wave of drone applications is moving from repeatable,
single-drone activities such as evaluating propagation environ-
ments to team-based, multi-drone objectives such as drone-based
emergency services. In parallel, testbeds have sought to evaluate
emerging concepts such as highly-directional and distributed wire-
less communications. However, there is a lack of intersection be-
tween the two works to characterize the impact of the drone body,
antenna placement, swarm topologies, and multi-dimensional con-
nectivity needs that require in-flight experimentation with a sur-
rounding testbed infrastructure. In this work, we design a Multi-
Dimensional Drone Communications Infrastructure (MuDDI) to
capture complex spatial wireless channel relationships that drone
links experience as applications scale from single-drone to swarm-
level networks within a shared three-dimensional space. Driven by
the challenges of outdoor experimentation, we identify the need
for a highly-controlled indoor environment where external factors
can be mitigated. To do so, we first build an open-source drone
platform to provide programmable control with visibility into the
internal flight control system and sensors enabling specialized co-
ordination and accurate repeatable positioning within the isolated
environment. We then design a wireless data acquisition system
and integrate distributed software defined radios (SDRs) in order to
inspect multi-dimensional wireless behavior from the surrounding
area. We achieve and demonstrate the value of measurement per-
spectives from diverse altitudes and spatial locations with the same
notion of time. Finally, we demonstrate how multi-dimensional
models from experimental measurements can be implemented to
simulate multi-drone networks on a practical scale.
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1 Introduction
The unique perspective that drones provide make them an attrac-
tive tool for numerous commercial applications. With over 436k
commercial drones registered with the Federal Aviation Administra-
tion (FAA) as of February 2020 [1] and with the current projection
for number of commercial registrations to be 2 to 3 years early [2],
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many industries are quickly adopting drones for their operations.
As drones move from single-platform, on-demand use cases to those
with cooperative networks of nodes, it is important to understand
the spatially-distributed challenges these wireless links face. Fur-
thermore, due to the ad hoc nature of drone nodes and the intricacy
of next-generation, multi-antenna wireless protocols, it is impera-
tive to fully characterize these complex wireless channels across
spatial distributions in the horizontal and vertical dimensions.

Several works use drones for measuring cellular coverage and
interference [3–5], servicing Internet of Things (IoT) devices [6],
and testbeds for developing enhanced vehicular control algorithms
[7–9]. Others characterize the multi-dimensional propagation envi-
ronment from a drone’s perspective as well as the impact of antenna
orientation in outdoor environments [10, 11]. There also exist wire-
less testbeds investigating next-generation wireless technologies
and distributed networks for a variety of applications [12–15] as
well as unique methods for distributed clocking [16]. We have used
an anechoic chamber to characterize the impact of placing an an-
tenna on a drone and rotating it such that a radiation pattern can be
built over time from a single receiver [17]. However, these works
do not allow the simultaneous reception from multiple perspectives
across multiple azimuth and elevation angles for drone communica-
tions. For example, since various forms of directional transmissions
can extend the range and corresponding size of a drone network,
characterizing beam patterns transmitted from each drone or even
from a set of antennas that are distributed across a swarm would be
extremely challenging, if not impossible, in an anechoic chamber.

To focus on the effects that are localized to the drone, we draw
on the challenges we experienced with outdoor drone-based mea-
surements in order to make informed design decisions. However,
outdoor experimentation alone has a number of issues such as the
lack of control of external factors that lead to unrepeatable effects
and an inability to set up wireless measurement nodes to encompass
a flyable space in an ongoing manner due to weather. Hence, in this
work, we design and build a Multi-Dimensional Drone Communica-
tions Infrastructure (MuDDI) to understand the spatial relationships
that wireless drone links encounter. To carry out this vision, we
address the following challenges with the described solutions:

System-Level Integration of Programmable and Observable Subsys-
tems: First, we describe in detail the drone-flight-enabled wireless
system and the experience that led to the specific indoor design. We
explain the system-level integration of the infrastructure’s support-
ing subsystems. We also describe the approach to addressing the
challenges that an indoor system presents. While carrying out such
an experiment, we additionally need to provide full observability
of the drone platform and SDR network to facilitate a full view of
the effects experienced by the drone.

Sending Drones to Fixed Positions for Fixed Time Durations: With-
out access to GPS, we seek to instruct a drone to fly to a certain
indoor location and hold the position with high precision. As the
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precision level increases, the swarm scale can correspondingly in-
crease. To do so, we give a detailed breakdown of the selected
open-source drone platform that enables accurate control and co-
ordination within the system. We show that proprietary solutions
lack built-in solutions for highly-controlled positioning in an in-
door environment and describe the integration of our open-source
drone build with an 8-anchor indoor localization system.

Phase/Clock Alignment across 72 Spatially-Distributed RF Chains:
Lack of GPS also impacts state-of-the-art solutions for controlling
large-scale SDR networks. In addition, we have found even within
the same SDR, there are phase alignment issues across pairs of
RF chains. We analyze these challenges faced with the distributed
coordination. Namely, we experimentally show the phase align-
ment issues inherent across SDR boards and clocking issues when
attempting to synchronize across tens of meters. We also provide
data-driven technical solutions to these observed issues.

Concurrent Wireless Capture from Various Horizontal and Ver-
tical Positions: To enable the greatest reach of our drone testbed
to measure such effects as multipath or such applications as dis-
tributed beamforming, an extremely high sampling rate must be
carried out at each SDR. When 10s of SDRs are performing this
measurement concurrently, a simple combining of these data rates
exceeds 2 Gigasamples/second (GS/s), which can overwhelm high
performance servers. Hence, we develop a distributed-server solu-
tion and evaluate how these data capture rates can be maximized.
We then show the degree to which synchronization can occur with
first programmatic control and then post processing. Lastly, we
perform a highly-controlled experiment to demonstrate the unique
capability of the infrastructure.

Modeling Drone-Based Communications for Multi-Drone Networks.
Finally, simulation-based modeling of experimentally measured
drone-based effects is demonstrated. As potential applications re-
quire an increasing number of drones across various three-dimensio-
nal positions and orientations, a programmable and scalable envi-
ronment enables complex scenarios to be evaluated. We demon-
strate how drone induced effects can be accurately accounted for
in a network simulation tool. Lastly, we highlight the ability of the
drone-flight-enabled infrastructure to further validate developed
models by isolating increasingly complex drone specific character-
istics for multi-drone networks.

2 Drone-Flight-Enabled Chamber
The goal of our drone-flight-enabled isolation chamber is to ul-
timately support a swarm of drones to fly at specified locations,
whether fixed or mobile, for tens of minutes with a surrounding
wireless infrastructure to monitor the wireless activity of that drone
swarm. The extent to which the drone network can scale in the
infrastructure heavily depends on the degree to which drones can
be trusted to reliably hold position and the size of the space in
which the flights can take place. The indoor drone-flight-enabled
wireless isolation chamber is housed in an indoor facility that al-
lows approximately 20x20 m of flyable space. The minimum height
within the flyable space is 5 m along the perimeter of the flyable
space, but the pitched roof along the center of the building allows
a maximum height of 7 m. Surrounding this flyable space, safety
netting is installed for protection.

In an indoor environment, accurate positioning is challenging,
especially with a metal roof, as is the case in our facility. In fact,
in Section 3, we show that the interpretation of distances using
an off-the-shelf drone controller from outdoor GPS in an unob-
structed environment is so coarse that multiple drones flying inside
a 20x20 m flyable space would be problematic. In addition, the drone
platform needs to be able to interpret position from a positioning
system and be programmatic so that it can receive directives to
move to a given position for a given amount of time. Both aspects
have been elusive in a widely-used off-the-shelf system that we
have used extensively for outdoor experimentation, motivating our
custom design of an open-source drone platform.

Isolating and inspecting a single wireless event requires all 72
RF chains that are dispersed over a large three-dimensional cube
to be temporally synchronized. In Section 4.1, we articulate the
challenges of building such a network and evaluate the timing
alignment of that network with a highly-controlled experiment in
Section 5. Moving beyond time, a secondary issue of phase align-
ment across even two boards that are housed within a single SDR
has emerged both for using even parts of this very large antenna
array as a multi-input, multi-output (MIMO) transceiver, or scaling
up our drone-based antennas on a single body or across multiple
drone platforms. Section 4.2 elaborates on the phase alignment
issue since it is relevant in this SDR network.

A final issue that we experienced in designing the drone-flight-
enabled isolation chamber has to do with the data sampling rate
desired at each of the RF chains. Next-generation MIMO applica-
tions require an extended bandwidth [18–20]. To enable multi-path
and MIMO phase-level analysis, each RF chain needs a sampling
rate of at least 30 MS/s. With 72 RF chains, we need to record over
2.1 GS/s from all SDR positions. We explore the tradeoffs of dis-
tributed logging per SDR versus centralized logging and real-time
versus post-experiment processing. In Section 4.3, we describe the
details behind a surprising finding that a real-time, centralized ap-
proach greatly outperforms a distributed, off-line approach, which
is due primarily to the SDR design.

In summary, the infrastructure relies on the following interacting
subsystems: (i.) an indoor localization system due to the lack of GPS,
(ii.) an open-source drone platform that directly interfaces with the
localization system, (iii.) eighteen SDRs that are distributed along
the walls and ceiling, which are each attached to four log-periodic
antennas pointed toward the center of the facility and connected
to each RF chain, (iv.) a five-server system for distributed data
acquisition, and (v.) three dedicated SDR-to-server cabling runs for
clocking (fiber), data logging (fiber), and control (Ethernet). The
overall system infrastructure is illustrated as a block diagram in
Fig. 2. Additionally, a 2D layout of the flyable space is shown in
Fig. 51, pictured with an overhead view where the walls are laid
down on the outside of the flyable space, and each SDR is numbered
with a surrounding square.

3 Open-Source Drone Architecture
As mentioned previously, we have extensive experience working
with off-the-shelf proprietary platforms in outdoor settings. How-
ever, to accomplish seamless integration into our infrastructure
we need more control over the software architecture and design
1To save space, we co-locate the floor plan and results from Section 5.
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(a) Flyable Space (20 m x 20 m x 7 m apex). (b) Configuring Localization System. (c) In Flight (USRP labeled for reference with Fig. 5).

Figure 1: Multi-Dimensional Drone Communications Infrastructure (MuDDI).

as well as full visibility into the drone’s flight control system. All
of our efforts have been focused on multi-rotor drone platforms,
more specifically quadcopters, that provide the ability to hover. This
unique aspect of flight offers an unparalleled perspective for wire-
less applications. Designing a custom open-source drone platform
with this capability took careful consideration of not only the flight
dynamics and load capacity, but in the selection of open-source
hardware and software to achieve our vision.

Figure 2: High-level overview of drone-flight-enabled wire-
less isolation chamber infrastructure.

Even commercially-engineered drone platforms from established
companies such as DJI suffer from errors in accuracy when attempt-
ing to hold a stable hovering position. According to DJI’s speci-
fications [21], their common Matrice 100 quadcopter platform’s
flight controller can have errors of ±0.5 m in the vertical plane and
±2.5 m in the horizontal plane when maintaining a hover under
ideal flight conditions. These errors are only made worse in an
unpredictable outdoor environment where several other factors
can affect flight controller performance and accuracy. Factors such
as wind, GPS error, and atmospheric fluctuations in temperature
and air pressure can induce unintended mobility and have a direct
effect on the specified position and therefore the prediction and
quality of a wireless channel.

For comparison, we demonstrate the accuracy of the popular DJI
Matrice 100, a commercial load carrying drone based on DJI’s N1
flight controller. Fig. 3a illustrates the three-dimensional error ex-
perienced by the drone’s intended hover position. There are a total
of seven intended hover locations that are marked with a bold black
point. These points indicate the position instructed to the flight
controller. The measured GPS locations are indicated by the smaller
blue points and are reported using the USRP E312 as an external
GPS receiver. The bounding circle indicates the intended position’s
corresponding measurements, while the dotted line indicates the
distance from the intended point to the average of the received GPS
measurements for that location. An external GPS receiver was used

to separate the discrepancy that the drone’s flight controller sen-
sors experienced from the experimental measurements. From this
outdoor experiment, we see errors of up to 3.57 m in the latitude
axis, 1.53 m in the longitude axis, and 9.49 m in the vertical axis, or
altitude, from the intended position when attempting to hover in a
programmatically-specified location. Due to these DJI limitations
for this indoor application, we began working with commercially-
available, open-source platforms. We first used a 3DR Solo, which is
based on the widely-used, open-source ArduPilot flight controller
software and PixHawk Cube hardware. This platform supports a
payload capacity of 700 g and is meant for more consumer-level
hobby and photography applications. This drone was outfitted with
the lightweight (24 g) Ettus USRP B200mini-i SDR for the wireless
communication link and connected to a Raspberry Pi 3 Model B+
(RPi) for on-board processing. The RPi bridged the computing gap
between the SDR and the flight controller over a serial data connec-
tion. Using the wireless SDR link, the RPi communicated received
control messages to the flight controller and allowed flight sensor
data to be transmitted to the ground station. The full-duplex capa-
bility of the SDR provided a frequency-division-duplex link that
was needed to implement our custom communication protocol. The
uplink channel was dedicated to critical drone control messages,
and the downlink channel provided sensor feedback to the ground
station. This separation on two channels enabled a concurrent func-
tional SDR uplink to the drone for programmatic flight commands
from the ground station and downlink sensor feedback.

Following our experience with the 3DR Solo, we continued using
ArduPilot software, the RPi as the companion computer, and Pix-
Hawk hardware for the flight controller on our subsequent drone

(a) (b)

Figure 3: Latitude, longitude, and altitude error from hover
(a), and Open-source Drone Platform (b).
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builds. Compared to the 3DR Solo, our current custom drone plat-
form has a much larger lift capacity. This increased capacity allows
us to support multiple radio platforms that can be used for wireless
experimentation (relevant for the phase offset alignment discussion
in Section 4.2) in addition to a separate wireless link for drone
control. All of our custom drone builds follow the basic design
presented in Fig. 4, with the exception of the indoor localization
that was recently added for precise positioning in MuDDI.

There exist various options for establishing a control link to
the drone with varying degrees of reliability. Common control
options include a manual remote control or a pre-programmed
GPS way-point mission, which limits dynamic control and requires
accurate GPS. Another option explored was using a standard WiFi
link to the companion computer, but reliability and latency limited
the performance. Furthermore, these technologies are limited to
their designed frequency bands (900 MHz or 2.4/5 GHz), restricting
controlled wireless experiments in these bands of interest. Hence,
the SDR-based control link is an attractive option that enables
dynamic frequency selection and the implementation of a custom
control message format. However, designing a reliable, low latency
protocol for an indoor environment with the limited SDR resources
has proved challenging.

Figure 4: Block diagram of open-source platform.

With the accuracy and precision of positioning within the three-
dimensional (3D) space being so important for repeatability and
control, indoor localization was needed. In order to achieve a de-
tailed level of positioning within our indoor flight space, we in-
stalled a 3D position tracking system by IndoTraq. To do so, we
secured tripods to the ceiling at each of the four corners of the
flyable space to hold two anchors each at heights of 2 m and 4 m
for a total of 8 anchors. This system uses ultra-wide band wire-
less technology in addition to inertial-based tracking to provide
sub-millimeter precision with update rates as high as 150 Hz while
also providing localization throughout the entire flyable space. In
an 8 anchor system, accuracy in all three dimensions is within 16
mm of the intended position [22]. The ultra-wide band technology
operates at a frequency of 6.5 GHz, which is outside the operable
frequency range of our SDRs and therefore eliminates the risk of
interference in wireless measurements. A lightweight sensor tag (7
g) is integrated on our custom drone platform using a serial connec-
tion to the Raspberry Pi companion computer, and the calculated
position is fed to the PixHawk flight controller in order to provide
3D positioning and tracking. Then, using the wireless control link,
specified locations within the flight space can be programmatically
and dynamically communicated to the drone. This indoor localiza-
tion solution along with the isolated indoor chamber addresses the
previous GPS precision inaccuracies and atmospheric factors by
not relying on potentially-faulty flight controller sensors.

Figure 5: Layout of distributed N310s and antennas, average
RSS highlighted from measurement results.

4 Software Defined Radio Network for
Distributed Data Acquisition

We now describe challenges with the SDR network on the ceiling
and walls around the flyable space: (i.) clocking over long distances,
(ii.) phase offsets even across boards in the same SDR, and (iii.) data
logging from 72 RF chains.

4.1 Clocking Issues with Distributed SDRs
The SDR platform used throughout the facility is the Ettus USRP
N310. This SDR is capable of simultaneously providing four full
duplex channels (4 TX / 4 RX), each with a maximum instantaneous
bandwidth of 100 MHz. It provides an extended frequency range
of 10 MHz - 6 GHz and a sample rate of up to 153.6 MS/s. The
N310 is a larger platform measuring 35.71 cm × 21.11 cm × 4.37 cm
and weighing 3.13 kg, making it a challenge to fly on the drone.
The SDRs that we have carried on the drone platform include the
USRP B200mini-i and the USRP E312, weighing 24 g and 446 g,
respectively. Both offer a tunable frequency range of 70 MHz - 6
GHz and provide up to 56 MHz of instantaneous bandwidth. The
E312 offers two full duplex channels, while the B200mini-i offers
only one. The E312 possesses an embedded Linux system running
on an ARM Cortex A9 chip enabling stand-alone operation, where
the B200mini-i relies on a USB connection to a host. This makes the
B200mini-i more suited for integrating drone control over an SDR
link with a companion computer, while the E312 is more effective
for collecting raw measurements or running a stand-alone protocol.

Each N310 has four LP0965 log-periodic PCB antennas connected
to the RF front end that is operational over the entire operating
carrier frequency range of the SDR. The 6-dBi antennas either
point directly towards the floor from the ceiling mounts or directly
towards the opposing wall from the wall mounts. Each antenna
connects to the TX/RX port allowing for time-division duplexing.
With four antennas at each SDR, a total of 72 simultaneous channels
have the ability to transmit, receive, or any combination of the two.
Each of the eighteen SDRs have been strategically located to cover
the flyable space with a 3-m spacing between adjacent antennas.
Fig. 5 shows the radio and antenna layout.

With so many radios operating together in a distributed fashion,
a clocking solution was needed to provide synchronous operation.
The first option explored was Ettus’ OctoClock solution that pro-
vides synchronization for up to eight devices per OctoClock device.
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Figure 6: Experiment setup for phase offset testing.
However, this solution is operated over copper connections and
required a GPS input for a disciplined clock source. These factors
proved challenging for several reasons. First, the max distance from
the central clock source would be approximately 30 m away when
the cables were routed. This is not practical for copper-based con-
nections as these distances would experience significant cable losses
as well as introduce unnecessary drift and noise in the clock pulses,
resulting in unacceptable errors in synchronization. Secondly, the
indoor environment lacked a reliable GPS signal which would fur-
ther degrade the quality of the clock source. The clocking method
that we chose to incorporate in our system was the White Rabbit
Network Switch from Seven Solutions. This solution provided sub-
nanosecond time accuracy over fiber connection for up to eighteen
devices on one network switch. Since it operates over a fiber link, it
can support multiple-km distances, easily supporting our needs. It
also didn’t require a disciplined clock and still offers a clocking accu-
racy to within 1 nanosecond [23]. Using the White Rabbit clock, we
ran single-mode fiber cabling from a central control point to each
of the eighteen radios in order to provide accurate and distributed
clocking, which we experimentally evaluate in Section 5.

4.2 Phase Errors Across SDR Boards
Even with time synchronization and shared clocking among all
the distributed USRPs, there still exists a random phase generated
by each USRP’s local oscillator. In fact, in the case of N310 with
two daughterboards (2 RX/TX channels per board), there will be an
intra-phase offset in addition to the inter-phase offset that usually
exists between different USRPs. To the best of our knowledge, aside
from the manufacturer’s application notes regarding this problem,
there is very little information available in literature regarding
how this phase error in USRPs behaves across time and multiple
experiments. For example, in [24], while carrier frequency offset
(CFO) and phase errors are studied, the sudden drifts in time are
not discussed. Even in [25], researchers only study 1.25 seconds
of recorded phase values, which we will show is not sufficient to
capture the temporal nature of the phase error since sudden phase
drifts can occur due to temperature variations or frequency divider
ambiguities. To characterize this phase offset issue between two
boards, we conduct the experiment shown in Fig. 6.

Following the manufacturer’s instructions [26], we send a 1-KHz
sine wave at a sampling rate of 100 kS/s to two synchronized N210
USRPs through a splitter with two matching-length cables. The two
USRPs are synchronized using a MIMO cable that shares the 10
MHz/PPS signals of one USRP (master) with the other (slave). The
10 MHz clock and PPS signal are required for time and frequency
synchronization. However, there is still a random phase generated
by each USRP’s independent local oscillator. We aim to characterize
this random phase offset, necessary for phase coherent applications
such as distributed beamforming. The phase difference between
the two received signals at the two USRPs is calculated using the

unwrapping method. Namely, we unwrap each received phase over
time and calculate the difference between the two unwrapped an-
gles. We conduct 11 experiments (10 for 10 s, 1 for 120 s) for 3
carrier frequencies of 500 MHz, 2.4 GHz, and 3.5 GHz, but we show
results for only 3.5 GHz due to limited space. All experiments are
conducted at room temperature. We find the following:

(i.) With each experiment there exists a random phase error. This
random phase error is, for all trials that have no sudden phase drifts,
approximately constant over time with a standard deviation that
does not exceed 0.03 radians across all trials. An example of this
phase difference is shown in Fig. 7.

Figure 7: Synchronized instantaneous phase for nodes

(ii.) There exists sudden phase drifts over time, causing jumps
in the phase offset value. These phase drifts, and consequently,
phase jumps, occur within a 1-s interval with a maximum number
of 2 times per experiment. This measurement tells us that when
using distributed USRPs, even when synchronized, there is a need
for a continuous phase calibration and correction procedure in
order to capture these random phase jumps. In other words, a one-
time calibration before experimenting with distributed USRPs is
not enough: a finding that can impact how distributed SDRs are
designed for phase-coherent applications. An example of a sudden
phase drift of 0.22 radians and the resulting jump in phase error is
shown in Fig. 8.

Figure 8: Sudden phase drifts causing jumps in phase differ-
ence between synchronized USRPs.

(iii.) To address the temporal nature of this phase offset, we
use a moving time window of a 2-s intervals and find that, if the
experiment is free of the sudden phase drifts discussed above, the
mean and standard deviation of the phase offset are approximately
constant over the different time periods. Therefore, a mean over the
10 s (or 120 s in the long experiment) is representative of this phase
offset and can be used in a one-shot calibration procedure where we
compensate for the phase error using a reference phase. However, as
mentioned above, this is not always the case. If sudden phase drifts
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Trial 1 2 3 4 5 6 7 8 9 10 11 (120 s)
Mean (rad) 1.678 2.228 2.007 2.114 1.674 12.028 1.771 -0.0347 -0.1850 1.890 2.494

Standard Deviation (rad) 0.0217 0.0281 0.0264 0.0271 0.0198 0.1096 0.0199 0.0201 0.0203 0.1491 0.1135
Table 1: Phase offset between synchronized distributed USRPs.

occur, the mean and standard deviation obtained over the whole
experiment duration are no longer representative due to sudden
jumps in value. Therefore, a continuous calibration procedure is
needed where the phase values are checked every 1 s as a worst
case scenario. A summary of the mean phase offset and its standard
deviation in radians is presented in Table 1. Notice how the standard
deviation of experiments 6, 10, and 11 is greater due to the sudden
phase drifts that occurred in those trials.

4.3 Commanding/Logging 72 RF Chains
Another critical challenge faced with operating eighteen SDRs in
such a distributed fashion is providing command and control to each
radio. The other challenge that logically followed was collecting,
generating, and processing the large amount of data that would
either need to be created or captured at each radio. First, in order
to provide remote command and control, a wired 1 Gbps Ethernet-
based connection was established to each of the radios. This allowed
for remote configuration from a central point but didn’t provide a
method for collecting, processing, or storing measurement data. To
address this we took a methodical approach in assessing different
techniques for handling this challenge.

We first explored processing samples locally at each N310. How-
ever, each radio was limited to the local ARM Cortex-A9 processor
and used a flash-based microSD card for data storage. Using a single
N310 to benchmark a radio’s performance, first the Unix command-
line utility ’dd’ was used to test the disk write speed in MB/s for
several different microSD cards from various manufactures. Next,
based on the max disk performance, a theoretical sample rate was
calculated to predict the max achievable sample rate. This calcu-
lation was based on the fact that each sample written to file is a
complex float producing a total of 8 bytes per sample or 4 bytes
per I and Q, respectively. Finally, the true measurement capabil-
ity was assessed by using a benchmark utility provided by Ettus
and slowly backing off the predicted sample rates until there was
no longer data overflow, meaning loss of samples due to the lack
of buffer space. Each microSD card’s speed class, capacity, quoted
write speed, ’dd’ write speed results, calculated theoretical max rate,
and benchmark utility test results were recorded. The results from
these tests are presented in Table 2. From these results, we show
that the max sample rate achieved was approximately 1.5 MS/s,
greatly underutilizing the N310’s max capability of 153.6 MS/s.

Next, we shifted from locally-processing samples, to attempting
to send and receive samples using a networked mode. In order to
achieve this process and handle the large amount of data associated
with higher sample rates, we identified the need for a high perfor-
mance computing platform. To better understand the computing
needs and data rate budget, we started with one server grade ma-
chine to test howmany radios we could support on a single machine
before scaling to a multi-server setup to service all eighteen radios.
We used a dedicated quad-port SFP+ network interface card (NIC)
operating on Peripheral Component Interconnect express Revision
3 (PCIe Rev. 3) to provide a direct link from the N310 to the server

in order to get the best data rate and network performance without
router or switch limitations.

The first cabling method tested from the N310 to the server was
CAT 6 RJ45 Ethernet, supporting 10 Gbps on a SFP+ adapter at both
the radio and NIC. However, when testing the max distance cable
length of 30 m, the link did not support the full 10 Gbps speed and
reverted to a 1 Gbps link. Since this issue would bottleneck the data
link budget, we then moved to using a full duplex multi-mode fiber
connection over a supporting SFP+ adapter at both the radio and
NIC. With the full 10 Gbps speed in both the uplink and downlink
confirmed, several tests using a network-mode benchmark utility
allowed us to gauge how many radios we could support using one
machine. Using up to three quad-port NICs on the single server-
grade test machine, we benchmarked the performance for a total of
4, 6, and 9 network-mode links with the radio front end connection
configuration, set receiver (RX) sample rate, and set transmitter
(TX) sample rate noted. Then, each test was performed for 10 s.

The results for the various tested combinations of receiving RX
and generating TX sample rates are shown in Table 3. The front
end connections refer to the number of front end connections per
radio, so 4-RX and 4-TX across four N310s signifies a total of 16
channels of both RX and TX. The tests that completed without an
underflow or overflow in the network buffers are indicated with
a pass (P), where those that experienced at least one buffer issue
are indicated with a fail (F). These front end combinations were
selected to assess the best and worst case scenarios for different
configurations. From these results, we conclude that connecting
four radios per machine in the server design would provide the best
network performance for processing samples and still achieve near
the maximum capability of the N310 hardware.

Therefore, a total of five servers were custom built to match
the test machine and provide dedicated connectivity to each of the
eighteen SDRs. Each server was outfitted with one quad-port NIC,
2 terabytes (TB) of high-speed solid-state storage (2 x 1 TB in RAID
0) with a maximum write speed of 3.3 GB/s, and 10 TB of hard
disk space that allows offloading from high-speed storage to enable
various combinations of collection times and sample rates.

𝐷𝑎𝑡𝑎 𝑅𝑎𝑡𝑒 (𝐷𝑅) = 𝑆𝑎𝑚𝑝𝑙𝑒 𝑅𝑎𝑡𝑒 (𝑆𝑅) × 8 𝐵 × #𝐶ℎ𝑎𝑛𝑛𝑒𝑙𝑠 (𝐶) (1)

𝐶𝑜𝑙𝑙𝑒𝑐𝑡𝑖𝑜𝑛 𝑇𝑖𝑚𝑒 (𝐶𝑇 ) = 𝐷𝑖𝑠𝑘 𝑆𝑝𝑎𝑐𝑒

𝐷𝑎𝑡𝑎 𝑅𝑎𝑡𝑒
(2)

Equations 1 & 2 demonstrate the theoretical maximum collection
time based on the sample rate and number of channels. Recall, each
server has a maximum of four connected N310s and therefore, a
maximum of 16 channels per server. Using the high-speed 2 TB
storage and sample rates of 30 MS/s across all 16 RX channels for
one server results in a maximum collection time of 520.8 s.

5 Multi-Dimensional Data Capture
In order to demonstrate the scale and level of control at which we
can perform experiments, we provide a simple experimental setup
for capturing received samples from a transmitting drone. First, to
achieve a distributed level of control, the servers institute a parallel
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Card Class Capacity (GB) Write (MB/s) ’dd’ (MB/s) Max Rate (MS/s) Tested Rate (MS/s)
Samsung Evo 10, U3 512 90 17.5 2.1875 1
Samsung Evo 10, U3 256 90 15.6 1.95 1.201923
SanDisk Extreme U3, V30 400 90 17 2.125 1.506024
SanDisk Extreme U3, V30 128 90 17.2 2.15 1.404494
Lexar Professional U3, V90 128 150 10.9 1.3625 0.5

Table 2: Write and sample rate performance of microSD cards.

Front End RX (MS/s) TX (MS/s) Pass/Fail
Four - N310

1-RX 125 N/A P
1-RX 125 N/A P

1-RX 1-TX 125 125 P
1-RX 1-TX 125 125 P
4-RX 4-TX 62.5 62.5 P
4-RX 4-TX 62.5 62.5 P
4-RX 4-TX 125 62.5 F

Six - N310
1-RX 62.5 N/A P
1-RX 125 N/A P
4-RX 31.25 N/A P
4-RX 62.5 N/A F
4-RX 125 N/A F

1-RX 1-TX 62.5 6.25 P
1-RX 1-TX 62.5 12.5 F
4-RX 4-TX 31.25 1.25 P
4-RX 4-TX 62.5 1.25 F
4-RX 4-TX 12.5 6.25 F
4-RX 4-TX 31.25 6.25 F

Nine - N310
1-RX 20.83 N/A P
1-RX 31.25 N/A P
1-RX 62.5 N/A F

4-RX 4-TX 1.25 1.25 P
4-RX 4-TX 31.25 31.25 F

Table 3: Achievable sample rates in networked mode based
on number of SDRs connected to a single server.

control scheme that issues command messages over the Ethernet
network and direct each USRP to their respective server over fiber
to start a measurement collection. Using Ettus’ USRP Hardware
Driver (UHD) software API, a simple write-to-file application is
created to sample 1.25 MHz of bandwidth at a center frequency
of 5.15 GHz. For this demonstration, we capture one RX channel
across all eighteen SDRs simultaneously. In order to isolate the
effect of receiving from each location, the drone is placed on a fixed
platform at the center of the flyable space directly below SDR #14 in
Fig. 5 at a height of 3.5 m. The drone has a vertically-oriented, omni-
directional TX antenna (pictured in Fig. 3b) on the side of the drone
nearest SDR #2. The transmitter is a USRP B200mini-i SDR on the
drone with a narrow-band sine wave at a center frequency of 5.15
GHz in a periodic on-off pattern and a cycle frequency 0.5 Hz. Then,
one receiver chain from each of the eighteen N310s simultaneously
samples at a rate of 1.25 MS/s for a total of 30 seconds. The IQ
samples are stored from each SDR on their respective server and
are later processed for the received signal strength (RSS) in dB.

Fig. 9 shows a one-second portion of the transmitter-on cycle for
a temporal representation of the RSS. In order to better visualize
the general trend, a moving average was taken over a windows size
of 3000 samples. The top graph shows the best synchronization that
can be achieved with programmatic control alignment of sampled
data by using a timestamp from the start of the collection. While
the bottom graph shows the post-processed alignment, based on
the rising edge of the first cycle. There was a maximum of 26,907
samples, or 21.53 milliseconds, between the first and last rising
edge using the programmatic control method of synchronization.
After post-processing based on the rising edge, both the rising and
falling edges were aligned to within 800 ns.

Figure 9: Average RSSI with programmatic (top) and post-
processed (bottom) synchronization.

By inspecting the RSS values in Fig. 9, we see a maximum of a
23.12 dB difference in the RSS from SDR #14 to SDR #5, across all
eighteen spatially-distributed receivers. We can additionally refer
to Fig. 5, which illustrates the overall average RSS experienced
at each SDR in the form of a colored heat-map overlay. Both of
these figures indicate that the drone experiences vastly different
propagation effects from approximately equidistant receivers in
this controlled environment. In particular, the receivers located
above the drone are consistently lower in terms of their received
signal levels as compared to the antennas on the walls, likely due
to the transmitting, vertically-oriented omni-directional antenna,
which has the lowest radiation pattern value at that elevation angle.
Furthermore, there is diversity even among the walls, highlighting
the potential impact the drone body itself is having on the omni-
directional antenna mounted on the SDR #2 side of the drone. This
further highlights the need to better understand the complex three-
dimensional effects that drones experience, a key component that
our unique drone-flight-enabled wireless isolation chamber enables.
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6 Building a Drone-Based Simulation
Environment

Our work towards a drone-based simulation environment focuses
on modeling our experimental understanding and implementing
those results in a computational setting. In particular, an empha-
sis is placed on emulating the physical layer characteristics that
we have identified and accurately representing their impact on
the wireless channel. Compared to standard wireless propagation
and elevation models, our experimental results show an increased
need for characterizing multi-dimensional drone specific aspects to
properly represent practical drone-based communications. Aspects
such as the relative three-dimensional location of drone nodes, the
physical drone body, placement of antennas, and orientation of
the antennas require several variations in standard models to ef-
fectively represent their induced effects. Properly capturing and
representing these effects becomes increasingly important as the
scale of the drone network increases. By accurately modeling the
multi-dimensional characteristics, we can predict the complex com-
munication channels among large networks of drones across diverse
three-dimensional positions and altitudes.

Rather than programming a custom simulation environment
from the ground up, we choose to use OMNeT++ with INET, a
C++ based framework that provides several models that can eas-
ily be customized to represent the required elements of multi-
dimensional drone-based communications. In particular, we need a
programmable environment to simulate a complex network stack,
implement several physical layer aspects, create various wireless
interfaces, provide three-dimensional mobility, and assess radio
and network-level performance. OMNeT++ with INET provides a
sufficient starting point for all of these requirements.

In our initial simulation work, we demonstrate how experimen-
tal results from our outdoor measurement studies and indoor ane-
choic chamber experiments in our previous work [17] can be trans-
ferred to a simulation environment for the evaluation and validation
of drone-based communications. In particular, we explore a two-
dimensional scenario that takes into account the effect of the drone
body as well as multiple antenna orientations and positions. It is
important to note that to effectively target the drone induced effects,
all of the described experiments utilize the same antenna across
similar frequencies, eliminating any physical antenna dependent
characteristics when comparing results. However, in the outdoor
environment we lack the isolated control of several variables to
completely separate undesirable effects from the intended experi-
mental variables. Even in the isolated environment of the anechoic
chamber, limitations prevent the characterization of altitude effects,
in-flight effects, and the assessment of multiple drones at once.

We first focus on a simple two-dimensional representation of the
relative angle between a transmitting drone to a receiving drone
in an outdoor, line-of-sight environment. The general layout and
results from this in-field experiment are represented in Fig. 10. An
important aspect of this experiment is that both drones are fixed at
the same elevation and have their forward-mounted antennas facing
towards 0 degrees (fixed yaw) throughout this experiment, creating
a unique scenario for assessing two-dimensional directional losses.
Fig. 10 also illustrates the distances and angles that are measured
with the receiving drone in the middle and the transmit drone

positions highlighted with the average received signal strength
(RSS) experienced by the receiving drone along each axis creating
angles of 0, 90, 180, and 270 degrees. From this figure, it is clear that
the angle and distances in front of the receiving drone experience
a higher RSS compared to the other measured locations.

Figure 10: In-field two-dimensional experiment RX drone
(center) with TX drone positions (surrounding).

It is common to assume that in a fixed horizontal, or azimuth
plane that the radiation pattern and therefore observed losses would
be constant no matter the direction of the transmitter from the
receiver. However, from our two-dimensional experiment it is clear
that once the antenna was mounted on the drone and the transmit-
receive angle is changed, the constant azimuth assumption is no
longer valid. Using a standard path loss model, we observe that
a constant azimuth assumption greatly underestimates the path
loss experienced by the drone by up to 23.15 dB. To account for
these losses, we represent the differences in path loss by adding
a shadowing factor to a log-normal path loss model for each of
the measured angles. This modified model allowed us to accurately
predict and simulate the RSS for eachmeasured angle. This modified
model produces a maximum average prediction error of 4.10 dB
in simulation for the angle of 180 degrees. When compared to the
standard model error of up to 25.58 dB, we demonstrate an 83.9%
reduction in error.

To simulate this experiment within OMNeT++, an ad hoc drone
network is created to match the experimental setup and parameters.
An existing wireless AdhocHost module is used to represent the
transmitting and receiving drones. We then use the Ieee80211Scalar-
RadioMedium module to simulate the wireless physical layer pa-
rameters. Within this module, an omni-directional dipole antenna
is chosen to match the in-field experiment antenna characteristics.
Next, an Ipv4NetworkConfigurator module is used to assign IP ad-
dresses and create the routing between network interfaces. Finally,
to implement our modified path loss model, a custom module is
created in C++ to capture the relative transmit-receive angle and
calculate the corresponding path loss based on the added shadow-
ing factor. This calculation uses a lookup table and is only valid for
the four measured angles.

Equations 3 & 4 summarize the modified path loss model that
is used for this calculation. In Equation 3, the transmit power and
receive power are represented by 𝑃𝑡 and 𝑃𝑟 , respectively. Then,
𝑃𝐿 (𝑑𝑜 ) is the reference path loss calculation for a distance of 20 m,
𝛼 is the path loss exponent, and 𝜉𝑠 is the zero-mean, normally
distributed shadowing parameter with a standard deviation of 2.
In Equation 4, 𝑃𝐿𝑈𝐴𝑉 represents our modified path loss value,
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where Γ𝜙 is the additional averaged shadowing parameter that was
induced by the drone in the corresponding azimuth angle (𝜙). To
produce an accurate calculation within the simulation, the same
center frequency (2.5 GHz) and transmit power (6.2 dBm or 4.1687
mW) parameters are matched. Finally, the simulation is run at 1
m increments from a distance of 20 m to 100 m while the received
power is logged at each location.

𝑃𝑟 = 𝑃𝑡 − 𝑃𝐿 (𝑑𝑜 ) − 10𝛼𝑙𝑜𝑔(𝑑/𝑑𝑜 ) + 𝜉𝑠 (3)

𝑃𝐿𝑈𝐴𝑉 = 𝑃𝐿𝑙𝑜𝑔−𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒 + Γ𝜙 (4)

The simulated results using our developed model for the angles
of 0 and 180 degrees adds an additional shadowing factor (Γ𝜙 ) of
9.17 dB and 21.45 dB, respectively. When compared to the in-field
experiments where only five distances were used to develop the
model, we show that on average, the same accuracy is achieved
in distance increments of 1 m. While this two-dimensional path
loss model highlights the substantial effect that the drone body had
on predicting RSS, it did not capture all 360 degrees of yaw or the
various complex antenna positions and orientations that we wish to
simulate on a larger scale nor does it provide a means of separating
the drone induced effects from the drone-based transmitter.

Once we identified that the drone body was a substantial source
of attenuation, we shifted focus from a path loss based model to
characterizing the attenuation using a directional gain based ap-
proach. A gain based approach to modeling the unique drone-based
aspects allows assessment of how the directivity of the wireless sig-
nal is affected from the perspective of the antenna by the complex
influence of the drone body as well as the various antenna posi-
tions and orientations. This approach also allows for the simulation
environment to be easily extensible to various drone bodies and
antenna configurations by simply characterizing a specific drone
and antenna setup once and scaling to any physical network topol-
ogy necessary. This shift in modeling is chosen because path loss
is typically associated with characterizing the surrounding prop-
agation environment and not the direct effect of the drone body
or the characteristics induced on the communicating antennas. It
also allows for the logical separation of transmitting and receiving
elements and their induced effects when evaluating drone-to-drone
networks with various antenna configurations. Since our outdoor
experiments are performed at an altitude where unobstructed line-
of-sight propagation is assumed, the concept of path loss does not
completely capture the observed drone-based effects.

Following this realization, we utilize the anechoic chamber to
characterize the antenna gain in great detail both on and off the
drone in a highly isolated manner. Again, due to the limited ca-
pabilities of the chamber, we are only able to accurately describe
the yaw dimension, or azimuth plane, of the antenna for a vertical
antenna orientation. Within the anechoic chamber, we characterize
the antenna alone versus mounted on the drone, as described in
Section 2 of our previous work [17]. The controlled nature of the
chamber enables us to capture a greater level of detail about each
antenna configuration in the azimuth plane. Fig. 2 in [17] shows the
setup within the anechoic chamber and the drone-mounted antenna
position measured on the drone body, forward right. The drone is
mounted on a rotating platform controlled by a stepper motor with
a resolution of 1.8 degrees. This provides a total of 200 individual
antenna gain measurements for each antenna configuration.

(a) Isolated Antenna. (b) Drone Mounted Antenna.

Figure 11: Simulation results of gain pattern for isolated &
drone mounted antenna.

Using this highly-detailed characterization of the gain pattern
experienced by the antenna, the same in-field experiment is recre-
ated in the simulation environment. However, now we were able
to provide a full representation of the azimuth plane both with
and without the drone body for all 360 degrees of yaw and the
same experimental distances. Within OMNeT, the same basic drone
network setup is used as in the previous simulation. However, this
time instead of a dipole antenna, the transmitting and receiving
drones are configured with an interpolating antenna that models a
directional antenna based on a sequence of angles and gain values.
Using the 200 angles and gain values measured in the chamber,
these antennas are set up to match the exact characterization for
each antenna configuration. Again, the same transmit power and
center frequency is matched, but this time a free-space path loss
model is used rather than the modified log-normal path loss model.
By leveraging this detailed understanding of the effective antenna
gain patterns, we illustrate the impact that the drone body has
within the simulation environment. Fig. 11 provides a heat map
representation of the predicted RSS for both antenna configurations
across the same distances as our in-field experiments. The color
map key represents the expected RSS in dB experienced by the re-
ceiving drone at the center from each of the surrounding transmit
locations with a 1 m resolution. As expected, the isolated antenna
shows a gain pattern in the azimuth plane that is characteristic of
a vertically-orientated omni-directional dipole antenna. Compared
to the isolated antenna configuration pattern, the drone has a sig-
nificant effect on the achievable gain of the antenna and therefore
the RSS for different transmit-receive angles and distances.

One interesting observation from Fig. 11b is that the forward-
facing angle opposite of the receiving antenna placement experi-
ences substantial losses (dark-blue cone pattern) starting at 40 m
centered at approximately 335 degrees. This observation is impor-
tant when predicting the effective distance and channel quality
as these losses will limit the potential range and/or achievable
throughput in multi-drone networks.

At this point in our simulation work, we plan to perform several
experiments within our indoor infrastructure to move towards a
more controlled understanding of the unique three-dimensional
aspects that we have identified thus far. In particular we plan to
first focus on describing the elevation plane effects to provide a
three-dimensional understanding of the drone body effect. The si-
multaneous multi-dimensional capture capability, as well as the
highly-precise control of drone position and orientation, will enable
us to fully characterize these unique effects from the perspective
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of a drone-based receiver and transmitter. Furthermore, due to
the dynamic and configurable nature of the SDRs, it is possible
to quickly switch the surrounding fixed antennas to receiving or
transmitting elements, effectively separating the undesired drone
induced variables we faced in the outdoor experiments. These in-
sights will enable the validation of multiple drone-based scenarios
as well as the dynamic switching or movement of antenna posi-
tions and orientations providing an isolated characterization to
bring greater levels of fidelity to the simulation environment for
multi-dimensional multi-drone networks.

7 Related Work
There are several existing works that fall into two broad cate-
gories relating to our efforts. In the first category, drones have
been used as tools within wireless research, such as assessing prop-
agation [10, 19, 27], or improving path planning and control systems
algorithms [3–5]. Other works have even used fixed wing drones to
further explore how antenna type and orientation affected achiev-
able throughput [11] or serviced IoT devices with groups of mobile
drones [6]. MIT’s Indoor Multi-Vehicle Flight Testbed [7] coordi-
nate several drones with localization for assessing control system
performance, but wireless link characterization is not discussed.
Lastly, simulation environments have tested coordination and con-
trol algorithms for drones with some indoor validation [8]. In the
second category, wireless testbeds have been developed to evaluate
various communication technologies. The PAWR Project [12] is
helping to develop various emerging technologies such as massive
MIMO and 5G connectivity. The Open Access Research Testbed
for Next-Generation Wireless Networks (ORBIT) [15] provided a
large scale wireless testbed for indoor reproducibility as well as
an outdoor network testbed to test real-world scenarios. In Air-
Share [16] they proposed a novel method of sharing a reference
clock to independent wireless nodes in a distributed manner for use
in distributed MIMO and rate adaptation applications. In contrast
to these efforts, we build a programmable testbed around a flyable
space to inspect drone networks.
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9 Conclusion
In this work, we described our experience and lessons learned from
building a drone-flight-enabled wireless isolation chamber, which
allows in-depth evaluation of the complex spatial relationships that
are experienced in drone communications. To do so, we first built
an open-source drone platform that allowed us to directly inter-
face with an indoor localization and programmatically position
drones for a given amount of time. Next, we designed a wireless
data acquisition system with a family of SDRs over the outside of
the flyable space in the testbed, which presented challenges for syn-
chronization, phase alignment, and data logging. We demonstrated
the culmination of this integration with a highly-controlled exper-
iment from the same transmitter mounted on a drone and show
an ability to synchronize and evaluate three-dimensional aspects
in drone networks. Finally, we demonstrated how our experimen-
tal measurements can be leveraged to simulate multi-dimensional
drone networks on a practical scale.
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