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Abstract—Vehicular wireless channels have a high degree of
variability, presenting a challenge for vehicles and infrastructure
to remain connected. The emergence of the white space bands
for data usage enables increased flexibility for vehicular net-
works with distinct propagation characteristics across frequency
bands from 450 MHz to 6 GHz. Since wireless propagation
largely depends on the environment in operation, a historical
understanding of the frequency bands’ performance in a given
environment could expedite band selection as vehicles transition
across diverse scenarios. In this paper, we leverage knowledge of
in-situ operation across frequency bands with real-time measure-
ments of the activity level to select the the band with the highest
throughput. To do so, we perform a number of experiments in
typical vehicular topologies. With two models based on machine
learning algorithms and an in-situ training set, we predict the
throughput based on: (i.) prior performance for similar context
information ( e.g., SNR, GPS, relative speed, and link distance),
and (ii.) real-time activity level and relative channel quality
per band. In the field, we show that training on a repeatable
route with these machine learning techniques can yield vast
performance improvements from prior schemes.

I. I NTRODUCTION

Drivers and passengers around the world could utilize a
wide array of vehicular applications ranging from real-time
traffic monitoring and safety applications toinfotainmentap-
plications spanning news, weather, audio, and video streams.
However, the continuous use of such applications is limited
due to the challenge of transmitting over highly-dynamic
vehicular wireless channels. In such networks, the increasing
availability of different frequency bands with correspondingly
diverse propagation characteristics could allow flexibility and
robustness of vehicular links. Even with spectral flexibility,
links are extremely tenuous, demanding instantaneous deci-
sions to remain connected, motivating an algorithm that can
find the appropriate frequency band quickly and according to
the current environmental context.

Cognitive radio mechanisms which interleave channel ac-
cesses also motivate the frequency band selection problem
of finding the optimal spectrum on which to transmit [1].
Prior work has considered a number of challenges in lever-
aging white space frequencies including spectrum sensing,
frequency-agile operation, geolocation, solving stringent spec-
tral mask requirements, and providing reliable service in unli-
censed and dynamically changing spectrum [2]. In particular,
there has recently been an acceleration in spectrum sensing
work [3]–[5]. Based on these works, protocols have been built
for multi-channel and/or multiband wireless operation [6]–[8].
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Other works have presented methods for searching for the most
efficient transmission channel [9], discovering channel infor-
mation [3], [8], and estimating channel quality [6]. Finally,
the emergence of a number of diverse sensors on a vehicle
motivates work on heterogeneous wireless networks, which
have different frequency bandsand technologies [10]. Thus,
the various communication standards have diverse throughput
capacity, allowing the choice of technology to possibly usurp
frequency band decisions. For example, an 802.11n link at
5.8 GHz with high levels of loss might still be a better choice
than a Bluetooth link at 2.4 GHz with little loss due to the
discrepancy of hundreds of Mbps in throughput capacity.

However, for the purposes of this work, we assume the
underlying technology is the same to evaluate the choice of fre-
quency band. While these works have considered spectral ac-
tivity and developing protocols and algorithms to find spectral
holes, less of a focus has been on coupling such information
with historical performance in a given propagation environ-
ment. In this paper, we develop multiband adaptation protocols
which couple the prior knowledge of in-situ performance of
various bands with the instantaneous knowledge of spectral
activity, SNR, and current location of each band to arrive at
a decision on the optimal band to transmit. To do so, we use
an off-the-shelf platform that allows direct comparison and
simultaneous experimentation across four different wireless
frequency bands from 450 MHz to 5.8 GHz with the same
physical and media access layers.

The main contributions of our work are as follows:

• We first develop a framework for multiband adaptation
using both historical information and instantaneous mea-
surements. This framework is broad enough to study
adaptation across licensed and unlicensed bands, includ-
ing white space frequency bands.

• We propose two different machine-learning-based adap-
tive algorithms. The first machine learning algorithm,
which we refer to as theLocation-based Look-up Algo-
rithm, is based on the idea ofk−nearest-neighbor clas-
sification. The second machine-learning-based algorithm
uses decision treesfor classification. For comparison,
we also create two baseline adaptation algorithms which
attempt to make the optimal band selection based on only:
(i.) historical performance data, and (ii.) instantaneous
SNR measurements across various bands.

• We perform extensive outdoor V-2-V experiments to
evaluate the proposed algorithms. Our results indicate
that the proposed machine learning algorithms improve
throughput by up to49.3% over these baseline methods.



II. M ULTIBAND ADAPTATION

In this section, we first formulate the multiband adaptation
problem in vehicular wireless links and introduce the set of
information we use to make multiband decisions, which we
refer to as context information. We then propose two machine-
learning-based multiband adaptation algorithms for vehicular
channels. For comparison, we also propose two baseline
adaptation methods based on existing solutions which consider
historical and instantaneous information independently.

A. Problem Formulation

Consider a system withn frequency bands, represented
by an index set{1, 2, . . . , n}. The objective is to select the
optimal band,bbest, to transmit at each time instant that
maximizes a desired objective function such as throughput.
The throughputri on bandi depends on several factors such as
received signal powerP i

R, noise powerP i
N , the channel busy

time Bi, the velocity of the transmitter,vtx, the velocity of the
receiver,vrx, and location information which depends on each
algorithm and will be specified in the algorithm section. The
aforementioned set of all information used to make multiband
decisions composes the users context. This relationship is
represented in general asri = f(P i

R, P i
N , Bi, vtx, vrx,context

information per algorithm). The objective can be stated as:

bbest = argmax
i

ri (1)

The framework allows separation of the interference from
other nodes using the same technology (via the busy timeBi)
and other technologies (via the noise levelP i

N ). For instance,
an 802.11 node can decode the packets of other 802.11
nodes but can only sense instantaneous noise levels from
ZigBee/Bluetooth nodes. Decoding the packets can provide
increased knowledge such as data rate and packet size to
determine the duration of the channel use. We can exploit
the long-term behavior by using historical performance data
for the collected context information (e.g., vtx, vrx, Bi, P i

N ,
P i

R) [11].
To represent the utilization level of the channel, we define

busy time, B, as the percentage of time when the channel is
occupied by all competing sourcesxj(j = 1, 2, 3, ...) other
than the intended transmittery. For 802.11-based transmis-
sions, the busy time on bandi is defined as:
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whereL
xj

k andR
xj

k represent the packet length in bits and data
rate at which that packet is transmitted, for external sources
xj ; S and σ are the number of idle slots and slot duration,
respectively. When considering the activity level of non-802.11
users (e.g., the bands currently licensed to TV and other non-
802.11 devices), we use the received signal level from non-
802.11 interfering sourcesP i

N on bandi directly as an input
to our algorithms.

B. Multiband Adaptation Algorithms

In order to evaluate the proposed multiband adaptation
algorithms, we construct two baseline methods: (i.) We search
for the most commonly selected band as the best band in the
historical data and choose it as the final band decision. (ii.)
For each band, we build a lookup table for throughputTideal

in an idealized channel given theRSSI and obtain the best
band according to following:

max
i

T i
ideal × (1 − Bi), (3)

The throughputTideal is measured with an Azimuth ACE-MX
channel emulator [12]. The details of the system setup and data
collection are discussed in Section III.

Machine learning has been used as an important tool in
wireless communications [13]. When a user enters an area, the
machine learning algorithm can learn from the historical data
and train to select the potential optimal band given the input,
e.g., P i

R, v and P i
N . We propose two multiband adaptation

algorithms based on two machine learning methods: k-nearest
neighbor (KNN) and decision trees.

Location-based Look-up Algorithm. KNN is a machine
learning method based on searching for the closest training
data points in the feature space and various modified ver-
sions have been applied successfully for classification [14].
In the Location-based Look-up Algorithm, we search for the
closest neighbors of a testing point by using each parameter
one by one in the input set. TheLocation-based Look-up
Algorithm additionally involves geographic information for
band selection other than received signal powerP i

R, noise
powerP i

N , the activity/occupancy levelBi, the velocity of the
transmitter,vtx. The performance of the selected training data
points is averaged to generate an estimate of the performance
at each band. Then the band with the highest throughput
performance is selected asbbest.

For the Location-based Look-up Algorithm, context infor-
mation involves location informationg which is the GPS
latitude and longitude,v, P i

R, P i
N and Bi. To make a band

prediction, we have four look-up blocks to reduce the training
data points which are similar to the testing data point. First,
we search for the historical data which is closest to the testing
data based on GPS location. If the number of found historical
data points is less than a predefined threshold,θAArea, we
increase the distance range (the actual threshold is discussed
in Section III). Then, based on the filtered historical data,we
collect θAArea data points which are closest toP i

R, where
θAArea is the threshold of the number of collected data points.
A similar process is repeated based onP i

N andv, respectively.
After deciding the final data set, we average the throughput of
data points at each band. The key steps of this algorithm are
presented as Algorithm 1.

Region-based Decision Tree Algorithm.Decision trees are
a widely-used machine learning algorithm due to their low
complexity and stable performance [15]. A decision tree can
model the relationship in the training data between the context
information and the optimal band as a set of tree-like de-
duction structures. Before implementing the training process,
we prepare a training set including a group of training data
points of {vtx, vrx, P 1

R, ..., Pn
R , B1, ..., Bn, P 1

N , ..., Pn
N , bbest}

based on the collected measurements. We obtainbbest by



Algorithm 1 Location-based Look-up Algorithm
Input:

g: Location information of multiband node
θArea: Threshold of a location
θRSSI : Threshold of RSSI
θV elocity: Threshold of velocity
θAArea: Threshold of data amount for a location
θARSSI : Threshold of data amount for RSSI
θANon802.11SI : Threshold of data amount for non-802.11 inter-
ference
θAV elocity: Threshold of data amount for velocity
Di ∈ {D1, D2, . . . , Dn}: Historical look-up data

Output:
bbest: Optimal transmission band

1: for i <= n do
2: Initialize DataLocation, DataRSSI, DataV elocity to zero ma-

trix;
3: while Amount(DataLocation,i) < θAArea do
4: DataLocation,i ← fLookup(D

i, g, θArea): Find data inDi

whose distance less thanθArea;
5: θArea = θArea × 1.1;
6: end while
7: while Amount(DataRSSI,i) < θARSSI do
8: DataRSSI,i ← fLook−up(DLocation,i, P

i
R, θRSSI): Find

data inDLocation the RSSI similar toP i
R in rangeθRSSI ;

9: θRSSI = θRSSI × 1.1;
10: end while
11: while Amount(DataPN ,i) < θANon802.11SI do
12: DataRSSI,i ← fLook−up(DLocation,i, P

i
N , θRSSI): Find

data inDLocation the RSSI similar toP i
N in rangeθRSSI ;

13: θANon802.11SI = θANon802.11SI × 1.1;
14: end while
15: while Amount(DataV elocity,i) < θAV elocity do
16: DataV elocity,i ← fLookup(DRSSI,i, v, θV elocity): Find

data inDRSSI the RSSI similar tov in rangeθRSSI ;
17: θV elocity = θV elocity × 1.1;
18: end while
19: Ta,i = avr(DataV elocity,i);
20: Te,i = T i

a × (1−Bi);
21: end for
22: bbest = maxi{T

1

e , . . . , T i
e , . . . , T n

e };

comparing the throughput performance of all available bands
and selecting the band with the highest throughput. We choose
the C4.5 algorithm to generate our decision tree [16], a
widely-used algorithm based on the information entropy gain.
At each intermediate node in the decision tree, the learning
algorithm calculates the information entropy gain of splitting
the remaining training data points based on each parameter in
the input set,e.g., P i

R, v or P i
N . Then, it compares and selects

the parameter with the highest entropy gain to decide the
test condition at each intermediate node until all trainingdata
points are classified. The leaf nodes indicate the optimal band
for prediction in our application. Then, the trained decision
structure is integrated into the transmitter protocol stack. With
the collected context information, the decision structurecan
suggest the band with the best throughput performance.

The relationship between the context information and the
best band could differ at different locations because of diverse
propagation environment characteristics. To reduce the hetero-
geneity of training data from different locations, we splitthe
vehicular route into several regions and implement the training
process based on the historical data collected in each region.
Then, the trained decision structure is integrated in our system

Fig. 1. Experimental setup for channel emulator.

for multiband adaptation in each region. The granularity of
regional division is one parameter that affects the training set
as well as the performance of the resulting decision tree. We
evaluate the granularity of these divisions in Section III.

III. EXPERIMENTS FORMULTIBAND ALGORITHMS

To study these algorithms, we have developed indoor and
in-field experiments on an off-the-shelf wireless platform. To
ensure the results are broadly applicable, we employ a Linux-
based 802.11 testbed [17]. The platform includes a Gateworks
2358 motherboard with Ubiquiti XR radios (XR9 at 900 MHz,
XR2 at 2.4 GHz, XR5 at 5.2 GHz) and a DoodleLabs DL475
radio at 450 MHz [18], [19]. We use an Azimuth ACE-
MX channel emulator for controllable propagation and fading
characteristics with a broad range of industry-standard channel
models from 450 MHz to 5.9 GHz [12].

A. In-lab Experiments for Radio Characterization

To establish an SNR-to-throughput relationship for theSNR-
based Throughput Look-up Algorithm, we use an experi-
mental setup where two wireless nodes communicate across
repeatable emulated channels generated by Azimuth ACE-MX
channel emulator (Figure 1). For a given band and card, we
measure the throughput of a fully-backlogged UDP flow using
the iperf traffic generator. We use constant attenuation over
an idealized channel condition and repeat the experiment to
produce various RSSI values. Despite the same physical and
media access control layers of the radios, there are slight
differences in the throughput achieved per radio at the same
attenuation level. Thus, we normalize these throughput values
to have the same maximum throughput across radio types for
a fair comparison of the frequency bands.

B. Experimental Design for In-field Data Collection

We now describe the in-field experimental design to obtain
a data set for evaluating our multiband algorithms. Two
Gateworks boards, each containing the aforementioned four
radios, are installed on two cars. One node is always the
receiver and at a fixed location. The other node is always the
transmitter and travels around the block of a public park as
shown in Figure 2. One loop of the route will be used as a
unit of training in the next section.

During each loop, the transmitter sends a fully-backlogged
UDP flow using iperf on each of the four radios simulta-
neously. To focus on band selection and ensure the greatest
range, we disable autorate and use a fixed data rate of 6 Mbps.
The receiver continually performs atcpdumpof all received
802.11 packets [20]. Additionally, a QH 400 Quad Ridge Horn
Antenna (shown in Figure 2) is connected to a Rhode &
Schwarz FSH8 mobile spectrum analyzer at the receiver to
monitor spectral activity. Then, based on the time stamps, we



Fig. 2. In-field Experimental Setup.

Fig. 3. Spectrum Analyzer Data Processing.

remove 802.11 packets from the spectral trace so that only
non-802.11 interference will contribute toPN

N .
Figure 3 shows how we obtain the non-802.11 interference,

P i
N . We expunge the spectrum analyzer (SA) samples which

overlap in time with the dumped 802.11 packets, such as
packets 3, 4, and 5. Then, the reported interference value will
not contain the received power from 802.11 packets, which
have already been considered via the busy time,B.

The in-field data is processed offline where data from all
instruments involved is synchronized based on the GPS time
stamps. As discussed in Section III-A, the throughput of
each radio is normalized based upon emulator experiments
to account for any manufacturing differences.

C. Performance Analysis of Algorithms

We now investigate the performance of our proposed algo-
rithms with the experimental setup described in Sections III-A
and III-B. The metrics ofAccuracyand Throughput Gapare
used in the evaluation. We consider each second of the in-field
trace and observe the frequency band that had the highest
throughput. TheAccuracy is defined as the percentage of
best band predictions match the observed best band, where
a prediction is made each second. Conversely, theThroughput
Gap is defined as the difference between the throughput
observed on the best band and the throughput achieved by the
predicted best band over the throughput of the observed best
band. In the situation where the exact best band is not chosen,
the throughput could be close between the chosen band and
the optimal band, meaning that the incorrect band choice did
not result in a large throughput loss. Thus, theThroughput
Gap metric captures the severity of the incorrect choice.

Since theSNR-based Throughput Look-up Algorithmre-
quires only emulator-based training, theAccuracy and
Throughput Gapcan be calculated for all loops of the in-
field trace. However, theLocation-based Look-up Algorithm
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Fig. 4. Accuracy of the four multiband algorithms.
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Fig. 5. Throughput Gap of the four multiband algorithms.

and theRegion-based Decision Tree Algorithmrequires in-field
training. Thus, the data set must be divided into a training set
and testing set for evaluation.

In Figure 4, we show the aforementionedAccuracy of
the four multiband algorithms in selecting the band with
the highest throughput. The x-axis represents the number
of loops around the block of the mobile transmitter (shown
in Figure 2) that will be used by the machine-learning-
based algorithms. We use the same training and testing set
to compare theLocation-based Look-up Algorithmand the
Region-based Decision Tree Algorithm. From the results, we
observe the following:

• At each loop, the first baseline algorithm,Most
Commonly-Selected Band, uses the band with the greatest
long-term average of the percentage of time that band
yields the highest throughput over the previous loops.
The accuracy ranges from 36.1% to 42.9%.

• The second baseline algorithm,SNR-based Throughput
Look-up, maintains a 39.2% across all the data since it
relies only on emulator-based training.

• The Region-based Decision Tree Algorithmhas an accu-
racy ranging from 48.2% to 54.0% but contains many dips
due to the relationship between the context information
and the distribution of the best band choice changing
on a loop-by-loop basis. Additional training data slightly
improves the decision structure overall but primarily
induces additional noise in the training process.

• The Location-based Look-up Algorithmbegins with an
accuracy of 42.5% but improves the most out of any
algorithm to finish with an accuracy 62.5% with a highest
accuracy of 65.0% occurring after loop 14. Additional
in-field training loops are likely to further improve the
multiband selection accuracy.

Figure 5, depicts theThroughput Gapof the four algorithms



Fig. 6. Spatially splitting experimental area into 8 regions.
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Fig. 7. Accuracy when dividing training set into 8 regions.

we evaluated and shows the following.
• The Most Commonly-Selected Band Algorithmhas two

different modes of throughput gap based upon which
band has the highest long-term percentage. For loops 2-4,
the choice is 5.8 GHz, which has a gap of 41.1% using
the test set. For all other loops, the choice is 2.4 GHz,
which has a gap of 27.7%.

• The SNR-based Throughput Look-up Algorithmshows a
baseline performance of 23.6% for the throughput gap.

• TheRegion-based Decision Tree Algorithmbenefits from
additional training, going from a throughput gap of 23.0%
to 20.0%. Spatial and temporal changes to context infor-
mation bring dips to the curve.

• Finally, theLocation-based Look-up Algorithmtakes only
6 loops of training to reach its lowest value of 10.2% in
terms of throughput gap. From loop 1 to loop 20, the
throughput gap goes from 20.8% to 12.3%, which might
still be improved upon with additional training.

We now consider the effect of further sub-dividing in-
field experimental testing data into regions for ourLocation-
based Look-up Algorithmand Region-Based Decision Tree
Algorithm. To do so, we divide the loop around the park into
eight regions as shown in Figure 6, which has two competing
effects: (i.) Smaller regions allow similar experimental data
to be used in the training process, potentially improving the
decision structure. (ii.) For a given training set, dividing
it into regions reduces the number of training points for
the machine learning algorithms, potentially weakening the
decision structure. In Figure 7, we observe theAccuracyof
the eight regions for both algorithms.

• In all but Region 1, theLocation-based Look-up Algo-
rithm has better performance thanRegion-based Decision
Tree Algorithm. The improved accuracy of the former

algorithm can be attributed to its ability to distinguish
between the middle of a given region to the boundary,
considering each point differently. For theRegion-based
Decision Tree Algorithmto capture such a notion, the
regions would have to be further sub-divided, increasing
the number of trees and reducing the training set per tree.

• For this training set, the reduction in training data caused
by the regional divisions had a net loss on the per-
formance of theRegion-based Decision Tree Algorithm.
However, if the training set was much larger for a given
area, the net effect of regional divisions could be positive.

IV. CONCLUSION

In this paper, we investigated multiband adaptation to lever-
age the propagation and context for vehicular applications. We
did so by proposing two machine-learning-based schemes and
compared their performance against two baseline schemes.
In our experimental analysis, we evaluated the performance
of these algorithms in the field on an off-the-shelf platform.
Experimental results demonstrate that the proposed algorithms
can achieve up to 49.3% greater throughput than the baseline
algorithms with an accuracy up to 65%. In future work, we
will study the impact that multiple diverse environments have
on the training as well as evaluate the optimal use of multiple,
diverse radios in unison.
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