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Abstract—Vehicular wireless channels have a high degree of Other works have presented methods for searching for thé mos

variability, presenting a challenge for vehicles and infrastructure

to remain connected. The emergence of the white space band

for data usage enables increased flexibility for vehicular at-
works with distinct propagation characteristics across flequency
bands from 450 MHz to 6 GHz. Since wireless propagation
largely depends on the environment in operation, a historial
understanding of the frequency bands’ performance in a give
environment could expedite band selection as vehicles traition
across diverse scenarios. In this paper, we leverage knowlige of
in-situ operation across frequency bands with real-time masure-
ments of the activity level to select the the band with the higest
throughput. To do so, we perform a number of experiments in
typical vehicular topologies. With two models based on madhe
learning algorithms and an in-situ training set, we predict the
throughput based on: (.) prior performance for similar context
information (e.g, SNR, GPS, relative speed, and link distance),
and (ji.) real-time activity level and relative channel quality
per band. In the field, we show that training on a repeatable
route with these machine learning techniques can vyield vast
performance improvements from prior schemes.

I. INTRODUCTION

Drivers and passengers around the world could utilize
wide array of vehicular applications ranging from real-¢im

traffic monitoring and safety applications iafotainmentap-

efficient transmission channel [9], discovering channébrin
Smation [3], [8], and estimating channel quality [6]. Finall
the emergence of a number of diverse sensors on a vehicle
motivates work on heterogeneous wireless networks, which
have different frequency bandmd technologies [10]. Thus,
the various communication standards have diverse thrautghp
capacity, allowing the choice of technology to possiblympsu
frequency band decisions. For example, an 802.11n link at
5.8 GHz with high levels of loss might still be a better choice
than a Bluetooth link at 2.4 GHz with little loss due to the
discrepancy of hundreds of Mbps in throughput capacity.

However, for the purposes of this work, we assume the
underlying technology is the same to evaluate the choicesef f
guency band. While these works have considered spectral ac-
tivity and developing protocols and algorithms to find spaict
holes, less of a focus has been on coupling such information
with historical performance in a given propagation environ
ment. In this paper, we develop multiband adaptation paitoc
which couple the prior knowledge of in-situ performance of
various bands with the instantaneous knowledge of spectral
activity, SNR, and current location of each band to arrive at

plications spanning news, weather, audio, and video sgeaf decision on the optimal band to transmit. To do so, we use

However, the continuous use of such applications is limitétf’
due to the challenge of transmitting over highly-dynami
vehicular wireless channels. In such networks, the iningas

availability of different frequency bands with correspamgly
diverse propagation characteristics could allow flexipiand
robustness of vehicular links. Even with spectral flextili

off-the-shelf platform that allows direct comparisordan
Imultaneous experimentation across four different wssl
requency bands from 450 MHz to 5.8 GHz with the same
physical and media access layers.

The main contributions of our work are as follows:

links are extremely tenuous, demanding instantaneous deci

sions to remain connected, motivating an algorithm that cane
find the appropriate frequency band quickly and according to

the current environmental context.

Cognitive radio mechanisms which interleave channel ac-
cesses also motivate the frequency band selection problem
of finding the optimal spectrum on which to transmit [1]. *
Prior work has considered a number of challenges in lever-
aging white space frequencies including spectrum sensing,
frequency-agile operation, geolocation, solving strimggpec-
tral mask requirements, and providing reliable servicerihi-u
censed and dynamically changing spectrum [2]. In particula
there has recently been an acceleration in spectrum sensing
work [3]-[5]. Based on these works, protocols have beert buil
for multi-channel and/or multiband wireless operation{@].
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We first develop a framework for multiband adaptation
using both historical information and instantaneous mea-
surements. This framework is broad enough to study
adaptation across licensed and unlicensed bands, includ-
ing white space frequency bands.

We propose two different machine-learning-based adap-
tive algorithms. The first machine learning algorithm,
which we refer to as théocation-based Look-up Algo-
rithm, is based on the idea d&f—nearest-neighbor clas-
sification. The second machine-learning-based algorithm
usesdecision treesfor classification. For comparison,
we also create two baseline adaptation algorithms which
attempt to make the optimal band selection based on only:
(i.) historical performance data, and (ii.) instantaneous
SNR measurements across various bands.

We perform extensive outdoor V-2-V experiments to
evaluate the proposed algorithms. Our results indicate
that the proposed machine learning algorithms improve
throughput by up tal9.3% over these baseline methods.



Il. MULTIBAND ADAPTATION B. Multiband Adaptation Algorithms

. . ' , . In order to evaluate the proposed multiband adaptation
In this section, we first formulate the multiband adaptatiog gorithms, we construct two baseline methods: (i.) Wecear
problem in vehicular wireless links and introduce the set ‘?(ér the mo'st commonly selected band as the best band in the
information we use to make multiband decisions, which Weisiorical data and choose it as the final band decision. (ii.

refer to as context information. We then propose two maching,, each band. we build a looku

, ) . . . , p table for throughput..;
learning-based multiband adaptation algorithms for vélaic ;, 3 idealized channel given theSST and obtain the best
channels. For comparison, we also propose two baseligg,q according to following:

adaptation methods based on existing solutions which densi ‘ ‘
historical and instantaneous information independently. max Tijeq * (1= BY), ()

The throughpuf’;;..; is measured with an Azimuth ACE-MX
A. Problem Formulation channel emulator [12]. The details of the system setup atad da
Consider a system witl frequency bands, represente(?ouecm.n are d|s_cussed in Section 1il, ; -
by an index sef{1,2,...,n}. The objective is to select the .Machlne Iearnlng _has been used as an important tool in
optimal band. b, ’ ’to {ransmit at each time instant thatW'rele.SS communications [13]. When a user enters an area, th
1 besty achine learning algorithm can learn from the historicabda

maximizes a desired ob!ectlve function such as throughpg d train to select the potential optimal band given the inpu
The throughput; on bandi depends on several factors such agg Pi. v and Pi. We propose two multiband adaptation
bR L] R N-*

:ﬁglj\é%dtﬁgcg:oe:?twiﬁ tr’]:?rlzﬁsrr):i\gsg) ’tégevgroi?tne(l)fbtl;sey algorithms based on two machine learning methods: k-neares
’ y e Y Heighbor (KNN) and decision trees.

receiveru,..., and location information which depends on eac Location-based Look-up Algorithm. KNN is a machine

algorithm gnd will be spe_cified in.the algorithm SeCtion'.ThFearning method based on searching for the closest training
aforementioned set of all information used to make multnbaqjata points in the feature space and various modified ver-

?ee;rlzlsoennstegoir:%%Srfesraﬁhaesisj?(r;icggite)g.i Ihlsv rel?(t)'r?t';irt"psigns have been applied successfully for classificatior}. [14
information per algorithth The ogj’ecg\/’e célrfzb’egt’ated as: In the Locz_;mon-based Look_-up Al_gorlthnwe_ search for the
" closest neighbors of a testing point by using each parameter

one by one in the input set. Theocation-based Look-up
Algorithm additionally involves geographic information for
band selection other than received signal poursy, noise
The framework allows separation of the interference fromower Py, the activity/occupancy leveb?, the velocity of the
other nodes using the same technology (via the busy fi)e transmittery,,. The performance of the selected training data
and other technologies (via the noise le¥&|). For instance, points is averaged to generate an estimate of the perfoenanc
an 802.11 node can decode the packets of other 802&dtleach band. Then the band with the highest throughput
nodes but can only sense instantaneous noise levels frparformance is selected ag.;.
ZigBee/Bluetooth nodes. Decoding the packets can provideFor the Location-based Look-up Algorithnzontext infor-
increased knowledge such as data rate and packet sizemition involves location informatiory which is the GPS
determine the duration of the channel use. We can expltititude and longitudey, P}, Pi and B'. To make a band
the long-term behavior by using historical performanceadaprediction, we have four look-up blocks to reduce the tragni
for the collected context informatiore(q, vi., v.., B*, Py, data points which are similar to the testing data point.tFirs
Pp) [11]. we search for the historical data which is closest to thertgst

To represent the utilization level of the channel, we defirdata based on GPS location. If the number of found historical
busy time B, as the percentage of time when the channel i&ta points is less than a predefined threshélds, .., we
occupied by all competing sources(j = 1,2,3,...) other increase the distance range (the actual threshold is diedus
than the intended transmitter. For 802.11-based transmis-in Section lll). Then, based on the filtered historical date,

bpest = argmaxr; ()

sions, the busy time on barids defined as: collect 6 44,c, data points which are closest 8}, where
0 a4+eq IS the threshold of the number of collected data points.

53 i A similar process is repeated basedBf andwv, respectively.
Bi J~k R 2) After deciding the final data set, we average the throughput o

- LY Ly data points at each band. The key steps of this algorithm are
2k RY T 22 R_]fj + 80 preser:ned as Algorithm 1. Yo ’
Region-based Decision Tree AlgorithmDecision trees are

whereL;’ andR,’ represent the packet length in bits and data widely-used machine learning algorithm due to their low

rate at which that packet is transmitted, for external sesirccomplexity and stable performance [15]. A decision tree can

x;; S and o are the number of idle slots and slot duratiormodel the relationship in the training data between theednt

respectively. When considering the activity level of ndd28.1 information and the optimal band as a set of tree-like de-

users é.g, the bands currently licensed to TV and other norduction structures. Before implementing the training s

802.11 devices), we use the received signal level from nome prepare a training set including a group of training data

802.11 interfering source®}; on bandi directly as an input points of {viy, vy, P, ..., PR, BY, ..., B™, P, ..., PR bpest }

to our algorithms. based on the collected measurements. We obigin by
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Algorithm 1 Location-based Look-up Algorithm Computer
Input: i
g: Location information of multiband node
O areqa: Threshold of a location
Orssr: Threshold of RSSI

— Attenuation —| Channel Emulator

Wireless Wireless
1_ Signals Signals
|

RSSI
Throughput

Oveiocity: Threshold of velocity Transmitter Transmitter
O4areq: Threshold of data amount for a location (Ubiquiti) (Ubiquiti)

0arssr. Threshold of data amount for RSSI

Oanonso2.1151. Threshold of data amount for non-802.11 inter- Fig. 1. Experimental setup for channel emulator.

ference
9A_Vel(,cit%: Threshold of data amount for velocity
D' ¢ {D',D?, ..., D"} Historical look-up data
Output:

brest: Optimal transmission band

1: for i <=n do

2. Initialize Datapocation, Datarssr, Datayeiocity t0 Z€ro ma-

trix; "l.

for multiband adaptation in each region. The granularity of
regional division is one parameter that affects the trajrént

as well as the performance of the resulting decision tree. We
evaluate the granularity of these divisions in Section lll.

EXPERIMENTS FORMULTIBAND ALGORITHMS

3:  while Amount(Datarocation,i) < 0aArea dO

To study these algorithms, we have developed indoor and

* ﬁﬁéﬁé“a?gigﬁgge’;?iﬁﬁfa;9’0“‘”“)' Find data inD" - field experiments on an off-the-shelf wireless platfoifo
5: Oarea = Oarea X 1.1; ensure the results are broadly applicable, we employ a Linux
6: end while based 802.11 testbed [17]. The platform includes a Gatesvork
72 while Amount(Datagssi,i) < 0arssi do . 2358 motherboard with Ubiquiti XR radios (XR9 at 900 MHz,
8 Datanssii < Jrookup(Diocations i Onss): Find xR at 2.4 GHz, XRS5 at 5.2 GHz) and a DoodleLabs DL475
9 Onssr — Onsst x LI i IN 18NGEORSSI radio at 450 MHz [18], [19]. We use an Azimuth ACE-
10:  end while MX channel emulator for controllable propagation and fadin
11:  while Amount(Datapy,i) < 0aNonso2.1151 do characteristics with a broad range of industry-standaeshokl
12: Datarsst,i < frook—up(Drocation,i, Pn,0rssr): Find  models from 450 MHz to 5.9 GHz [12].
data inDrocation the RSSI similar taPy; in rangefrssr;
13: O ANons02.1151 = OaNonsoz2.1151 X 1.1; A. In-lab Experiments for Radio Characterization
1‘51 S\m e"vg'lsount( Datayetoiy.i) < Oavetoeiey 40 To establish an SNR-to-throughput relationship for §iR-
16 Dataveiocity.: — frookun(DRSST.i, U, Overocity): Find 0a@sed Throughput Look-up Algorithmve use an experi-
data inDrss; the RSSI similar tav in rangefrssr; mental setup where two wireless nodes communicate across
17: Ovetocity = Ovetocity X 1.1; repeatable emulated channels generated by Azimuth ACE-MX
18:  end while _ channel emulator (Figure 1). For a given band and card, we
;gf %v? = %?Tx(l?ft_a‘gé')’f“w)' measure the throughput of a fully-backlogged UDP flow using
21 end for ' the iperf traffic generator. We use constant attenuation over

22: bpest = maXi{Tel, LT ST

an idealized channel condition and repeat the experiment to
produce various RSSI values. Despite the same physical and
media access control layers of the radios, there are slight
differences in the throughput achieved per radio at the same

comparing the throughput performance of all available Isangttenuation level. Thus, we normalize these throughputesal
and selecting the band with the highest throughput. We @0gg have the same maximum throughput across radio types for

the C4.5 algorithm to generate our decision tree [16], ffair comparison of the frequency bands.
widely-used algorithm based on the information entropygai

At each intermediate node in the decision tree, the learniRy Experimental Design for In-field Data Collection
algorithm calculates the information entropy gain of gjpig
the remaining training data points based on each paranteteni data set for evaluating our multiband algorithms. Two

We now describe the in-field experimental design to obtain

the input sete.g, P, v or Pi. Then, it compares and selectsGateworks boards, each containing the aforementioned four
the parameter with the highest entropy gain to decide tha&dios, are installed on two cars. One node is always the
test condition at each intermediate node until all trainiiaga receiver and at a fixed location. The other node is always the
points are classified. The leaf nodes indicate the optimadlbatransmitter and travels around the block of a public park as
for prediction in our application. Then, the trained demisi shown in Figure 2. One loop of the route will be used as a

structure is integrated into the transmitter protocol ltaith
the collected context information, the decision structcaa
suggest the band with the best throughput performance.

unit of training in the next section.
During each loop, the transmitter sends a fully-backlogged
UDP flow usingiperf on each of the four radios simulta-

The relationship between the context information and theously. To focus on band selection and ensure the greatest
best band could differ at different locations because oéidig range, we disable autorate and use a fixed data rate of 6 Mbps.
propagation environment characteristics. To reduce tiertie The receiver continually performs tepdumpof all received
geneity of training data from different locations, we splie  802.11 packets [20]. Additionally, a QH 400 Quad Ridge Horn
vehicular route into several regions and implement theitngi Antenna (shown in Figure 2) is connected to a Rhode &
process based on the historical data collected in eachmregi8chwarz FSH8 mobile spectrum analyzer at the receiver to
Then, the trained decision structure is integrated in ostesy monitor spectral activity. Then, based on the time stamps, w
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Fig. 5. Throughput Gap of the four multiband algorithms.

remove 802.11 packets from the spectral trace so that Ong theRegion-based Decision Tree Algoritlieguires in-field

- i i i N
nogi Sl?rze'%Blslr?(t;\j\ge;%rv]\;:svévilbigithrtlr?lejtﬁof{\%b2 11 interferen Ctraining. Thus, the data set must be divided into a trainigtg s
9 y d testing set for evaluation.

Py;. We expunge the spectrum analyzer (SA) samples whicC In Figure 4, we show the aforementionektcuracy of

overlap in time with the dumped 802.11 packets, such \:?ste four multiband algorithms in selecting the band with
i

packets 3, 4, and 5. Then, the reported interference vallie .e highest throuahput. The x-axis represents the number
not contain the received power from 802.11 packets, wh OH loo gs around tf?e pblo.ck of the mobilg transmitter (shown
have already been considered via the busy tiBe, ot loop ; ; )
. o : : I Figure 2) that will be used by the machine-learning-
The in-field data is processed offline where data from aDI d - .
ased algorithms. We use the same training and testing set

instruments involved is synchronized based on the GPS “g{compare thel ocation-based Look-up Algorithrand the
0

Fig. 3. Spectrum Analyzer Data Processing.

stamps. As discussed in Section IlI-A, the throughput . o ;
each radio is normalized based upon emulator experimen §g|on-b?]sefd IIIDeq|S|9n Tree Algorithfrom the results, we
to account for any manufacturing differences. serve the following:

o At each loop, the first baseline algorithmyost
Commonly-Selected Bangses the band with the greatest
long-term average of the percentage of time that band

C. Performance Analysis of Algorithms

We now investigate the performance of our proposed algo- ' , -
rithms with the experimental setup described in SectioR4 Il yields the highest throughput over the previous loops.
and 111-B. The metrics ofAccuracyand Throughput Gapare The accuracy ranges from 36.1% to 42.9%.
used in the evaluation. We consider each second of the i-fiel *+ The second baseline algorithrSNR-based Throughput
trace and observe the frequency band that had the highest LOOK-up maintains a 39.2% across all the data since it
throughput. TheAccuracyis defined as the percentage of  '€lies only on emulator-based training.
best band predictions match the observed best band, where TheRegion-based Decision Tree Algoritimas an accu-

a prediction is made each second. ConverselyTtieughput racy ranging from 48.2% to 54.0% but contains many dips
Gap is defined as the difference between the throughput due to the_ re_Iathnshlp between the context |nformat[on
observed on the best band and the throughput achieved by the @nd the distribution of the best band choice changing
predicted best band over the throughput of the observed best ©n & loop-by-loop basis. Additional training data slightly

band. In the situation where the exact best band is not chosen improves the decision structure overall but primarily

the throughput could be close between the chosen band and induces additional noise in the training process.

the optimal band, meaning that the incorrect band choice did® The Location-based Look-up Algorithtbegins with an

not result in a large throughput loss. Thus, thieroughput
Gap metric captures the severity of the incorrect choice.
Since theSNR-based Throughput Look-up Algorithe
quires only emulator-based training, thAccuracy and
Throughput Gapcan be calculated for all loops of the in-

accuracy of 42.5% but improves the most out of any
algorithm to finish with an accuracy 62.5% with a highest
accuracy of 65.0% occurring after loop 14. Additional
in-field training loops are likely to further improve the

multiband selection accuracy.

field trace. However, théocation-based Look-up Algorithm Figure 5, depicts th&hroughput Gapf the four algorithms
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algorithm can be attributed to its ability to distinguish
between the middle of a given region to the boundary,
considering each point differently. For thegion-based
Decision Tree Algorithnto capture such a notion, the
regions would have to be further sub-divided, increasing
the number of trees and reducing the training set per tree.
« For this training set, the reduction in training data caused
by the regional divisions had a net loss on the per-
formance of theRegion-based Decision Tree Algorithm
However, if the training set was much larger for a given
area, the net effect of regional divisions could be positive

IV. CONCLUSION

In this paper, we investigated multiband adaptation torleve
age the propagation and context for vehicular applicatigves
did so by proposing two machine-learning-based schemes and
compared their performance against two baseline schemes.
In our experimental analysis, we evaluated the performance
of these algorithms in the field on an off-the-shelf platform
Experimental results demonstrate that the proposed #hgasi
can achieve up to 49.3% greater throughput than the baseline
algorithms with an accuracy up to 65%. In future work, we
will study the impact that multiple diverse environmentsda
on the training as well as evaluate the optimal use of malipl
diverse radios in unison.

we evaluated and shows the following.

o The Most Commonly-Selected Band Algorithmas two
different modes of throughput gap based upon whicﬁll
band has the highest long-term percentage. For loops 2-4,
the choice is 5.8 GHz, which has a gap of 41.1% usindf
the test set. For all other loops, the choice is 2.4 GHz,
which has a gap of 27.7%. [3]

o The SNR-based Throughput Look-up Algoritlsimows a
baseline performance of 23.6% for the throughput gap. 4

« TheRegion-based Decision Tree Algoritanefits from
additional training, going from a throughput gap of 23.0%
to 20.0%. Spatial and temporal changes to context inforl]
mation bring dips to the curve.

« Finally, theLocation-based Look-up Algorithtakes only  [6]
6 loops of training to reach its lowest value of 10.2% in
terms of throughput gap. From loop 1 to loop 20, thez)
throughput gap goes from 20.8% to 12.3%, which might
still be improved upon with additional training. (8]

We now consider the effect of further sub-dividing in-
field experimental testing data into regions for durcation- [9]
based Look-up Algorithmand Region-Based Decision Tree
Algorithm To do so, we divide the loop around the park int¢L0]
eight regions as shown in Figure 6, which has two competing
effects: (i.) Smaller regions allow similar experimentaita [11)
to be used in the training process, potentially improving th
decision structure. (ii.) For a given training set, diviglin [12]
it into regions reduces the number of training points fofg
the machine learning algorithms, potentially weakening th
decision structure. In Figure 7, we observe thecuracy of
the eight regions for both algorithms.

« In all but Region 1, thd ocation-based Look-up Algo-

rithm has better performance th&ggion-based Decision
Tree Algorithm The improved accuracy of the former

[14]

[15]
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