
Towards Scalable Network Emulation: Channel
Accuracy Versus Implementation Resources

Pengda Huang, Matthew Jordan Tonnemacher, Yongjiu Du, Dinesh Rajan, and Joseph Camp
Electrical Engineering, Southern Methodist University
{phuang, mtonnemach, ydu, rajand, camp}@smu.edu

Abstract—Channel emulators are valuable tools for control-
lable and repeatable wireless experimentation. Often, however,
the high cost of such emulators preclude their widespread usage,
especially in large-scale wireless networks. Moreover, existing
channel emulators offer either very realistic channels for simplis-
tic topologies or complex topologies with highly-abstracted, low-
fidelity channels. To bridge the gap in offering a low-cost channel
emulation solution which can scale to a large network size, in this
paper, we study the tradeoff in channel emulation fidelity versus
the hardware resources consumed using both analytical modeling
and FPGA-based implementation. To reduce the memory foot-
print of our design, we optimize our channel emulation using an
iterative structure to generate the Rayleigh fading channel. In
addition, the channel update rate and word length selection are
also evaluated in the paper which greatly improve the efficiency of
implementation. We then extend our analysis of a single channel
to understand how the implementation scales for the emulation
of a large-scale wireless network, showing that up to 24 vehicular
channels can be emulated in real-time on a single Virtex-4 FPGA.

I. INTRODUCTION

Today’s channel emulators allow extensive experimentation
on complex wireless channels that can be controlled and
repeated to evaluate protocols and hardware platforms directly
in the same instance of an environment. Unfortunately, the
emulators with the greatest channel fidelity are often limited
to a single link and have a high cost [1], precluding larger-scale
network emulation and widespread use by the research com-
munity. Conversely, many have used software-based simulators
which scale to thousands of nodes but have very basic wireless
channels [2]. There have been some efforts to build emulators
that scale to a network, often using FPGAs and/or DSPs (e.g.,
up to 15 nodes [3]). However, to enable large-scale emulation,
the degree to which the channel becomes more accurate at the
cost of hardware resources must be fully understood.

In this paper, we study the tradeoff in channel emulation ac-
curacy versus the implementation resources consumed, using
both analytical modeling and FPGA-based implementation.
We optimize our channel emulation using an iterative struc-
ture to generate the Rayleigh fading channel with a reduced
memory footprint. The channel update rate and word-length
selection are also analyzed to improve implementation effi-
ciency and experimentally show the efficacy of our iteration-
based scheme. We then leverage the tradeoffs in emulating a
single wireless path as a fundamental building block to scale
to a large wireless network emulator, designing a metric for
implementation complexity.

This work was supported by the U.S. National Science Foundation under
Grants CNS-0958436, CNS-1040429, and CNS-1150215

Fig. 1. Scalable wireless network emulation by exploiting knowledge of
channel fidelity versus implementation resource costs.

To envision how the emulation would scale, Fig. 1 presents
a general framework for our system design. A large number
of wireless transmitters and receivers (i.e., units under test)
are physically connected to the bank of hardware necessary to
implement the wireless network emulator, and many different
connectivity matrices, topologies, and mobility patterns can
be emulated. A control PC allows the design and control
of the experiment. On the back end, FPGAs implement the
channel emulation from the RF front end to the channel output.
To enable these FPGAs to generate a large number of the
necessary fading wireless channels and know the amount of
hardware required, the implementation resource consumption
must be understood and optimized according to the size of the
network. To lay the foundation for realizing such a vision, we
present the following contributions in this work:

1) A novel Autoregressive (AR) model based Rayleigh
fading channel generator is proposed. Prior channel gen-
eration solutions employing Sum-Of-Sinusoids (SOS)
for Rayleigh fading channels demand large volumes
of memory to store quantized cosine values. Since the
memory resources available on FPGAs is limited, we
implement our AR-based fading channel generator using
a second order iterative structure which greatly reduces
the amount of memory used.

2) Update rate selection and word length are jointly ana-
lyzed. Word-length and channel status update rate se-
lection also affect hardware resource optimization on
an FPGA. A tradeoff exists between the fading channel
accuracy and word length selected. A high channel status
update rate will increase the computational burden on the
FPGA. Therefore, we design an optimization algorithm
for jointly considering word length and update rate to
reduce hardware resource consumption.

3) The scalability of wireless the network emulator is

2

studied. Based on our analysis and experimental eval-
uation of a single path, we show the achievable network
scale according to a desired level of channel emulation
accuracy.

The remainder of this paper is organized as follows. In
Section II, the principle idea of SOS-based fading channel
generation is introduced. In Section III, the novel generation
scheme based on a second-order AR model is explored.
Section IV discusses the word-length and channel status
update rate optimization. Section V provides numerical results.
Section VI discusses the expansion of our work to a scalable
wireless network emulator. Finally, Section VII discusses
related work followed by the conclusion in Section VIII.

II. BACKGROUND: RAYLEIGH FADING CHANNEL

A wireless fading channel h(t, τ), is widely described by
its Power Delay Profile (PDP) as:

h(t, τ) =

N∑
n=1

cn(t)δ(t− τn), (1)

where N denotes the number of taps in the fading channel,
τn is the time delay of the n-th tap, and cn(t) represents the
channel fading on the n-th tap. The fading on each tap is
commonly described as Rayleigh and is characterized in the
seminal work by Clarke [4] and Jakes [5]. In a Rayleigh fading
channel, the transmitted waves on multiple paths are assumed
to arrive at the receiver with a uniform incidence angle α.
Based on this assumption, the Doppler shift, fl, on the l -th
multipath component can be expressed as fl = fM cosαl,
where fM is the maximum Doppler shift and αl = l

L
π
2 (l =

0, 1, . . . , L− 1).
Thus, each of the fading coefficients cn(t) in (1) is of the

form (subscript n is omitted for simplicity):

c(t) =
1

L

L−1∑
l=0

cos(2πfM (cos(αl))t+ φl), (2)

where φl is the carrier phase on the l -th multipath component
which is modeled as a uniform variable within [0, π].

This fading channel generation method is effective and often
used for designing fast-fading channel emulators and simu-
lators. However, this method for generating fading channels
has a major disadvantage especially when applied to large-
scale emulation systems. When multiple independent Rayleigh
fading channels are desired, the independence of the channels
generated using this approach cannot be guaranteed, i.e.,
the cross-correlation between the generated Rayleigh fading
channels does not approach zero.

To ensure independence of the multiple channels that are
generated, Xiao [6] improved the SOS-based Rayleigh fading
channel generation method (described in (2)) by using a
modification factor (ξl) on the arrival angle of each com-
ponent. This factor ξl is uniformly distributed in the range
ξl ∼ U [lπ2L−

π
2L ,

lπ
2L+ π

2L]. This improved SOS-based Rayleigh
fading channel generation model is given by:

c(t) =
1

L

L−1∑
l=0

cos(2πfM (cos(
l

L
π + ξl))t+ φl) (3)

This model reduces the cross-correlation of any two simu-
lated fading channels. Our proposed channel emulation method
combines this improved model with an AR structure to guar-
antee independent channels and consume less implementation
resources.

III. ITERATIVE STRUCTURE IN COSINE WAVEFORM
GENERATION

In Section II, we briefly introduced the SOS Rayleigh fading
generation method. Traditionally, this method is implemented
using a lookup table for the cosine values at every channel
update time instance for every multipath component. This
implementation strategy encounters severe problems due pri-
marily to a memory bottleneck which induces large delays. In
this section, we propose an AR model based on a second-order
iterative structure to generate the Rayleigh fading channel. An
FPGA based implementation of this scheme is also discussed.

A. AR Model Based Rayleigh Fading Channel Generation

1) Disadvantage of Conventional SOS-Based Rayleigh Fad-
ing Channel Simulation: Since there is no cosine generation
function in the code set of an FPGA, the most popular method
of cosine implementation is based on a lookup table for
quantized cosine values stored in the RAM. Since a Rayleigh
channel model is used to describe a fast-fading channel,
the lookup operations are frequent during channel emulation.
There are two main drawbacks in using the solution described
above. First, the RAM resources are occupied throughout
the entire procedure of channel generation. Unfortunately, the
FPGA chip, though powerful in calculation, is often limited
in memory resources [7], [8]. Second, the lookup operation
has a non-zero delay. For each channel tap, the number
of multipath components is usually selected in the range
of 8 to 12 [9], to ensure desirable statistical characteristics
of the resulting channels. In most cases, there are several
channel taps between a single transmitter-receiver pair. Thus,
the simultaneous lookup operations would cause excessive
memory-lookup delay for FPGA-based channel generation.
Furthermore, we ultimately seek to emulate multiple wireless
links of a network. Thus, memory consumption and latency
with a large amount of lookup operations precludes the use of
SOS-based generation for large networks.

2) Iterative Solution to Sinusoid Generation: We now
propose a simple, second-order AR model to generate the
sinusoids needed for channel emulation. This AR model is
based on the following identities:

cos(iω − ω) = cos(iω) cos(ω) + sin(iω) sin(ω) (4)
cos(iω − 2ω) = cos(iω) cos(2ω) + sin(iω) sin(2ω) (5)

Using (4) and (5), a simple and useful iterative structure of
the fading channel generation can be obtained as:

cos iω = 2 cosω cos(iω − ω)− cos(iω − 2ω) (6)
sin iω = 2 cosω sin(iω − ω)− sin(iω − 2ω) (7)

As a general form, the AR sinusoid generation function can
be described as:

y(i) = 2 cosωy(i− 1)− y(i− 2) (8)

3

With the generalized AR-model based sinusoid generator,
and by combining (3) and (8), the Rayleigh fading channel
generation is described by:

c(i) =
1

L

√√√√(L−1∑
l=0

yIl(i)

)2

+

(
L−1∑
l=0

yQl(i)

)2

yIl(i) = 2cos(ωl)yIl(i− 1)− yIl(i− 2)

yQl(i) = 2cos(ωl)yQl(i− 1)− yQl(i− 2)

(9)

For convenience, Algorithm 1 presents the AR-model based
iteration structure for generating the Rayleigh fading channel.

Algorithm 1 AR-model Based Rayleigh Channel Generation
1: Initialize

• generate 2L uniform random variable φl and γl,,
(l = 1, 2, . . . , L);

• look up 5L cosine values yIl(0) = cos(φl),
yIl(0) = cos(φl),

yIl(1) = cos
(

2πfM cos
(
l+γl
L π

)
+ φl

)
,

yQl(1) = sin
(

2πfM cos
(
l+γl
L π

)
+ φl

)
,

Bl = 2 cos
(

2πfM cos
(
l+γl
L π

))
;

2: for i < bTsim/Tsc do ; . Tsim and Ts are simulation
duration and sampling interval, respectively

3:
yIl(i) = BlyIl(i− 1)− yIl(i− 2),
yQl(i) = BlyQl(i− 1)− yQl(i− 2),

4:

c(i) = 1
L

√(∑L−1
l=0 yIl(i)

)2

+
(∑L−1

l=0 yQl(i)
)2

5: end for

From Algorithm 1, uniform random variables need to be
generated first, which are used for the initial phase φl and the
arrival angle modification factor γl. After that, the initial two
iteration values are obtained by using a cosine value lookup
table; then, the resulting sinusoid values yl(i), i ≥ 2, are
generated iteratively; the summation of the sinusoids on each
of the components describes the Rayleigh fading channel.

Based on Algorithm 1, only in the initialization step is
the cosine lookup table used. Thus, only one cosine table is
needed in the iterative Rayleigh fading channel generation.
Subsequent computations require only one addition and one
multiplication at each iteration. Since an FPGA is powerful in
terms of computation, the addition and multiplication can be
easily processed with minimal latency.

B. Proposed Rayleigh Fading Channel Generation Method

A block diagram of the proposed channel generation al-
gorithm based on Xiao’s method is given in Fig. 2. This
algorithm has two stages: initialization and iteration. In the
initialization stage, there are two main components: the cosine
initial value generation and uniform random variable genera-
tion. In order to generate the uniform variable component, the

Fig. 2. Scheme of proposed Rayleigh fading channel generation simulator

Mersenne Twister algorithm [10] is employed which ensures
a long period in the resulting pseudo-random sequence. The
cosine value initialization is based on a lookup table, which is
straightforward to implement. Fig. 3 illustrates the architecture
of the iterative structure of the proposed channel generation.

Fig. 3. Iteration architecture of one multipath component

From Fig. 3, only two registers are needed for one com-
ponent. As introduced before, let L denote the number of
multipath components in each tap, N be the number of taps
in each fading channel, and T represent the desired number of
fading channels to be generated. Assume the volume of RAM
used for building the sinusoid lookup table is VLUT . Thus, the
AR-based channel generation scheme can save RAM resources
up to VD, which is given in (10),

VD = T (2LN(VLUT − 2)− VLUT) (10)

For instance, consider one (T = 1) ITU-Vehicle B channel
containing six taps (N = 6). With ten components for a tap
(L = 10), and the sinusoid lookup table is built by 1024
RAM word of two bytes. The amount of RAM savings can
be calculated as V ∼= 243 kB.

IV. UPDATE RATE AND WORD LENGTH OPTIMIZATION

In this section, we study the effect of varying the rate and
word length resolution at which channel coefficients are re-
generated. The word-length selection is important in balancing
the generated channel accuracy and the hardware cost. In this
section, an analytical method and a numerical method will
jointly be employed to study the optimal parameter selection.
The MSE of the channel is used as the metric to determine
the accuracy of channel emulation. The results from this study
will be used in subsequent sections to enable temporal sharing
of the multipliers (which are limited) on the FPGA.

4

Fig. 4. Channel update rate effect and word length optimization illustration

A. Channel Update Rate Emulation with Analytical Method

Let TW denote the time duration between updates, which
should be smaller than the coherence time of the channel.
Hence, we select the channel update interval TW to be smaller
than the inverse of the maximum Doppler shift 1/fM . This
assumption is reasonable because the channel output loss will
become extremely large when TW approaches 1/fM .

We first model one multipath component, which we later
leverage to determine the scalability of a network emulator.
For simplicity, consider a quarter of the sinusoid period for
analysis, since a quarter period contains all the curvature
information for the entire sinusoid. Let I denote the number
of the update points in 1/4 the period of a sinusoid in one
component (Fig. 4). From this figure, I can be determined as
I = b1/4fMTW c.

The sinusoid at the i-th time instant is c(i) =
cos 2πifMTW , i = 0, 1, 2, . . . , I . The difference between two
adjacent points can be calculated by:

∆c(i) = c(i)− c(i+ 1)

= 2 sin(2πifMTW + πfMTW) sin(πfMTW)
(11)

The channel error, e, caused by discretely updating over
the 1/4 period range can be calculated by summing up all the
differences (∆c(i), i = 0, 1, . . . , I − 1) and is given by

e =

I−1∑
i=0

1

2∆c(i)TW

= sin(πfMTW)

I−1∑
i=0

sin(2πfMTW (i+
1

2
))TW

∼=
1

2πfM
sin(πfMTW) ∼=

TW
8πI

sin(4πI) (12)

The longer update interval TW induces a larger error caused
by discrete channel updates. Further, for a fixed Doppler shift,
a smaller TW allows a larger I , decreasing the error.

B. Channel Update Rate Discussion with Numerical Method

To generate a tap of a fading channel, multiple components
will be added to constitute the in-phase and quadrature compo-
nents of a fading channel. Then, the square root of the in-phase
and quadrature components will be calculated as the final
fading channel output. In the process of calculating the square
root, the phase information will be lost, in which case, the
analytical method above does not work. Thus, the numerical

Fig. 5. Error of channel caused by discrete update

method is employed which considers the square root of in-
phase and quadrature components. During the observation time
∆t, the discretely-updated Rayleigh fading channel is given as:

c′(t) = A

P−1∑
p=0

L−1∑
l=0

cos(2πfM (cosαl)pTW + πl)

· [U(t− pTW)− U(t− (p+ 1)TW)],
(13)

where P accounts for the fading channel updates within the
time duration of ∆t, P = b∆t/TW c.

To measure the approximation error of the discretely up-
dated fading channel, the mean square of error (MSE) e2

∆t is
calculated as,

e2
∆t =

1

∆t

∫ ∆t

0

|c(t)− c′(t)|2dt

=
1

∆t

P−1∑
p=0

∫ (p−1)TW

pTW

|
L−1∑
l=0

cos(2πfM (cosαl)pTW + πl)

−
L−1∑
l=0

cos(2πfM (cosαl)t+ πl)|2dt

(14)
Fig. 5 presents the channel distortion caused by the discrete

update interval. The maximum Doppler frequency for the
generated Rayleigh fading channel is 500 Hz. The minimum
channel status update interval is 0.1 ms and the maximum
interval is 10 ms. From Fig. 5, the channel errors increase in
a nearly linear manner as the update interval increases, which
agrees with the earlier analytical result.

C. Word-Length Effect on SOS Based Channel Generation
Besides the channel update rate consideration, the word

length of each point in the fading channel generation will
affect the hardware resources consumed. In this section, we
first discuss the approximation error for a quantized cosine
waveform at a single carrier. We assume the cosine wave
is quantized by M levels, M = 2P , where P is a positive
integer. Thus, the distance between two quantization levels is
∆d = 1/M , which is illustrated in Fig. 4. From Fig. 4, within
the range [0, 0.25], the quantized cosine waveform at the m-th
level is given by

x(m) = 1/2π arccos(m∆t),m = 0, 1, 2, . . . ,M (15)

After the uniform quantization, the corresponding error caused
by the limited resolution can be calculated. The difference

5

Fig. 6. Illustration of joint consideration on channel status update and word-
length

between two adjacent quantizer levels is:

∆x(m) = −∆d
d arccos(2πm∆d)

dm∆d
= ∆d

2π√
1− (2πm∆d)2

(16)
The fading channel error caused by finite word length can

be calculated by the area eWL(P) between the quantized and
continuous curve. Thus, the fading channel error in 1/4 period
by P -bit quantization is given as:

eWL(P) =

M−1∑
m=0

∆d∆x(m)

2
=

∆d

2

M−1∑
m=0

1√
1− (2πm∆d)2

∆d

∼=
1

2
∆d

∫ 1

0

1√
1− x2

dx =
1

4
∆d

(17)
Hence, within a quarter period of the cosine waveform the
quantization error by different word lengths can be simplified
as,

eWL(P) =
1

4

1

2P
, (18)

which clearly shows that the error decreases exponentially with
the number of bits.

D. Joint Optimization on Updated Rate and Word Length
With a P -bit word length, there exists a resolution window

D = 1/2P . After considering the channel status update
interval TW , the resolution rectangle SR for measuring the
Rayleigh fading channel is proposed. In general, a smaller
rectangle corresponds to increased channel simulation accu-
racy. In the limit as the area of the rectangle approaches zero,
there will be no quantization error. However, in practice, the
area of the rectangle is always positive. Intuitively, a smaller
area requires more hardware resources, a longer word length,
and a higher update frequency than a larger area. We assume
the area of the resolution rectangle is a constant A, which
means the hardware resources consumed for a channel status
update rate and word length are fixed.

The resolution rectangle is used to approximately sample the
Rayleigh fading channel illustrated in Fig. 7. The centers of
the rectangles are connected to represent the simulated channel
with a generation error. Linear interpolation is performed
between every two adjacent centers. After the interpolation,
the approximate fading channel is constructed.

Fig. 7. Word-length and channel status update rate joint optimization

The accuracy of the channel is evaluated by computing the
MSE, f(D,TW), with respect to a baseline channel. The joint
optimization problem aims to minimize f(D,TW) over both
D and TW using standard numerical optimization methods.

Fig. 7 presents the MSE obtained by jointly considering
word length and the channel update rate. According to Fig.
7, several values of rectangle areas are selected which are
constant in the optimization process and equal the product
of the fading channel update interval TW and the limited
word-length resolution D. Subsequently, we gradually change
the value of the update interval with a renewed word-length
resolution to calculate the MSE with a constant product. When
the minimum MSE is found, the optimization converges. In
Fig. 7, all the curves are concave, which implies that a minima
exists. From Fig. 7, it is also observed that reducing the
rectangle area can effectively reduce the minimum MSE at
the optimal points.

V. EXPERIMENTAL EVALUATION

In this section, we evaluate the performance of the proposed
channel generation using analytical evaluation, numerical sim-
ulations, and experimentation with an FPGA platform. For
comparison, a channel generation method using the conven-
tional structure is also evaluated using an FPGA. Further,
an offline channel generation method using a general-purpose
computer is also considered in the experiments.

A. Iterative-Based Rayleigh Fading Channel Generation

1) Verification of Iterative Structure: The Wireless Open-
Access Research Platform (WARP), shown in Fig. 8, is used
as the experimental platform to study channel emulation
performance. WARP uses a Virtex-4 VFX100FFG1517 FPGA
chip. On the FPGA, both the iterative and the table lookup
based Rayleigh fading channel generation are implemented.
An oscilloscope is used to monitor the waveform of the
generated channels.

Fig. 9(a) is a snapshot of the channel as seen using an os-
cilloscope. Fig. 9(b) is the histogram of the generated channel
on the FPGA chip whose envelope matches the probability
density function curve of a Rayleigh distribution.

To investigate the accuracy of channel generation using
the iterative structure, we calculate two commonly-used met-
rics: the level crossing rate (LCR) and average duration of
fading (ADF). As a reference, the LCR and ADF of the
conventional SOS-based channel generation are also evaluated.

6

Fig. 8. Experiment platform

(a) Fading channel waveform on oscilloscope

(b) Histogram of generated fading channel

Fig. 9. FPGA based fading channel generation output

Fig. 10(a) and Fig. 10(b) illustrate the LCR and ADF for
both the proposed method and conventional method. These
figures demonstrate the similarity of the channel generated
using these two methods. In subsequent sections, the hardware
resource consumption of the proposed scheme is quantified.

2) Complexity Analysis: We now perform a complexity
analysis for the proposed iterative method and the lookup-
based method. The complexity is quantified by the number
of real-number additions, real-number multiplications, and
memory used to generate the output for a 3 ms time duration.
In the evaluation, the Doppler frequency is 300 Hz which
corresponds to a relative velocity of 56 km/h between the
sender and receiver using a 5.8 GHz carrier frequency. For
simplicity, we generate a channel with 1-tap (N = 1) and
10-components (L = 10) for this tap.

Table II presents a summary of the resources used as
reported by the Xilinx ISE for the two fading channel gen-
eration methods. The percentage denotes the ratio of the used

(a) LCR

(b) ADF

Fig. 10. Statistical probability of generated fading channel

resources over the entire resources available on the FPGA.

TABLE I
RAYLEIGH CHANNEL GENERATOR HARDWARE CONSUMPTION

COMPARISON TO CONVENTIONAL STRUCTURE

Flip-Flops IOB RAM16S DSP48S
Iterative Str. 896(1%) 11(1%) 1(1%) 10(6%)

Table Lookup 589(1%) 46(5%) 8(2%) 0(0%)
Total Resources 84352 768 376 160

From Table I, the advantages in terms of RAM and IOB
are evident due to the fewer cosine value tables. As expected,
the proposed iterative method requires additional flip-flops and
multipliers due to more complex logic than the conventional
method. However, there is an abundance of flip-flop resources
in most FPGAs and the number of multipliers will likely
become the bottleneck to scalability. We further address this
issue by developing a novel temporal re-use of the multipliers
for generating different channels. As discussed in Section IV,
the channel update rate is related to the Doppler frequency
which is much smaller than the FPGA clock frequency. Thus,
the same multipliers can be utilized by different emulated
channels in allocated time slices.

B. Channel Generation Data Throughput Analysis
Another solution to channel emulation is to use an of-

fline general-purpose computer to generate the fading channel
coefficients and periodically transfer these to the FPGA to
implement the emulation. The FPGA uses the stored channel
data to modify the signal passing through the emulator. We
call such a solution an offline generation scheme, as opposed
to online channel generation on the FPGA.

7

0 0.2 0.4 0.6 0.8 1
0

0.01

0.02

S
im

ul
at

io
n

T
im

e(
s)

Rayleigh Fading Channel Data Length(s)
0 0.2 0.4 0.6 0.8 1

0

10

20

F
ad

in
g

C
ha

nn
el

 D
at

a
R

at
e(

M
bi

ts
/s

)

Fig. 11. Rayleigh fading channel offline generation rate

In the experiment, the PC used for generating the channel
is equipped with an Intel i3 CPU at 2.26 GHz with 4 GB
of RAM. Fig. 11 demonstrates the experimental results. The
dashed curve represents the time consumed for generating
a certain duration of the fading channel. The green solid
curve denotes the corresponding channel parameter data rate,
which represents the effective rate at which data needs to be
transferred between the PC and the FPGA to enable emulation.
From Fig. 11, we see that this rate is on the order of 20 Mbits/s
for each tap.

From the result of experiments on the Virtex-4 VFX100, the
FPGA can generate up to 3.3 Gbits/s of channel coefficients for
emulation. Clearly, the proposed channel generation scheme
based on an FPGA outperforms the PC-based solution in
terms of channel data throughput. Further, the offline PC-based
generation requires additional RAM and buffers, especially for
large-scale networks. On the other hand, the PC-based solution
would reduce the computation burden on the FPGA, which
could be useful in certain scenarios.

C. Performance Across Update Rates and Word Lengths
In Section IV, we analytically derived the expression for

the MSE caused by a finite word length and update rate.
In this section, the accuracy of the two expressions will be
verified. The x-axis values in Fig. 12(a) denote the update
interval which is measured in terms of 10 times the slice of
the FPGA chip. The stars in Fig. 12(a) are the MSE values at
different update intervals. The bold line represents the optimal
linear fit to the data. We can see that the bold line agrees with
MSE prediction in (12). To analyze the effect of word length
on the MSE of the generated channel, we change the bit width
in the process of generating fading channel from 8 to 16 bits.
Fig. 12(b) presents the normalized MSE (normalized to the
performance with 16 bits) for the different bit widths (8 to
16 bits). From Fig. 12(b), the MSE decreases when the word
size increases, which agrees with our intuition that a larger
word size results in a higher accuracy. The stars mark the
MSE at every word size, and the bold line represents the best
exponential fit, matching the result in (18).

D. Accuracy of Generated Fading Channel
In this subsection, the accuracy of the generated channel is

measured using the resulting BER for a particular modulation
scheme. In the experiments, a simulated channel generated in
MATLAB (using real-valued coefficients with double preci-
sion) is taken as one reference. Furthermore, the performance

4 6 8 10 12 14 16 18 20
0.5

0.6

0.7

0.8

0.9

1

1.1

Number of update time intervel (10ns)

N
or

m
al

iz
ed

 M
S

E

(a) MSE versus update interval

8 9 10 11 12 13 14 15

0.4

0.5

0.6

0.7

0.8

0.9

1

1.1

1.2

1.3

Word Length(Bits)

M
S

E
(b) MSE versus word length

Fig. 12. MSE of generated fading channel on FPGA

Fig. 13. 16QAM BER curves over generated fading channel

using a commercial fading channel emulator, the Azimuth
400MX, is also shown.

Using the same iterative algorithm implemented on the
FPGA, we employ MATLAB to generate the channel. The
same parameter settings are used in the two implementation
platforms. Specifically, ITU-Vehicle B fading channels are
generated which each contain six taps. The relative delay
between the taps are [0 100 200 300 500 700] in ns and
the relative energy ratios are [0 -3.6 -7.2 -10.8 - 18 -25.2]
in dB. Signals using 16-QAM modulation are passed through
the two fading channels. For simplicity, we do not consider
channel estimation and equalization at the receiver. Fig. 13
shows that the BER over the fading channel from the two
platforms behave in a similar manner.

Then, we compare the packet error rate (PER) of the

8

0 5 10 15 20

10
−1

10
0

SNR(dB)

P
E

R

PER over Azimuth emulator
PER over proposed emulator

Fig. 14. QPSK PER curves on WARP and Azimuth emulator

proposed emulator with the existing commercial channel
emulator-Azimuth 400MX. In the experiments, two WARP
boards are used as the transmitter (TX) and receiver (RX).

In the experiment, two kinds of trials are performed. In
the first trial, the WARP-TX generates QPSK signals which
are passed through the fading channel and also generated on
the WARP-TX board. The resulting output signals are sent to
the WARP-RX board. In the second trial, the generated QPSK
signals from the WARP-TX board is connected to the Azimuth
emulator via cable. The output signal from the emulator is sent
to the WARP-RX board. In the two trials, the packet size is
1.5 kB and uses an 802.11a physical layer. Fig. 14 presents
the variation of the PER curves versus SNR. From this figure,
it is clear that the the PER of the two emulators, Azimuth and
the proposed emulator, closely agree with one another.

VI. NETWORK EMULATION SCALABILITY

Large-scale network emulation using off-the-shelf ap-
proaches requires significantly large hardware resources and
is consequently very expensive. In this section, we discuss the
scalability of the proposed network emulation framework.

A. Factors Allowing Greater Scalability

Two key novelties in the proposed emulation approach
allows for better scalability of the networks. First, the proposed
iterative structure results in significant memory savings for
the FPGA. Second, update rate optimization is performed and
coupled with a time-sharing architecture for multipliers to
ensure better scaling.

Contribution: Scalability by Saving Memory. According
to the experimental results, one tap of a Rayleigh fading chan-
nel consumes one RAMB16. The total memory resources of
the aforementioned FPGA chip equals 376 units of RAMB16s.
Therefore, using the proposed iterative structure, we can
support the generation of 60 ITU-Vehicle B channels.

Contribution: Scalability by Update Rate Optimization.
From the experimental results, we recognize that the hardware
bottleneck for the emulator, in general, is the number of
multipliers available. As discussed in Section IV, the fading
channel coefficients need not be updated at the clock rate.
Assume that there are 20 updates during each time duration
of one over the maximum Doppler frequency (1/2πfM). From
Fig. 5, it can be seen that using 10 update points per period
can guarantee an MSE of less than 10−4. With high levels
of mobility (1000 Hz Doppler), the corresponding update rate
is 20, 000 points/second. According to our measurements, the

Fig. 15. Architecture of multiplier time division multiplexing

highest clock rate can reach 9600 ps which corresponds to
the frequency of 104, 170, 000 Hz. Therefore, the number
of multipliers is no longer the bottleneck to increasing the
network emulation scale.

Fig. 15 presents the architecture of multiplier temporal reuse
for the in-phase component. Each color bar represents different
time slices allocated to generate the fading channel on each
multipath component. From the architecture, to implement the
temporal reuse on one multiplier, two multiplexers and four
registers are needed. Also, one encoder is taken as the control
circuit built with basic logic gates. In the condition of 16 bits
per variable, the implementation of the in-phase components
for four components require 32 of the 4-input LUTs and
64 flip-flops. Indeed, more than four components can be
implemented by multiplexing one multiplier. To guarantee low
latency, one multiplier is used for 20 components.

B. Network Scale Analysis

We now estimate the achievable scale on the selected FPGA
chip: Virtex-4 VFX100. With the same update rate, the top
of Table II shows the consumption of RAM, flip-flops, and
LUTs versus word lengths for one tap. The bottom of Table II
presents the expenditure versus taps with a fixed word length.
From the two figures, we can intuitively see the required
hardware resources are small compared with the total.

TABLE II
HARDWARE RESOURCE CONSUMPTION

Word Length 8 Bits 10 Bits 12 Bits 14 Bits 16 Bits Total Resource

RAMB16s 1 1 1 1 1 376
Flip-Flops 602 700 792 896 994 84352

LUTs 618 712 807 901 995 84352

Taps 1 2 3 4 5 Total Resource

RAMB16s 1 2 3 4 5 376
Flip-Flops 994 1988 2982 3976 4970 84352

LUTs 995 1990 2985 3980 4975 84352

We now analytically compute the number of channels that
can be emulated. Let variables W, L, N , and T denote,
respectively, the word length, the number of multipath com-
ponents per tap, number of taps per channel, and the number
of channels. Using simple enumeration, it can be shown that
the total RAM required equals TN . We also calculate the
number of flip-flops and LUTs required for several different
values of the parameters. Based on these values, the number
of flip-flops required is of the form TN(2LW − 13L+ 324).
Including the number of flip-flops required for the controller

9

circuit to enable temporal multiplexing of the multipliers, the
total number of flip-flops required is of the form TN(2LW −
13L + 324) +

⌈
TNL

20

⌉
20W . Similarly, it can be shown that

the total number of LUTs needed to support this network
equals TN(2LW + 4L + 161) +

⌈
TNL

20

⌉
40W . The selected

Virtex-4 FPGA has 376 RAMB16s, 84352 flip-flops, and
84352 LUTs. Thus, the selected network and channel param-
eters can be emulated if the following conditions are satisfied:

TN ≤ 376

TN(2LW − 13L+ 324) +

⌈
TNL

20

⌉
20W ≤ 84352

TN(2LW + 4L+ 161) +

⌈
TNL

20

⌉
40W ≤ 84352

(19)
Based on the derived constraint equations, the maximum

wireless network scale can be estimated. Assume the word
length is 16 bits (W=16), and each tap consists of 10 compo-
nents (L=10). According to (19), the maximum product of T
and N is 66. Thus, for instance, 11 links of an ITU-Vehicle
B channel can be emulated. If the word length is reduced
to 12 bits and we use 8 components per tap, the achievable
networks scale is 24 links for a single FPGA.

VII. RELATED WORK

Due to their extensive use and low price, FPGAs are often
selected as the hardware platform for fast-fading channel
emulation [11]–[15]. Rao et al. [12] developed an architecture
for VLSI implementation of mobile wireless communication
channels based on Xiao’s improvement [6] to the Jakes’ model.
Fard et al. [14] and Nasr [16] designed channel emulators
based on the principle of filtering white Gaussian random
variables. All these works consider the emulation of a single
link and do not focus on the scalability of their solutions nor
on the optimization of hardware resources.

Eslami [17] presented a design and implementation of a
frequency-based, scalable channel emulator which is based
on an FFT/IFFT fading channel generation method. The FFT
was implemented using the CORDIC algorithm. Such a fading
channel emulation solution has several drawbacks. First, the
generated channel data length is fixed, which is determined
by the size of the FFT. Thus, the scalability of the emulator
is limited in terms of data generation flexibility. Second,
the CORDIC algorithm can save hardware resources, but the
computational speed is relatively slow. Third, even though
Eslami saved hardware resources compared to the other FIR
filter based emulator, the number of multipliers required is
still large. Buscemi and Sass [18] described the feasibility
of a scalable wireless channel emulator based on a 64-
FPGA cluster. Clearly, the price of the system would preclude
widespread usability. Scalable network emulator design is also
addressed in Koizumi et al. [19] and Zheng and Ni [20].
However, the focus is on the general structure of the emulator
and no details on the link-level channels are provided.

VIII. CONCLUSION

This paper discussed the design of a scalable wireless
network emulator by analytically and experimentally studying
the tradeoff in channel accuracy and implementation resource

consumption. To do so, we presented and analyzed two key
techniques: an iterative-based method for generating Rayleigh
fading channels and a joint optimization of the update rate and
word length. Extensive experimentation was performed and
compared against both idealized models generated by a sim-
ulator and a high-fidelity commercial emulator. We leveraged
our single channel analysis to understand the implementation
resources necessary to build a large-scale network emulator.
Using our methods which also included a multiplexing method
for reducing the multiplier usage, a single FPGA could emu-
late up to 24 vehicular channels in real-time.

REFERENCES

[1] “Azimuth ACE - MIMO Channel Emulator for Broadband Wireless Test-
ing,” http://www.azimuthsystems.com/platforms channel mx.htm, Jul
2012.

[2] “The Network Simulator NS-2,” http://www.isi.edu/nsnam/ns/.
[3] K. C. B. et al., “FPGA-based channel simulator for a wireless network

emulator,” in Proc. of IEEE VTC, Barcelona, Spain, Apr 2009.
[4] R. Clarke, “A statistical theory of mobile-radio perception,” Bell Syst.

Tech. J., vol. 47, pp. 957 –1000, 1968.
[5] W. Jake, Microwave Mobile Communication. Piscataway, NJ: Wiley-

IEEE Press, 1974.
[6] C. X. et al., “Novel sum-of-sinusoids simulation models for rayleigh

and rician fading channels,” Wireless Communications, IEEE Tran. on,
vol. 5, no. 12, pp. 3667 –3679, Dec 2006.

[7] J. X. et al., “Fpga-accelerated real-time volume rendering for 3d medical
image,” in Biomedical Engineering and Informatics (BMEI), 2010 3rd
Int. Conf. on, vol. 1, Oct 2010, pp. 273 –276.

[8] G. W. et al., “A high performance and memory efficient lu decomposer
on fpgas,” Computers, IEEE Tran. on, vol. 61, no. 3, pp. 366 –378, Mar
2012.

[9] A. Alimohammad and B. Cockburn, “Modeling and hardware imple-
mentation aspects of fading channel simulators,” Vehicular Technology,
IEEE Tran. on, vol. 57, no. 4, pp. 2055 –2069, Jul 2008.

[10] M. Matsumoto and T. Nishimura, “Mersenne twister: a 623-
dimensionally equidistributed uniform pseudo-random number genera-
tor,” ACM Trans. Model Comput. Simul., vol. 8, no. 1, pp. 3 – 30, May
1998.

[11] A. e. a. Alimohammad, “An improved sos-based fading channel emula-
tor,” in Vehicular Technology Conf., 2007. VTC-2007 Fall. 2007 IEEE
66th, 30 2007-Oct. 3 2007, pp. 931 –935.

[12] G. Rao, R. Bhattacharjee, and S. Nandi, “Vlsi architecture for rayleigh
and rician fading generators,” in TENCON 2004. 2004 IEEE Region 10
Conf., vol. C, Nov 2004, pp. 121 – 124 Vol. 3.

[13] K. e. a. Borries, “FPGA-based channel simulator for a wireless network
emulator,” in Vehicular Technology Conf., 2009. VTC Spring 2009. IEEE
69th, Apr 2009, pp. 1 –5.

[14] S. e. a. Fard, “A single fpga filter-based multipath fading emulator,” in
Global Telecommunications Conf., 2009. GLOBECOM 2009. IEEE, 30
2009-Dec. 4 2009, pp. 1 –5.

[15] J.-K. H. et al., “Fast fpga prototyping of a multipath fading channel
emulator via high-level design,” in Communications and Information
Technologies, 2007. ISCIT ’07. Int. Symposium on, Oct 2007, pp. 168
–171.

[16] O. Nasr and B. Daneshrad, “Design and fpga implementation an
accurate real time 3x4 mimo channel emulator,” in Signals, Systems
and Computers, 2009 Conf. Record of the Forty-Third Asilomar Conf.
on, Nov 2009, pp. 764 –768.

[17] H. e. a. Eslami, “Design and implementation of a scalable channel
emulator for wideband mimo systems,” Vehicular Technology, IEEE
Tran. on, vol. 58, no. 9, pp. 4698 –4709, Nov 2009.

[18] S. Buscemi and R. Sass, “Design of a scalable digital wireless channel
emulator for networking radios,” in Military Communications Conf.,
2011 - MILCOM 2011, Nov 2011, pp. 1858 –1863.

[19] M. e. a. Koizumi, “Design and implementation of scalable distributed
wireless network emulator for high-speed mobility,” in Information
Networking (ICOIN), 2012 Int. Conf. on, Feb 2012, pp. 302 –307.

[20] P. Zheng and L. Ni, “Empower: a network emulator for wireline and
wireless networks,” in INFOCOM 2003. Twenty-Second Annual Joint
Conf. of the IEEE Computer and Communications. IEEE Societies,
vol. 3, Mar.-3 Apr 2003, pp. 1933 – 1942 vol.3.

