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Abstract—In this paper, we investigate a mobile edge comput-
ing (MEC) system in which a set of users with intensive computa-
tion tasks, and a set of users with high downlink rate requirement,
can cooperate to achieve a mutually-beneficial situation where
the task completion time is reduced and the downlink users
receive more information from the base station (BS). Specifically,
by leveraging uplink and downlink non-orthogonal multiple
access (NOMA), the user with an intensive computation task
can offload its task bits to the edge cloud and the downlink user.
Simultaneously this user relays information to the downlink user
from the BS. We consider the joint optimization of computational
resource allocation at the edge cloud, communication resource
allocation, assignment among the two sets of users, the share of
computation, and relay bits to minimize the overall completion
time of the tasks while guaranteeing downlink users’ incentive
requirement. A low complexity iterative algorithm is proposed
to find efficient locally optimal solutions by utilizing convex
optimization, a graph theory matching algorithm, and block
coordinate descent technique. Numerical results show that the
proposed technique leads to a significant reduction in users’ task
completion time and increase in the downlink users rate.

I. INTRODUCTION

Mobile-edge computing (MEC) has emerged as a promising

solution to address ever-increasing user demand for advanced

applications with high computational load on mobile platform

[1]. In MEC, cloud facilities are available at the edge of radio

access networks, in close proximity to the mobile users, such

that tasks can be computed with ultra-low latency.

The computational capacity at the edge cloud is finite.

Therefore, with rapid growth in the number of computing

user equipments (CUEs) that have delay-sensitive tasks to

compute, offloading the task to the edge cloud may not be

always beneficial. Over the past few years, the computational

capability of mobile devices has increased steadily to where

the performance of a mid-range mobile processor (e.g., Intel

Atom x5-Z83xx), is already 10% that of a edge-cloud proces-

sor (e.g., Intel Xeon D-15xx) [2]. Since a large number of

mobile devices in the network may not be fully utilizing their

computational capabilities, offloading tasks to these peers is an

enticing choice, particularly if the channel gain to these users

are high. Recently, task offloading to mobile peers has been

explored and joint computational resource allocation, mobile

peer selection, and sharing of offloaded workload jointly op-

timized [3]–[5]. These studies assume that helpers are willing

to compute the task for CUEs without any incentive, which

may not be the case if the helping mobile peers have limited

battery energy supply. For vehicular edge computing networks,

computation offloading to the neighboring vehicles in which

the helping vehicles are motivated by monetary incentive are

considered in [6], [7]. In [8], MEC system is investigated in

which tasks are offloaded to the peer devices and bandwidth

incentive is provided to the peer devices.

Recently, non-orthogonal multiple access (NOMA) has been

recognized as a promising approach for improving spectral

efficiency of cellular networks. NOMA allows a group of

users to share the same frequency/time resources for simulta-

neous transmissions via different power levels and successive

interference cancellation (SIC) techniques. NOMA has been

applied to MEC networks to reduce latency and energy con-

sumption of MEC offloading [9], [10]. Simultaneous offload-

ing to helping mobile peers and edge cloud using NOMA has

been investigated [10]. It has been shown that the proposed

strategy can reduce energy consumption compared to the non-

cooperative case and orthogonal multiple access (OMA). To

the best of our knowledge, incentive design for helping peers

in NOMA-enabled MEC networks has not been studied before.

In a delay sensitive application in which tasks generated at

the CUEs are computationally intensive, the completion time

of the tasks mainly depends on the computation time at the

computing devices, instead of offloading delay. Therefore, a

CUE may be willing to trade its communication resources

(e.g., transmission energy or offloading delay) for computation

resources from potential helping users. Based on this obser-

vation, in this paper, we consider a network with multiple

CUEs, each with a computational intensive task and multiple

downlink user equipments (DUEs) with idle processors, that

are interested to receive large files from the base station

(BS). We propose a novel system, in which communication

and computation resource trading between a CUE-DUE pair

becomes possible by enabling uplink and downlink NOMA.

By deciding computation and communication resource trading

partner for each CUE, task offloading time allocation, compu-

tation share at the edge cloud and DUE, incentive bits to be

relayed to DUE using the CUE, and cloud resource allocation,

we show that a mutually-beneficial situation can be achieved in

which the completion time of the CUEs’ tasks can be reduced

largely, while DUEs can receive more data compared to OMA.

Furthermore, energy saving at the edge cloud is also observed.

II. SYSTEM MODEL

Assume a wireless communication system exists where a BS

integrated with an edge cloud provides computing capability to
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a set N = {1, 2, .., N} of N CUEs and also communicates to

a set M = {1, 2, ..,M} of M DUEs in the downlink direction.

We assume that resource allocation is already performed and

each CUE is allocated an uplink orthogonal bandwidth and

each DUE is allocated a downlink orthogonal bandwidth1.

Quasi-static block fading is assumed for all the wireless

links in the considered system. Let fi, i ∈ N ⋃M, be the

computational capability (in cycles/s) at each user equipment

i. Each CUE i ∈ N have a task φi = (βi, bi) to compute,

where bi is the number of bits to be computed, and βi is

the required number of CPU cycles to compute 1 bit of the

task. Note that the methods proposed in [13] can be applied to

determine bi and βi. Since the DUEs are equipped with idle

processors, they can assist CUEs to compute their tasks when

the former receives an appropriate incentive from the latter. In

particular, each CUE has the following choice of modes:

• Cloud-Only Mode: CUE offloads a part of its task to

the edge cloud. In this case, less computational power

is applied to the task. However, local communication

resources are fully utilized to complete the task.

• Joint DUE-Cloud Offloading Mode: If a CUE has a

better downlink channel compared to a DUE, the sum

transmission rate to these user equipments in downlink

NOMA is higher compared to direct orthogonal trans-

mission to DUE in the downlink direction. Utilizing this

fact, the CUE can first receive information intended to the

DUE in downlink NOMA from the BS and then forward

these incentive bits to the DUE to motivate the latter to

assist the former in computing its task. The CUE sends

a share of its task and the incentive bits to the DUE

and another share of its task to the edge cloud in the

uplink direction using NOMA. Compared to the cloud-

only mode, a more efficient communication resource can

be utilized by enabling NOMA in the downlink and

uplink, with more computational power. However in this

case, less energy is available at the CUE to complete its

task, and offloading delay may become high when the

CUE forwards a large number of incentive bits to the

DUE. The downlink and uplink transmissions by the BS

and CUE, respectively, are shown in Fig. 1.

For the latter mode, we assume that each CUE is assigned to

at most one DUE, and each DUE is assigned at most one CUE

to reduce the system complexity. In the next two subsections,

we characterize the energy and delay in the two modes and

design DUE’s incentive in joint DUE-cloud offloading.

A. Joint DUE-Cloud Offloading

1) CUE’s NOMA Transmission: In the uplink direction,

CUE uses NOMA to offload the task to the DUE and edge

cloud and to forward the incentive bits to the DUE. Let, gi,j
and gi,BS be the channel gain of CUE i to DUE j and CUE

i to BS links, respectively. Also, let Pi,j and Pi,BS be the

transmit power for CUE i to DUE j and CUE i to the BS

1Bandwidth allocation for MEC offloading is investigated previously [11],
[12], and our proposed framework can be applied along with these schemes.

Fig. 1: Joint DUE-cloud offloading mode

links, respectively. Therefore, the transmission rate ri,j from

CUE i to DUE j and rate ri,BS from CUE i to BS links are:

ri,j = B log

(
1 +

Pi,jgi,j
N0

)
(1)

and,

ri,BS = B log

(
1 +

Pi,BSgi,BS

N0 + Pi,jgi,BS

)
(2)

when gi,j > gi,BS using SIC. Here, B is the bandwidth

allocated to CUE i, and N0 is the noise power. Let ti,j be

the uplink NOMA transmission duration. Also, let bi,EC be

the number of task bits of φi offloaded to the edge cloud and

bi,j + bri,j be the number of bits CUE i sends to the DUE j
in duration of ti,j , where bi,j is the number of task bits of

φi to be computed at the DUE j, and bri,j is the number of

incentive bits that CUE receives in the downlink NOMA from

BS and forwards to the DUE. Then, using (1), (2), and the

relationships bi,j + bri,j = ti,jri,j , bi,EC = ti,jri,BS, we have:

Pi,j =
N0

gi,j
f

(
bi,j + bri,j
ti,jB

)
(3)

Pi,BS = N0

((
1

gi,BS

− 1

gi,j

)
f

(
bi,EC

ti,jB

)
+

1

gi,j
f

(
bi,j + bi,EC + bri,j

ti,jB

)
− 1

gi,j
f

(
bi,j + bri,j
ti,jB

))

(4)

where f(x) = 2x − 1. If gi,j < gi,BS, using SIC, ri,j will

include interference from CUE i to the BS link, while ri,BS,

will include noise only. In this case, the transmit power can be

obtained in a similar manner and the optimization solution to

joint DUE-cloud offloading mode can be derived following the

steps in Section IV. We omit this case due to space limitation.

2) Delay and Energy for CUEs: The CUE i computes (bi−
bi,j − bi,EC) bits locally. The local computation time is:

T j
i =

βi(bi − bi,j − bi,EC)

fi
(5)

The computation power consumption at the CUE i is pji =
γcβifi

3, where γc is the scaling coefficient [4]. Thus, the

computation energy at CUE i is

Ej
i = pjiT

j
i = γcβi(bi − bi,j − bi,EC)fi

2 (6)
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Let Fi be the edge cloud’s processing power allocated to CUE

i. The cloud has a total processing power F , i.e.,
∑N

i=1 Fi ≤
F . Then, the computation delay of the shares of φi at the edge

cloud and DUE j are

T i
EC =

βibi,EC

Fi
(7)

and

T i
j =

βibi,j
fj

(8)

The overall completion times at DUE j and at the edge cloud

are ti,j + T i
j and ti,j + T i

EC, respectively. Hence, the overall

completion time for task φi is:

Ti,j = max
(
T j
i , ti,j + T i

j , ti,j + T i
EC

)
. (9)

We disregard the time spent in sending back the results of the

computations, as the size of the output data tends to be small

relative to the input data [11].

Using (3), (4), and (6), overall energy consumption to

complete the task φi can be expressed as

Ei,j = ti,jN0

((
1

gi,BS

− 1

gi,j

)
f

(
bi,EC

ti,jB

)

+
1

gi,j
f

(
bi,j + bri,j + bi,EC

ti,jB

))
+ γcβi(bi − bi,j − bi,EC)fi

2

(10)

3) BS’s NOMA Transmission: Let gBS,i and gBS,j be the

BS to CUE i channel gain and BS to DUE j channel gain,

respectively. The downlink NOMA achievable rate of BS to

CUE i and BS to DUE j links can be expressed as

rBS,i = B log

(
1 +

αPBSgBS,i

N0

)
(11)

and,

rBS,j = B log

(
1 +

(1− α)PBSgBS,j

N0 + αPBSgBS,j

)
(12)

respectively, in case, gBS,i > gBS,j . Here, α ∈ (0, 1) is the

power allocation coefficient at the BS for downlink transmis-

sion. The duration of downlink NOMA transmission is ti,j ,

and the BS sends a total of bri,j bits in this duration. Therefore,

using (11), we have:

α =
N0

PBSgBS,i
f

(
bri,j
ti,jB

)
(13)

Substituting (13) into (12), we have

rBS,j = B log

⎛
⎝ N0gBS,i + PBSgBS,igBS,j

N0gBS,i +N0gBS,jf(
bri,j
ti,jB

)

⎞
⎠ (14)

4) DUE’s Incentive Design: The incentive of a DUE is the

increase in the number of bits in joint DUE-cloud offloading

mode compared to orthogonal downlink transmission within

the task offloading duration subtracted by its computational

energy cost and the incentive should be non-negative for

DUE’s participation in joint DUE-cloud offloading mode.

Therefore, the constraint can be expressed as bri,j + ti,jrBS,j −
ti,jr

OMA
BS,j − kjE

i
j
′ ≥ 0, where rOMA

BS,j = B log
(
1 +

PBSgBS,j

N0gBS,j

)
is the orthogonal downlink transmission rate of DUE j,

Ei
j
′ = γcβibi,jfj

2 is the energy consumption of the DUE j
to compute bi,j bits, and kj can be regarded as the minimum

compensation required in terms of number of bits per unit

computing energy consumption. We refer to kj as the energy

to bit cost factor. Each DUE j can decide the value of kj based

on its residual battery energy and size of the file it is interested

to receive from the BS and declare the value beforehand.

B. Cloud-Only

The total completion time of CUE k’s task, k ∈ {1, .., N}
in cloud-only mode can be expressed as:

T c
k = max

(
T c
k , tk + T k,c

EC

)
(15)

where tk, T k,c
EC = βkb

c
k,EC/Fk, and T c

k = βk (bk − bck,EC)/fk
are, respectively, the offloading delay, computation time at

the edge cloud to compute bck,EC offloaded bits, and the local

computation time at CUE k. The total energy consumption is:

Ec
k =

tkN0

gk,BS

f

(
bck,EC

tkB

)
+ γcβk(bk − bck,EC)fk

2 (16)

III. PROBLEM FORMULATION

In a network with multiple CUEs and DUEs, a set of CUEs

for which joint DUE-cloud offloading mode is more beneficial

compared to the cloud-only mode, may be paired with DUEs

while the rest of the CUEs can operate in the cloud-only mode,

to minimize task completion time of the CUEs. To formulate

the network-wide assignment decision for each CUE and DUE,

we define the following sets: let π be a set partition of all

users, N ∪M in which each subset has a CUE and at most

one DUE, and let Π be the set of all such possible partitions.

For example, with N = {1, 2} and M = {1}, we have three

partitions Π =
{{

{1, 1}, {2}
}
,
{
{1}, {2, 1}

}
,
{
{1}, {2}

}}
.

In each subset, the first and second terms are the CUE and

DUE, respectively. For instance,
{
{1, 1}, {2}

}
means that

CUE 1 operates in joint DUE-cloud offloading mode with

DUE 1, while CUE 2 operates in cloud-only offloading mode.

Let ρπ and ζπ denote the collections of all the subsets of π
with cardinalities one and two, respectively. For instance, if

π =
{
{1}, {2, 1}

}
, we have ρπ = {1} and ζπ = {2, 1}. We

use the term CUE-DUE assignment to refer the selection of

joint DUE-cloud mode and cloud-only mode for each CUE

according to a member π ∈ Π.

In this paper, our aim is to minimize the maximum

task completion time among all the CUEs. This maximum

task completion time, T N , can be expressed as T N =
max

(
max{i,j}∈ζπ Ti,j ,maxk∈ρπ

T c
k

)
. With this aim, the prob-

lem of deciding which CUEs to operate in cloud-only mode,

selection of DUE for each CUE that operate in joint DUE-

cloud offloading mode, the task shares to offload in two

modes, the number of incentive bits transmitted to the paired
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DUEs, transmission time allocation and edge cloud’s resources

allocation among the CUEs can be formulated as

min
π∈Π,F ,bπ,tπ

T N

s.t. bri,j + ti,jrBS,j − ti,jr
OMA
BS,j − kjE

i
j
′ ≥ 0, ∀{i, j} ∈ ζπ

Ei,j ≤ Eth,i, ∀{i, j} ∈ ζπ

Ec
k ≤ Eth,k, ∀k ∈ ρπ
N∑
l=1

Fl ≤ F (17)

Here bπ is the vector of all values of bi,j , bi,EC, b
r
i,j , and bck,EC,

tπ is the vector of all values of ti,j and tk for {i, j} ∈ ζπ ,

k ∈ ρπ , and F is the vector of all values of Fl, for

l ∈ N . DUE’s incentive requirement is captured in the first

constraint. The second and third constraints ensure that the

energy consumption of each CUE is bounded by an energy

threshold. The edge cloud’s computation resource allocated

to the CUEs is restricted by F , as captured by the fourth

constraints. The above optimization problem is hard to solve

for two reasons: i). Given an assignment π ∈ Π, (17) is

non-convex, ii). The assignment problem requires exhaustive

search over a very large number of assignments. Next, we

propose an efficient low-complexity sub-optimal solution.

IV. PROPOSED SOLUTION

To make (17) tractable, we split it up into two optimization

sub-problems: A. Transmission time allocation, sharing of

computation task and incentive bits, and CUE-DUE assign-

ment optimization, and B. Cloud resource allocation, solve

them optimally at each iteration, and then iterate between these

two sub-problems to converge to a final solution. Note that,

“m” denotes the iteration index of the proposed algorithm.

A. Transmission Time Allocation, Sharing of Computation
Task and Incentive Bits, CUE-DUE Assignment Optimization

At each iteration m, we solve (17) for a given cloud

resource allocation Fm = [Fm
1 , .., Fm

N ] where Fm
i is the cloud

resource allocated to CUE i, i ∈ {1, .., N}, at iteration m. The

optimization problem can be expressed as:

min
π∈Π,bπ,tπ

max

(
max

{i,j}∈ζπ
Ti,j ,max

k∈ρπ

T c
k

)

s.t. bri,j + ti,jrBS,j − ti,jr
OMA
BS,j − kjE

i
j
′ ≥ 0, ∀{i, j} ∈ ζπ

Ei,j ≤ Eth,i, ∀{i, j} ∈ ζπ

Ec
k ≤ Eth,k, ∀k ∈ ρπ (18)

Here, the objective function is calculated based on the fixed

cloud resource allocation Fm. Before we present the optimal

solution to (18) with all variables included, we first discuss its

solution procedure for a given CUE-DUE assignment π. In this

case, (18) reduces to the following independent sub-problems

min
ti,j ,bi,j ,bi,EC,bri,j

Ti,j

s.t. bri,j + ti,jrBS,j − ti,jr
OMA
BS,j − kjE

i
j
′ ≥ 0

Ei,j ≤ Eth,i (19)

for all {i, j} ∈ ζπ , and:

min
tk,bck,EC

T c
k , s.t. Ec

k ≤ Eth,k (20)

for all k ∈ ρπ . In the next subsection, we first present the

solution to each of these independent problems. By leveraging

these solutions, the optimal solution to (18) is obtained.

1) Optimal Task Offloading Time, Sharing of Computation
Task and Incentive Bits: Using (5), (7)-(10), (14), the opti-

mization problem in (19) can be expressed as

min
V,ti,j ,bi,j ,
bi,EC,b

r
i,j

V

s.t.
βi(bi − bi,j − bi,EC)

fi
≤ V

ti,j +
βibi,j
fj

≤ V

ti,j +
βibi,EC

Fm
i

≤ V

bri,j + ti,jB log

⎛
⎝ N0gBS,i + PBSgBS,igBS,j

N0gBS,i +N0gBS,jf(
bri,j
ti,jB

)

⎞
⎠

− ti,jr
OMA
BS,j − kjγcβibi,jf

2
j ≥ 0

ti,jN0

((
1

gi,BS

− 1

gi,j

)
f

(
bi,EC

ti,jB

)

+
1

gi,j
f

(
bi,j + bri,j + bi,EC

ti,jB

))

+ γcβi(bi − bi,j − bi,EC)fi
2 ≤ Eth,i (21)

where V is a slack variable. The first three constraints of

(21) are linear. It can be observed that the fourth constraint is

convex since its Hessian matrix is positive semidefinite. We

omit the proof due to space limits. By following the proof

of lemma 1 [10], it can be shown that the fifth constraint

is convex. Therefore, (21) is a convex optimization problem.

Since, we have a standard convex problem, it can be solved

efficiently by any convex optimization tool, such as CVX [14].

Also, it can be shown that (20), is a convex optimization

problem and can be solved using CVX. Let�i,j and�k be the

optimal objective value by solving (19) and (20), respectively.

2) DUE Assignments: The optimal solution of (18) can be

obtained by searching over the set of all possible CUE-DUE

assignments π ∈ Π and solving (19), (20) for each ζπ ∈ π
and ρπ , respectively. However, such exhaustive search is not

applicable in practice due to high computational complexity.

From the solutions derived in Section IV-A, (18) reduces to

the simpler CUE-DUE assignment problem

min
π∈Π

max

(
max

{i,j}∈ζπ
�i,j , max

k∈ρπ

�k

)
, (22)

which we proceed to solve optimally with low complexity by

means of a graph-theoretic matching algorithm.

We summarize some concepts of bipartite graph theory

matching [15]. A graph G comprising a vertex set V and an

edge set E is bipartite if V can be partitioned into V1 and V2
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(the bipartition), such that every edge in E connects a vertex

in V1 to one in V2. A matching in G is a subset of E such

that every vertex v ∈ V is incident to at most one edge of

the matching. A maximum matching in G contains the largest

possible number of edges.

We now describe the steps required to convert problem (22),

into a bipartite graph matching problem:

1) The network is represented as a bipartite graph in which

each CUE i ∈ {1, .., N} and each DUE j ∈ {1, ..,M}
are represented by vertices v1i ∈ V1 and v2j ∈ V2,

respectively, and the weight of each edge (v1i , v
2
j ) is

ω(vi
1,v

j
2)

= �i,j , when gBS,i > gBS,j .

2) If gBS,i ≤ gBS,j , the corresponding vertices v1i and v2j
are not connected by an edge. The reason is, in this

case, the sum transmission rate from CUE i and BS to

the DUE j in joint DUE-cloud offloading mode can not

be higher than BS’s orthogonal transmission to DUE j,

and therefore joint DUE-cloud offloading mode should

not be selected between CUE i and DUE j.

3) A maximum matching for this graph corresponds to

pairings between CUEs and DUEs, i.e., all CUEs to op-

erate in joint DUE-cloud offloading mode. To subsume

the cloud-only offloading option, N dummy vertices

are added to V2, with the ith dummy vertex, i.e.,
vertex v2M+i, i ∈ {1, .., N}, representing the cloud-only

offloading option for CUE i. The weight of each edge

(v1i , v
2
M+i) is assigned as per CUE i’s completion time

in cloud-only mode, i.e., ω(v1
i ,v

2
M+i)

= �i.

By following the above steps, the CUE-DUE assignment

problem (22) can be expressed as a bottleneck matching (BM)

problem of the graph, which is defined by maximum matching

where the largest edge weight is as small as possible, i.e.

min
φ∈Φ

max
(vi

1,v
j
2)∈φ

ω(vi
1,v

j
2)

(23)

where Φ contains all possible maximum matchings. The

bipartite graph has 2N + M vertices and maximum of

MN + N edges, and therefore, the assignment problem

can be solved optimally using the BM algorithm [15] with

complexity O
(
max(N2

√
M,M2

√
N)

)
. In case, a vertex vi1,

i ∈ {1, .., N}, is paired with its dummy vertex, i.e., vertex

vM+i
2 in the bottleneck matching of the graph, CUE i operates

in cloud-only mode. Note that, for many CUE-DUE pairings

in a network, a CUE may not have a better downlink channel

compared to DUE, therefore calculation of �i,j for all pairs

may not be necessary.

Let πm+1 be the optimal solution of (22), bm+1
i,j , bm+1

i,EC ,

br,m+1
i,j tm+1

i,j , be the solution to (19) for {i, j} ∈ ζπm+1 ,

bc,m+1
k,EC , tm+1

k be the solution to (20) for k ∈ ρπm+1 . Therefore,

we express the solution to (18) as Xm+1 which is the set of

all values of πm+1, bm+1
i,j , bm+1

i,EC , br,m+1
i,j tm+1

i,j , bc,m+1
k,EC , tm+1

k ,

{i, j} ∈ ζπm+1 , k ∈ ρπm+1 .

B. Cloud Resource Allocation

In (17), the second, third, and fourth constraints as well

as the terms T j
i , ti,j + T i

j , and T c
k , for all {i, j} ∈ ζπm+1 ,

k ∈ ρπm+1 in the objective function are independent of

cloud resource allocation. Therefore, the problem (17), with

variables as cloud resource allocation, while all other variables

are set according to the values in Xm+1 , can be expressed as

min
V,F

V

s.t. tm+1
i,j +

βib
m+1
i,EC

Fi
≤ V {i, j} ∈ ζπm+1

s.t. tm+1
k +

βkb
c,m+1
k,EC

Fk
≤ V k ∈ ρπm+1

N∑
l=1

Fl ≤ F (24)

The above problem is convex and can be solved optimally

using CVX. The optimal cloud resource allocation solution is

denoted by Fm+1.

C. Iterative Algorithm

We now propose an iterative algorithm to solve the opti-

mization problem (17) by using the block-coordinate descent

method [16]. Here, we split up our problem into two phases

i) Joint time allocation, sharing of computation task and

incentive bits, CUE-DUE assignment optimization, ii) Cloud

resource allocation. In each iteration m, in the first phase,

we solve the problem of joint time allocation, sharing of

computation task and incentive bits, CUE-DUE assignment

optimization for fixed cloud resource allocation and obtain

Xm+1. Then, the output of this phase, Xm+1, is used as

an input for the next step in which we solve the cloud

resource allocation problem to obtain Fm+1. The objective

value of (17) obtained at the mth iteration is denoted by

T N (Xm+1,Fm+1). The steps are described in Algorithm 1.

To solve (17) using Algorithm 1, at each iteration, (19)

needs to be solved for a maximum of MN different CUE-DUE

pairs to obtain �i,j , for i ∈ {1, .., N}, j ∈ {1, ..,M} and (20)

needs to be solved for N CUEs to obtain all �is such that

the bipartite graph can be constructed. The time complexity

of each of these optimization problems is independent of

parameters M or N , and therefore overall complexity of

this step is on the order of MN . Next, the BM algorithm

runs in time O
(
max(N2

√
M,M2

√
N)

)
. Therefore, the time

complexity of Algorithm 1 at each iteration is decided by the

BM algorithm’s time complexity. Also, it has been shown in

Section V that the algorithm converges within a small number

of iterations. Therefore, compared to directly solving (17)

which is firstly non-convex and has a large number of variables

for a given assignment π (on the order of M , N ) and requires

an exhaustive search over (M + N)!/M ! number of assign-

ments, computation complexity of our proposed algorithm is

several orders of magnitude lower.

D. Convergence Analysis

The convergence of Algorithm 1 is proved as fol-

lows. First, in Step 2, we optimally solve (18), and

therefore, we have T N (Xm,Fm) ≥ T N (Xm+1,Fm).
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Algorithm 1 Iterative Algorithm to Solve (17)

1: Initialize Fm, m = 1, according to equal allocation, i.e.,
Fm
l = F/N , l ∈ {1, .., N}.

2: Find the optimal solution of the problem (18) for given

Fm by following the procedure described in Section IV-A

and denote the optimal solution as Xm+1.

3: Solving optimization problem (24) given variables Xm+1

and denote the solution as Fm+1.

4: Update m = m+ 1.

5: Go to Step 2 and repeat until the convergence is obtained,

i.e., T N (Xm,Fm)−T N (Xm+1,Fm+1) ≤ ε, 0 < ε � 1.

Next, since optimal solution of (24) is obtained, we have

T N (Xm+1,Fm) ≥ T N (Xm+1,Fm+1). Therefore, we can

conclude that T N (Xm,Fm) ≥ T N (Xm+1,Fm+1). It indi-

cates that the objective value of Algorithm 1 after each iter-

ation is non-increasing. In addition, we see that the objective

value is lower bounded by a finite value. Hence, the proposed

algorithm is guaranteed to converge.

V. NUMERICAL RESULTS

In this section, numerical results are provided to evaluate

the performance of the proposed strategy, as compared to the

following two benchmark schemes.

1) Cloud Offloading: Each CUE operates in cloud-only

mode. The optimization for this strategy can be obtained

by iteratively solving when (20) and (24), considering

ρπm+1 = N , ζπm+1 = ∅ at each iteration m.

2) DUE-Cloud Random: In this case, each CUE is assigned

a DUE randomly, and then other variables are optimized

by iteratively solving (19), (20), and (24) for the given

random assignment.

We first investigate performance of the proposed strategy

and cloud offloading scheme with varying energy to bit

cost factor for a single CUE-DUE scenario. Then, we will

demonstrate performance of these strategies in a network with

multiple CUEs and DUEs. The system parameters are PBS =
45 dBm, channel model Rayleigh fading, pathloss coefficient

3, N0 = −102 dBm, fi, fj uniform distributed in [1, 3]
GHz, bi uniformly distributed in [200, 400] Kbits, βi = 1000
cycles/bit, and γc = 10−28. The energy threshold for each

CUE is set according to its energy requirement to compute

the task locally. The total 20 MHz uplink bandwidth is equally

allocated among the CUEs. The cloud power allocated to the

CUE for the single CUE-DUE case is 4 GHz, and for multiple

CUEs and DUEs case, total cloud power is F = 20 GHz.

A. Single CUE-DUE

In this scenario, the distance between the CUE to BS, CUE

to DUE, BS to DUE are 80 m, 70 m, and 150 m, respectively.

The results are averaged over 2000 channel realizations.

In Fig. 2, we analyze performance in terms of completion

time for the proposed strategy and cloud offloading scheme

with varying energy to bit cost factor. In Fig. 3, we investigate

the offloaded share of computation task to the DUE, and the
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Fig. 2: Completion Time vs energy to bit cost factor
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Fig. 3: Share of computation and incentive bit gain vs. energy

to bit cost factor using the proposed strategy

excess bit gain received using the proposed strategy (compared

to the downlink orthogonal transmission to the DUE) with

varying energy to bit cost factor. As the energy to bit cost

factor increases upto 2.8 × 106, the share of computational

task offloaded to the DUE slowly decreases. In this case, the

rate of increase in number of incentive bits relayed through the

CUE is high to compensate for the high computational energy

consumption with increase in energy to bit cost factor. Since

the number of bits transmitted from the CUE to the DUE

increases rapidly, the offloading delay and therefore, CUE’s

task completion time decreases in the same rate. When the

energy to bit cost factor is greater than 2.8×106, relaying large

number of incentive bits to offload large number of computing

bits would result in a high offloading delay that may not be

compensated by time saving with parallel computing at the

DUE. Thus, share of computation at the DUE and incentive

bit gain approaches zero. The completion time in this case

is same as the cloud offloading scheme. We observe that the

proposed strategy can reduce the completion time of the task

significantly, while a large number of bit gain can be achieved

for the DUE when the energy to bit cost factor is within the

range 106 to 2× 106.

B. Multiple CUEs and DUEs

For the evaluations that follow, 5 CUEs and DUEs are

uniformly distributed in a square region of 100×100, and the

BS with an edge cloud is located at (100, 100). The energy to
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Fig. 4: Convergence analysis of the iterative algorithm
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Fig. 5: Completion time vs. number of DUEs

bit cost factor is set to 106. The results are averaged over 200
network realizations.

In Fig. 4, we show the convergence of the proposed algo-

rithm. The proposed algorithm can converge within a small

number of iterations. Also, it can be observed that compared

to the equal cloud resource allocation at iteration 1, jointly

optimizing cloud resource along with all other variables in six

iterations results in 20% decrease in completion time.

In Fig. 5, we compare the performance of the proposed

offloading strategy with two benchmark schemes in terms of

network completion time when number of DUEs in the net-

work varies from 5 to 30. As the number of DUEs increases,

more DUEs that have high CUE-DUE channel gain, and high

computation power, may become available and therefore, the

completion time decreases for the proposed strategy and DUE-

cloud random. For a network with 30 DUEs, proposed strategy

can reduce the network completion time by 30% compared to

cloud offloading. Offloading computation to the DUE results

in reduction in the number of bits to be computed at the edge

cloud compared to the cloud offloading scheme, which leads

to energy saving at the edge cloud. In Table I, we show the

average energy saving with varying number of DUEs.

VI. CONCLUSION

In this paper, we have proposed a computation and commu-

nication resource trading strategy between CUEs and DUEs

TABLE I: Average energy saving (in Joule) compared to cloud

offloading scheme with varying number of DUEs.

Scheme 10 15 20 25

DUE-Cloud Random 0.13 J 0.16 J 0.19 J 0.18 J

Proposed 0.46 J 0.52 J 0.57 J 0.59 J

that leads to a mutually-beneficial situation for CUE’s task

computation and DUE’s downlink transmission rate by en-

abling NOMA in the uplink and downlink. We have studied

joint optimization of computation and communication resource

allocation, assignment among the CUEs and DUEs, share of

computation and incentive bits with the aim of minimizing

overall completion time of the tasks. Although a complete

optimization is exceedingly complex, we have identified sub-

optimum approach that perform efficiently, while achieving

a significant reduction in the solution complexity. We have

shown, that the proposed strategy reduces the network comple-

tion time by 30%, while providing a large bit gain (compared

to OMA) to the DUEs during the task offloading duration.
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