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ABSTRACT
Conducting in-field performance analysis for wireless carrier cov-
erage and capacity evaluation is extremely costly, in terms of equip-
ment, manpower, and time. Hence, there is a growing number of
opportunities that exist for crowdsourcing via smart applications,
firmware, and cellular standards. These facilities offer carriers feed-
back about user-perceived wireless channel quality. Crowdsourcing
provides the ability to rapidly collect feedback with dense levels
of penetration using client smartphones. However, mobile phones
often fail to capture the fidelity and high sampling rate of more
advanced equipment (e.g., a channel scanner) used when drive
testing for analysis of propagation characteristics. In this work,
we study the impact of various effects induced by user equipment
(UE), when sampling signal quality. These shortcomings include
averaging over multiple samples, imprecise quantization, and non-
uniform and/or less frequent channel sampling. We specifically,
investigate the accuracy of characterizing large-scale fading using
crowdsourced data in presence of the aforementioned phone mea-
surement shortcomings. To do so, we conduct extensive in-field
experiments across heterogeneous devices and environments to
empirically quantify the perceived channel characteristics by phone
measurements. Analyzing the quality of the smartphone measure-
ments in LTE indicates that the inferred radio propagation models,
is comparable with models obtained by advanced equipment.
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crowdsourced mobile network measurement; LTE; path loss evalu-
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1 INTRODUCTION
Cellular network providers need to collect and analyze radio signal
measurements continuously to improve network performance and
optimize network configuration. Available methods to obtain the
signal measurements consist of drive testing, network-side-only
tools, dedicated testbeds, and crowdsourcing [12]. The former three
methods are extremely resource intensive. For example, one com-
mon approach for capturing radio signal measurements is to outfit a
backpack with six mobile phones running various applications and
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Figure 1: Typical Rohde & Schwarz backpack for walk/drive
testing (left) and TSMW channel scanner (right) [8].

network protocols alongside an expensive mobile channel scanner
(see Fig. 1) for network engineers to gather data on foot. Vehi-
cles are often used for an even greater numbers of and potentially
higher-powered and more costly devices and allowing higher levels
of mobility in a targeted region. In congested areas with various
technologies (e.g., LTE, GSM, UMTS, and TETRA) the problem be-
comes worse: to get an acceptable quality of service, data collection
should be repeated multiple times per roll out of each technology
to appropriately configure the network [31]. Further complicating
matters, physical changes to the environment such as construction
of new buildings or highways can render the obtained data useless.

Crowdsourcing is an economical alternative to these resource-
intensive methods that has the additional benefit of considering the
in-situ performance at the end user device. Consequently, many car-
riers are rolling out smart applications, firmware, and standardiza-
tion efforts to crowdsource perceived channel state by user equip-
ment (UE). Furthermore, LTE release 10 in 3GPP TS 37.320 has
developed a Minimization of Drive Test (MDT) specification to
monitor the network Key Performance Indicators (KPIs) via crowd-
sourcing. While there is less control of the factors leading to a
recorded channel quality, there are many advantages to crowd-
sourcing this information in terms of lessening the need for costly
equipment, reduced in-field man hours, rapid scalability of data
sets, and penetration into restricted physical locations. These ad-
vantages have sparked a number of works where crowdsourcing
has been utilized to identify network topology [7], perform real-
time network adaptation [28], characterize Internet traffic [27],
detect network events [4], fingerprint and georeference physical
locations [23], assess the quality of user experience [15], and study
network neutrality [10]. To evaluate the wide area wireless network
performance [11] and in-context performance [32], the bandwidth,
latency, and throughput are previously-crowdsourced KPIs [25, 29].

However, mobile phones possess a number of shortcomings
when compared to a channel scanner in reporting channel quality,
such as: (i) averaging over multiple samples which can flatten chan-
nel fluctuations [29] with manufacturer-specific methodologies to
estimate the received signal power [5], (ii) coarse quantization
which can impose a unit step for minuscule changes, (iii) sampling
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at non-uniform intervals when crowdsourcing information as op-
posed to long, consecutive testing periods recorded when drive
testing, and (iv) clipping that results from less sensitive receivers
with fringe network connectivity.

The accuracy of the received signal reporting by mobile phones
as compared to a channel scanner was evaluated in [17], but the
effect of averaging was not considered. Hence, while a crowdsourc-
ing framework for characterizing wireless environments would
have tremendous impact on drive testing costs, we believe that a
first step in doing so requires understanding the viability of mobile
phones to replace more advanced measurement equipment.

In this work, we study the impact of various effects induced by
user equipment, when sampling signal quality. These shortcomings
include averaging over multiple samples, imprecise quantization,
and non-uniform and/or less frequent channel sampling. We specif-
ically, investigate the accuracy of characterizing large-scale fading
using crowdsourced data in presence of the aforementioned phone
measurement shortcomings. To do so, we perform extensive in-
field experimentation to quantify the impact of each of these four
effects when evaluating the viability of mobile phones to charac-
terize large-scale fading effects. This metric is commonly used by
carriers for deployment planning, frequency allocation, and net-
work adaptation. Our results indicate that the inferred propagation
parameters by smartphone measurements in GSM and LTE net-
works is comparable to those obtained by the advanced equipment
that are frequently used by drive testers (e.g., channel scanners). In
particular, our work consists of the following three contributions.

First, we set forth a framework to evaluate the impact of strictly
using mobile phones (as opposed to a channel scanner) in propaga-
tion prediction. As depicted in Fig. 2, we consider how the averaging,
uniform and non-uniform downsampling over time and space, and
quantization of mobile phone channel quality samples at both the
firmware and API level affect the path loss characterization. At the
API level, we have designed an Android application, called WiEye,
which can be used by users globally as an economical spectrum
analyzer. Additionally, WiEye functions as a crowdsourcing tool,
which has captured over 250 million signal quality measurements
from over 60 thousand users (protected by an IRB) and has a global
footprint. At the firmware level, we are able to capture signal qual-
ity directly from the hardware via a Rohde & Schwarz tool called
Qualipoc.

Second, we compare the perceived channel quality across the
channel scanner, multiple mobile phone models, and various levels
of the software stack. To do so, we perform extensive local experi-
ments across downtown, single-family residential, and multi-family
residential regions and directly compare the received channel qual-
ity as reported by the channel scanner to mobile phone firmware-
level and API-level data, where each mobile phone measurement
considered has a corresponding channel scanner measurement for
comparison. We are also interested the range over which each user-
side device and software is able to receive cellular base station
transmissions (i.e., their sensitivities) to understand where clipping
of crowdsourced data might occur.

Third, we quantify the impact on inferring propagation char-
acteristics from the various calculations and imperfections that
mobile phones can perform on received channel quality before re-
porting it to the user. To do so, we consider numerous data sets

Figure 2: Pre-processing and post-processing of collected
data by channel scanner and mobile phones.

from the channel scanner in the aforementioned environmental
contexts and impose these imperfections to understand their role
by evaluating against the root mean-squared error of path loss pre-
diction from the original channel scanner data set in that region.
Our results show that the fading parameters obtained by mobile
phone samples are sufficiently comparable to the advanced drive
testing equipment, paving the way for crowdsourcing as a viable
solution for in-field performance analysis.

The remainder of the paper is organized as follows. In Section 2,
we experimentally quantify the channel quality reporting differ-
ences of mobile phones versus a channel scanner. In Section 3, we
analyze the role of mobile phone imperfections in terms of path
loss prediction. We discuss related work in Section 4 and conclude
in Section 5.

2 IN-FIELD CALIBRATION OF RECEIVED
SIGNAL POWER FROMMOBILE PHONES

The purpose of this study is to compare the ability of mobile phone
measurements, captured either at the API level or the firmware
level, to an advanced measurement tool, the channel scanner, in
characterizing wireless channels in terms of path loss. Before doing
so, in this section, we compare and calibrate the raw measurements
provided by diverse mobile phones at different levels of the software
stack with data provided by a channel scanner.

API-Level Phone Data. At the API level, we modify our Android
application WiEye, which we designed to crowdsource measure-
ments, to log signal quality measurements at the highest sampling
rate that the operating system will allow (1 Hz). Since WiEye can
be installed on any Android-based phone, we can compare API-
level measurements across a wide array of devices. In our study,
we use four different mobile phones: (i.) Samsung S5, (ii.) Nexus
5, (iii.) Google Pixel, and (iv.) Samsung S8. While the former two
phones are not the latest models, they provide a comparison across
multiple generations, and the Samsung S5 is the phone that allows
a firmware-based tool that we will now discuss.

Firmware-Level Phone Data. At the firmware level, we have pur-
chased a software tool called Qualipoc from Rohde & Schwarz,
which allows signal strength measurements to be reported directly
from the chipset. Qualipoc can receive the channel quality infor-
mation from many diverse technologies, such as LTE, GSM, and



WCDMA. The sampling rate of the Qualipoc is approximately 3 Hz.
Unlike the channel scanner, the mobile phones continuously search
for the best visible base station on which to camp by measuring
the signal power received from base stations, affecting both the
API-level and firmware-level measurements.

Channel Scanner Data. For a piece of equipment that is commonly
used by drive testers to gather signal quality measurements in the
field, we have acquired a Rohde & Schwarz TSMWChannel Scanner.
The TSMW can passively and continuously monitor numerous
technologies in 30 MHz - 6 GHz frequency range, with a sampling
rate of 500 Hz. The scanner is controlled by Romes software (version
4.89), which is installed on a laptop connected via wire to the TSMW.

In-Field Measurement Setup and Calibration. Since the difference
between the aforementioned devices might vary across regions,
we conducted the measurement campaign in three diverse regions
of Dallas, Texas with regards to their terrain type: single-family
residential, multi-family residential, and downtown. All five device
types are connected to the same network operator for direct com-
parison and perform measurements in parallel on a co-located roof
of a car. In each region, we observed 11 base stations.

We first would like to understand the range of signal quality sen-
sitivities of each device for measurements taken at the same time
and location. To do so, we applied a post-processing procedure on
the entire collected data set. Since the sampling rate of the channel
scanner is higher than that of Qualipoc (firmware) or WiEye (API),
we extract the samples from channel scanner data set, which are
the closest in time to that of WiEye and Qualipoc. The matching
process consists of two steps: (i.) grouping measurements based
on the transmitting base station, and (ii.) downsampling channel
scanner data to have the same number of samples as the Qualipoc
and WiEye’s data set, where each mobile phone sample has a cor-
responding channel scanner measurement in time. If the channel
scanner did not report a measurement within one second of the
mobile phone measurement, we do not consider that data point in
our comparison.

Table 1 shows theminimum,maximum, and range of the received
signal power for all of these measurements across all cell towers in
each region. As it is seen from the results, the widest range (77) and
greatest sensitivity (-134 dBm) is captured by the channel scanner
with the least range (71) and sensitivity (-128 dBm) captured by
WiEye. The reduced range experienced by the mobile phone will
cause some clipping on the extreme ends of the connectivity ranges,
especially with poor signal quality.

Table 1: Field-tested range of reported signal quality (dBm)
from channel scanner (TSMW), Qualipoc, and WiEye.

Device Min Max Range
Channel Scanner -134 -56 77
Qualipoc Phone -129 -55 74
WiEye Phone -128 -57 71

Next, we again consider this downsampled data set whichmatches
the time stamps across devices to consider the difference in reported
signal quality per signal quality sample across devices. Table 2
shows the difference of WiEye compared to the matched chan-
nel scanner measurement and Qualipoc compared to the matched

channel scanner measurement across the three region types. This
measurement shows the bias that a mobile phone induces on a
crowdsourced data set as compared to more advanced equipment.
We also report the mean reported signal strength per region for
completeness.

Table 2: Average signal quality bias reported from Qualipoc
and WiEye with matched channel scanner measurement.

Device Qualipoc WiEye
Location dBm Diff. (Mean) dBm Diff. (Mean)

Downtown -1.5 (-75.6) -4.4 (-78.5)
Single-Family -1.3 (-82.5) -3.8 (-85.0)
Multi-Family -1.9 (-78.4) -4.1 (-80.3)

We observe that the difference in reported received signal level is
on average 1.57 dBm higher on the channel scanner versus Qualipoc
across the three regions with a range of 1.3 to 1.9. In contrast,
the difference in reported received signal level is on average 4.43
dBm higher on the channel scanner versus WiEye across the three
regions with a range of 4.1 to 4.8. These biases directly affect the
path loss characterization as a higher reported channel quality
will lower the path loss exponent versus a lower reported channel
quality will raise the path loss exponent. In the following section,
we will consider the role of this bias as well as multiple other mobile
phone imperfections.

3 EVALUATING MOBILE PHONE
IMPERFECTIONS ON PATH LOSS
PREDICTION

One of the most common metrics which drive testers use to eval-
uate a given region is path loss. Since we ultimately want to use
mobile phone measurements in a crowdsourcing manner to obtain
the same metric, we need to understand the role of mobile phone
imperfections on evaluating the path loss of a given environment.
In particular, reported signal quality from mobile phones will have
the following effects: averaging, uniform and non-uniform down-
sampling, and different resolutions caused by quantization. In this
section, we first provide some background with path loss model-
ing and then will experimentally evaluate the role of these mobile
phone imperfections on path loss modeling.

3.1 Modeling Large-Scale Fading: Path Loss
Large-scale fading refers to the average attenuation in a given en-
vironment to transmission through and around obstacles in an
environment for a given distance [24]. Path loss prediction models
are defined in three different categories: empirical, deterministic,
and semi-deterministic. Empirical models such as [14] and [22] are
based on measurements and use statistical properties. However,
the accuracy of these models is not as satisfying as determinis-
tic models to estimate the channel characteristics. These models
are widely-used because of their low computational complexity
and simplicity. Deterministic models or geometrical models us-
ing the Geometrical Theory of Diffraction to predict the path loss.
To consider the losses due to diffraction, detailed knowledge of
the terrain is needed to calculate the signal strength such as [16]



and [30]. These models are accurate, however their computational
complexity is high and need detailed information about the region
of interest. Semi-deterministic models applied in [6] and [9] are
based on empirical models and deterministic aspects. In our study,
we use the empirical method since it is the type of modeling that
would be most appropriate to leverage crowdsourcing. The large-
scale fading is a function of distance (d) between the transmitter
and the receiver and the γ as the path loss exponent, where the
path loss exponent varies due to the environmental type from 2
in free space to 6 in indoor environments. Some typical values are
2.7-3.5 in typical urban scenarios and 3-5 in heavily shadowed ur-
ban environments [24]. In this work, we focus on the inferred path
loss exponent from mobile phone measurements, where a linear
regression model is used to calculate the path loss exponent.

3.2 In-Field Per Sector Analysis of Inferred
Path Loss Exponent Across Devices

As discussed in Section 2, our experimental analysis spans three
region types (single-family residential, multi-family residential,
and downtown) with multiple mobile phone types at the API-level
(WiEye), with mobile phones at the firmware level (Qualipoc), and
with a channel scanner (TSMW). All of these devices report which
base station sector is transmitting the received signal. Since prior
work has shown per sector performance can differ [11], we first
consider the path loss exponent from each sector in a single-family
residential region from the channel scanner to show an example of
the diversity a single base station can have across sectors.

Fig. 3a depicts the spatial distribution of signal strength measure-
ments from a channel scanner for a base station in the single-family
residential region. The measurement locations across the three sec-
tors are represented by red dots. We perform linear regression on
each sector’s signal strength measurements independently to find
the path loss exponent for that sector. In Fig 3b, we see that the
path loss exponent of sector (a) to sector (c) ranges from 3.1 to 3.4,
even from the same base station.

(a) Collected measurement from a
base station in the single family re-
gion.

(b) The regression line fit to themea-
surements of each sector.

Figure 3: Collectedmeasurements from three sectors around
a base station (left) related path loss exponents of each
(right).

We now focus on a single mobile phone (Samsung Galaxy S5)
to directly compare the path loss exponent inferred from the re-
ceived signal quality reported at the API and firmware levels to
that reported by the channel scanner in the same environment. We

consider the most densely measured sector from each region type
in our comparison and calculate three different path loss exponents.
First, we consider the path loss exponent γX as calculated from
all measurements in the chosen sector for device X , where X is T
for TSMW, Q for Qualipoc, orW for WiEye. Second, we downsam-
ple the TSMW measurements according to the matching process
mentioned in Section 2, where the TSMW measurement with the
closest time stamp to the mobile phone measurement is chosen
for Qualipoc and then for WiEye. This second calculated path loss
exponent is represented by γQ ′ and γW ′, respectively and allows
the path loss exponent to be considered for the same number of
measurements as Qualipoc and WiEye but with the signal strength
readings from the TSMW. Third, we consider a similar path loss
exponent as γX ′ but considers the average bias that each tool would
induce on each of the TSMW’s signal strength measurements from
Table 1 and denoted as γQ ′′ and γW ′′, respectively. The third calcu-
lated path loss exponent would subtract this average bias to each
of the channel scanner’s measurements before calculating the path
loss exponent.

These three γ values are shown in Table 3. There are a few in-
teresting effects that we observe in the comparison across these
path loss exponents. First, by comparing γT with γQ ′ and γW ′,
even when the same device is used (TSMW) to capture the signal
strength measurements, downsampling the number to match the
mobile phones raises the estimate of the path loss exponent in ev-
ery environment. This effect could be explained by the inclusion of
lower quality measurements (i.e., considering the measurements
that were clipped from the mobile phone measurements), which
in turn lowers the path loss exponent. Second, by comparing each
mobile phone measurement type (Q andW ) across γX ′ and γX ′′,
we observe that the consideration of the bias brings the estimate
even closer to that of the TSMW (γT ). For the firmware level mea-
surements, the average difference between γQ and γT in actual,
matched, and compensated calculations are 0.1, 0.08, and 0.03, re-
spectively. For the API level measurements, the average difference
between the γW and γT in actual, matched and compensated calcu-
lations are 0.15, 0.05, and 0.03, respectively. Hence, the API level
measurements have the largest error in path loss calculation from
its raw measurements and require the most compensation.

To depict the difference in received signal power between the
channel scanner, firmware, and API level, we depict the distribution
of the Received Signal Received Power (RSRP) values obtained by
each tool for a specific base station sector in Fig. 4a. To evaluate
the distance between each curve, we can use the KolmogorovâĂŞS-
mirnov test (KS test). The ks distance between channel scanner
curve and Qualipoc and WiEye curves are 0.11 and 0.13, respec-
tively. Also, the difference between the CDF’s median of the channel
scanner (-77 dBm), Qualipoc (-78.8 dBm), and WiEye (-79.5 dBm)
are about 1.8 dB and 2.5 dB, respectively. This is along the line of
bias discussed in Table 1, especially for the firmware measurements
but shows that the API level samples are subject to other effects
such as averaging of samples, which will be explored in greater
depth in the following section.

Table 3 also brings up an important issue with crowdsourcing
regarding how many measurement samples are required to form
an accurate estimate of the path loss exponent. Assume that Xi
is the channel scanner signal measurements corresponded to a



Table 3: Path loss characteristics obtained by three devices in three modes: actual, matched, compensated mode.

Region TSMW Qualipoc WiEye
Samples γT △Q&T (dB) Samples γQ γQ ’ γQ ” △W&T (dB) Samples γW γW ’ γW ”

Single-Family 2063 3.1 1.4 620 3.23 3.17 3.15 3.8 293 3.31 3.19 3.15
Multi-Family 1961 3.41 0.9 970 3.48 3.42 3.44 3.1 350 3.51 3.38 3.42
Downtown 11634 3.85 1.2 512 3.97 3.87 3.85 3.5 225 4.00 3.89 3.88

-140 -120 -100 -80 -60 -40

Received Signal Level

0

0.2

0.4

0.6

0.8

1

C
D

F

Channel scanner

Qualipoc

WiEye

(a) CDF of RSRP of channel scanner
versus Qualipoc and WiEye.

(b) The impact of decreasing
the number of samples on the
ks-distance

Figure 4: Verifying the number of measurements in each re-
gion to estimate the γ accurately.

sector, where i shows the number of samples. Then, if we select
different number of samples from our reference data set, then we
can calculate the ks-distance between the new dataset, Ym , and the
reference distribution, wherem represents the number of samples
of the new data set.

The difference between the path loss exponent obtained by the
reference data set and downsampled data set in terms of ks-distance
is depicted in Fig. 4b. The starting point form is 50 and increases by
50 to 3000 total number of samples for six densely-measured sectors
across the three regions. Here, the error is depicted as the Root
Mean-Squared Error (RMSE). We observe that the distance between
the downsampled data set and the reference data set increases when
the number of measurements drops below approximately 800 to
1000 samples. Also, the maximum RMSE between the path loss
exponent is about 0.03 when the number of samples is less than
1000. Furthermore, the figure shows that decreasing the number
of measurements in a single-family area has a lower impact on
the ks-distance as compared to multi-family or downtown area.
This effect can be credited to the relative homogeneity of the geo-
graphical features in the single-family area as opposed to the more
heterogeneous multi-family or downtown regions. In the following
section, we will explore the issue of downsampling uniformly and
non-uniformly over time and space to understand another imper-
fection that is introduced with crowdsourcing signal strengths from
mobile phones.

3.3 Impact of Mobile Phone and
Crowdsourcing Limitations on Path Loss
Estimation

In this section the impact of different shortcomings with mobile
phone measurements (averaging, temporal downsampling, and
quantization) and imperfections that arise with crowdsourcing wire-
less signal strengths (non-uniform downsampling in both time and

space) as opposed to drive testing in a known physical pattern with
a known periodic sampling frequency in a particular region under
test. In this subsection (3.3) and Section 3.4, we use signal strength
samples from the channel scanner exclusively in our analysis and
emulate each mobile phone imperfection in isolation to evaluate
the impact of that effect.

3.3.1 Averaging of the Received Signal Power. Network interfaces
often use some form of hysteresis to suppress sudden fluctuations
in channel state that might lead to overcompensation in adaptive
protocols. Many times this hysteresis is performed by averaging
multiple received signal qualities before reporting it to the higher
layers (e.g., within the firmware) and/or the user (e.g., within the
operating system in support of API calls). Each device uses its own
policy (often proprietary) to take a specific number of samples over
a certain period of time.

Even if two devices are in the same environment in close proxim-
ity and experience virtually the same channel quality fluctuations,
differences in averaging window sizes could be interpreted as di-
verse fading behaviors. More importantly, when crowdsourcing
signal strengths, we are forced to accept the averaging behavior of
a broad range of devices. Hence, we seek to characterize the impact
of differing averaging windows on the interpretation of large-scale
fading. For the purposes of our work, we will be comparing multiple
devices (the aforementioned heterogeneous mobile phones against
a channel scanner).

A mobile phone in an LTE network is required to measure the
Reference Signal Received Power (RSRP) and Reference Signal Re-
ceived Quality (RSRQ) level of a serving cell at least every Discon-
tinuous Reception (DRX) cycle to see if the cell selection criteria
is satisfied [3]. To do so, a filter is applied on the RSRP and RSRQ
of the serving cell to continuously keep tracking of the quality of
the received signal. Within the set of measurements used for the
filtering, two measurements shall be spaced by no longer than DRX
cycle/2 [2]. On the other hand, a mobile phone receives multiple
resource elements and measures the average power of resource
elements. However, the number of resource elements in the consid-
ered measurement frequency and period over which measurements
are taken to determine RSRP by the mobile phone depends on the
manufacturer.

Hence, we seek to empirically quantify the degree to which
a range of averaging windows (i.e., the number of samples used
in the average reported) affects the calculation of the path loss
exponent parameter. We depict the variation of the γ parameter in
Fig. 5 when we vary the averaging window from 0.25 to 6s on the
collected measurements by the channel scanner, which corresponds
to a window size of 0 to 200 samples. We averaged the RMSE
corresponded to each window size over multiple base stations in



each region. As we see, by increasing the filter size, the maximum
error in three regions is about 0.1.
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Figure 5: The impact of averaging on the path loss exponent
(γ ).

3.3.2 Non-ContinuousMeasurement Periods. When crowdsourc-
ing information, users may be willing to participate in offering their
data. However, there are data usage and battery consumption is-
sues that preclude prolonged, continuous measurements of detailed
signal strength values. One option may be to uniformly reduce the
number of samples per unit time for a given user over an extended
period. Another option could be to aggregate small numbers of
samples at different time periods and space from one or more users
to compose an aggregate channel effect. We now study both the
former (uniform downsampling) and latter (non-uniform downsam-
pling).

Uniform Downsampling Impact on The Channel Charac-
teristic. The channel scanner samples the channel quality at ap-
proximately 500 times per second as opposed to about 3 and 1 Hz
with the Qualipoc and WiEye, respectively. In this scenario, as the
mobile phone preserves energy and/or data usage the question
becomes: how would the γ parameters further diverge from the re-
sults shown in Table 3? In other words, the previous result showed
the extreme of matching the same number of samples or having a
very different number of samples, but not the trend in between.

To study this issue, we first examine the calculated γ parameter
from a particular sector of a base station in each region, when using
uniform and non-uniform down-sampling. We gradually reduce
the number of samples obtained by channel scanner to eventually
reach the same number of samples recorded by WiEye. At each
step, we calculate the error in path loss exponent calculation with
respect to our reference value, which is obtained by considering
the highest resolution in channel scanner data set. To do so, we
reduce the number of samples by i , where i ∈ 1, ..,n and n =
#Channel scanner ′s records

#Phone records ′ . As we reduce the data set by i samples,
we are able to leverage i data sets for a given i to increase the
confidence in the result and show the variation of error in the
figure.

Fig. 6a shows the error in terms of path loss calculation by reduc-
ing the signal samples received from a cell sector of a base station
in the downtown area. By increasing the time interval between
samples, the γ and resulting variation thereof are affected. We ob-
serve that the error caused by uniformly downsampling can reach
up to 0.03 in this specific cell. We see that it is not getting very
far from the reference γ . Although the RMSE over each 10 steps

has some variation, it does not increase the error dramatically. Fur-
thermore, by decreasing the number of samples, the variation of
channel characteristic estimation is not as stable as when we have
more data points.

Fig. 6b shows the impact of uniformly downsampling on the
channel characteristics on each of the three different regions (single-
family residential, multi-family residential, and downtown). The
maximum variation over all three regions is depicted as the vari-
ation of the RMSE at each point. Of particular note in this result
is that downtown shows more sensitivity to downsampling and
the single-family residential region shows the least sensitivity.
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(a) Uniformly Downsampling
(Downtown).

(b) Uniform Downsampling from a
Sector in Three Regions.

Figure 6: Uniformly downsampling the measurements of a
sector in downtown (left) and across all three regions (right).

Non-Uniformly Downsampled Data Sets. In a second scenario,
perhaps the crowdsourced measurements are not coming from a
single user which has uniformly throttled the number of measure-
ments recorded or reported but from multiple users in the same
area. Controlling for device differences for now (we will study this
issue in Section 3.5), the newly composed data set for mobile phone
measurements Y has a non-uniform sampling period in time and
space compared to drive testing the region with a channel scanner.
As before, how far would the estimate of γY be to that of the esti-
mated γ when mobile phone signal strength readings are dispersed
through time and space? Assume that a sufficiently large number of
users in a similar area have crowdsourced measurements. Assuming
the number of measurements from the non-uniformly sampled data
set matches that of the uniformly sampled data set, what would be
the effect of the difference downsampling types?

The non-uniform distributed measurements are studied with
two types of distributions: (a) temporal and (b) spatial. For non-
uniform temporal downsampling, we reduce the number of samples
randomly based on the time stamp of the received signal measure-
ments from the channel scanner dataset. Fig. 7a depicts the impact
of the non-uniform downsampling data respect to time on the path
loss exponent from a cell sector in downtown. It shows that by
increasing the number of samples, the error respect to the reference
value decreases. However, in general it has caused a higher value in
terms of RMSE for the same number of measurements as compared
to uniform downsampling.

For non-uniform spatial downsampling, we select the most pop-
ulated sector in each region. Then, we chose the measurements
based on three clusters which are randomly distributed over the
region. Then, we increased the number of the selected measure-
ments in each cluster. Finally, we compared the path loss exponent
of the aggregated samples from non-uniformly distributed clus-
ters with the γ computed from all measurements from the channel



scanner in the same region. A comparison between the uniform
downsampling and non-uniform distributed measurements in space
for three regions is depicted in Fig. 7b. The clustered scenario shows
a higher error than the uniformly-distributed one. In addition, we
observe that the corresponded error to the downtown is higher than
two other regions. We have found that the location of the selected

(a) Non-Uniformly downsampling
selection in time.
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Figure 7: Non-uniform downsampling of a sector in down-
town (left) and non-uniformly downsampling in space com-
pared to uniformly (right).

clusters in the non-uniform scenario is significant and attempts to
depict the results here. To do so, we again select the most populated
sector in a region. Then, we determine the location of three clusters
of measurements based on Fig. 8. We start by choosing 50 mea-
surements in each cluster and we increase it by 50 until we have
3000 measurements. The left figure shows a model which is more
dispersed through a sector. The middle scenario covers the left and
top left area of the sector. In the right scenario, all measurements
have a grouping on the left of the sector. We measured the average
of the RMSE for each scenario. The results show the 0.083, 0.15, and
0.3 as the average of the RMSE for each aforementioned scenario.
In other words, a spatially well-distributed group of user measure-
ments would contribute to a better result to predict the path loss
exponent. Also, the type of cluster distribution has impact on the
number of measurements that are needed to estimate the channel
condition. With this result and the current developments in the LTE
standard (10) about the Minimization of Drive Test function [1], a
carrier could more strategically poll users in a given area and/or
at a certain time to reduce the resources necessary for their users
to crowdsource and increase the likelihood of success of such an
effort.

3.3.3 Quantization of the Received Signal Power. Android re-
ports the quality of the common pilot channel received signal qual-
ity for LTE in terms of Arbitrary Strength Units (ASU) with 98
quantized levels. The received signal level has a range of -44 dBm
to -140 dBm and is mapped to "0 to 97" with the resolution of 1
dBm. Since the obtained signal strength by a channel scanner has
much greater granularity, the question becomes: what role does
quantization have on the path loss exponent? We have considered
the quantization impact on path loss estimation as defined as the
difference between the estimated γ compared to the highest resolu-
tion setting as measured by the channel scanner and found it to be
negligible (e.g., less than 1 percent of the RMSE). We will show this
effect in Fig. 9a of the following subsection, which considers the
joint effect of all of these imperfections.
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Figure 8: Impact of the non-uniformly downsampling in
space.

3.4 Joint Analysis of Mobile Phone Factors on
Path Loss

Up to this point, we applied each of the challenges with phone mea-
surements individually. We now jointly consider the mobile phone
imperfections impact (averaging, uniform and non-uniform down-
sampling in space and time, and quantization) on the γ estimation.
To do so, we extract the collected data by the channel scanner ob-
tained from a specific cell sector from three regions. Then, we apply
the averaging on signal samples which are quantized already. Then,
we downsampled (uniformly and non-uniformly in time and space)
from the averaged and quantized values. At each step, we obtain
the RSME from the path loss exponent calculated from the channel
scanner’s samples with the highest resolution. Fig. 9a depicts the
relative error, caused by each shortcoming in compare with the
other issues. Fig. 9b shows the percentage of RMSE caused by each
individual issue respect to the reference γ . There are two inter-
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Figure 9: Joint impact of mobile phone imperfections rela-
tively (left) and per effect (right).
esting findings from these result: (i) either form of non-uniformly
downsampling is clearly the most dominant effect in predicting the
path loss exponent, and (ii) the two non-uniform downsampling
techniques (time and space) have approximately equivalent perfor-
mance (despite the noisiness of non-uniform downsampling noted
earlier). The latter finding offers great hope for crowdsourced data
sets to be influential in characterizing the path loss characteristics
of an environment.

3.5 Impact of Heterogeneous Mobile Phones
and Users on Path Loss Characterization

When crowdsourcing signal quality from mobile phone users, there
is a diversity in hardware and software of the devices. Even two co-
located mobile phones at the same time may report very different
signal qualities due to different RF front ends. In this section, we
study the impact of heterogeneous devices on the estimated path
loss exponent. Up to this point, we have considered a single type of



mobile phone, Samsung Galaxy 5S, due to its ability to support both
Qualipoc andWiEye. Here, we use WiEye across three other mobile
phones (4 total) with a two-phase approach. First, we consider the
signal strength samples from all the devices to calculate the path
loss exponent and evaluate the accuracy compared to the path loss
exponent from the channel scanner signal quality samples. Second,
we account for the per-region-type bias introduced by each mobile
phone in terms of dBm as compared to the raw measurements of
the channel scanner. Lastly, we calculate the path loss exponent
based on strictly crowdsourced data from WiEye users in different
regions around the world and examine the geographical features
of these areas.

3.5.1 Calibrating Diverse Phone Models and Setup. In this exper-
iment, four Android phones described in Table 4 are used to collect
signal strength data from the three aforementioned areas in Dallas
(single-family residential, multi-family residential, and downtown).
We installed our development version of WiEye, which logs signal
strength samples at 1 Hz, on the following four phones: Samsung
GS5, Nexus 5X, Samsung S8, and Google Pixel. Each phone was
co-located alongside the channel scanner on the roof of a car. The
duration of the experiment was 360 minutes.

Table 4: Measurement tools configuration and field-tested
range of reported signal quality (dBm) from channel scan-
ner (TSMW) and WiEye of four phones.

Tool Model/OS Chipset Min Max Range
Channel
Scanner TSMW/- - -130 -52 78

W1

Samsung
GS5/A5 MSM8974AC -118 -54 64

W2
Nexus
5X/A5 MSM8974 -119 -58 61

W3

Google
Pixel/A7 MSM8996 -120 -57 63

W4

Samsung
GS8/A7 MSM8996 -121 -54 67

We first analyze the RSRP differences of the four phones in terms
of the minimum, maximum, and resulting range of dBm reported
across all measurements to understand the relative sensitivities.
While a few hours of driving does not guarantee the full range
of signal strengths, during this time, we observe that the greatest
range of values is achieved by the Samsung S8 (67 dBm) as reported
by WiEye and the least range of values belonged to the Nexus 5X
(61 dBm). As a point of comparison, the TSMW Channel Scanner
achieved a range of 78 dBm for the temporally-matched samples.

3.5.2 Inferring Path Loss Across Devices. We now will use each
phone to predictγ for four observed base stations in aforementioned
regions. The dBm offset bias between the average received signal
level by each phone and the channel scanner is shown in Table.5
per region.

We observe that on average the difference in reported received
signal level by the scanner is 3 dBm higher versus the phones across
the three regions with a range of 1.46 to 4.1 dBm. As we depicted
before, the biasses directly affect the path loss characterization.
The lower reported channel quality corresponds to a higher value
in obtained path loss exponent, while a higher reported channel

quality corresponds to a lower path loss exponent. We now consider
the calculated path loss exponent from the signal strength samples
of each of the four phones, the calculated path loss exponent from
the aggregated data set of the reported signal strength samples
from all phones, and then the calculated path loss exponent from
the compensated signal strength samples of all phones, considering
the bias.

Table 6 shows the obtained path loss characteristics of one spe-
cific sector in three different regions, when we consider only a
single phones' RSRP and all phones' RSRP. As a point of reference,
we also include the γ from the channel scanner RSRP data. We
observe that the obtained γ using the data set of each phone are rel-
atively close to one another. We see that the Samsung S8 phone has
the closest γ value between all four phones to the channel scanner.
In other words, the device that receives the larger range is more
accurate in terms of the γ estimation. The comparison shows that
considering all RSRP data across device types actually increases
the accuracy as compared to any given phone against the path loss
exponent calculated from the channel scanner RSRP. Hence, we
find that γ is predicted by using the RSRP from a diverse set of
mobile phones. In addition, we compensated the signal strength of
the aggregated dataset by using the 3 dBm obtained in the previous
section. We find that the compensated results in terms of γ are
extremely close (with 2.7 %, 0.3 %, and 0.6 % error for single-family
residential, multi-family residential, and downtown, respectively)
to the obtained results by the channel scanner.

3.5.3 Inferring the Path Loss from Crowdsourcing. We now use
crowdsourced measurements taken from our widely-distributed
WiEye application on the Google Play store. We estimate the path
loss exponent of regions around the world without physically drive
testing those areas. Based on some of our highest user density, we
have selected four environments with diverse geographical features:
(i) tall buildings and trees in Dresden, Germany, (ii) low buildings
and no trees in Artesia, New Mexico, (iii) mostly trees with a few
homes in Macon, Georgia, and (iv) mostly free space in Thiersheim,
Germany. The aerial view of each of these environments can be
seen in the top figures of Fig 10. In Fig. 10, the bottom figures show
the number of crowdsourced signal strength samples and their
spatial location as captured by our Android application overlayed
on a more basic map of the same area displayed in the aerial view
on the top. Using these signal quality measurements from each
region, we have computed the path loss exponent γ , which can be
seen in the caption of each subfigure. We have ordered the figures
from left to right where we see the path loss exponent is decreasing
from left to right. In particular, γa equals 3.3 with the most diverse
and complex environment with tall buildings and trees, γb equals
2.7 with an environment that has similar, small building types but
no trees, γc equals 2.5 with mostly trees and a few homes, and
γd equals 2.1 with mostly free space. Therefore, the geographical
features and complexity in the environment match the γ behavior
we would expect, and the channel factors were derived strictly
using crowdsourced measurements. Of particular note that in these
measurements alone we saw a fairly dramatic change in the γ . In
fact, we observed a range of 2.1 to 4.0 of the path loss exponent
throughout this paper, which would constitute extremely different
network designs across this range of propagation scenarios.



Table 5: Average signal quality bias reported from heterogeneous phones as reported byWiEye withmatched channel scanner
measurement.

Device W1 (GS5) W2 (N5X) W3 (Pixel) W4 (GS8)
Location dBm Diff. (Mean) dBm Diff. (Mean) dBm Diff. (Mean) dBm Diff. (Mean)

Downtown 4.4 (-78.5) 2.1(-76.2) 3.2 (-77.3) 1.6 (-75.7)
Single Family 3.8 (-85.0) 2.4 (-83.6) 2.5(-83.7) 1.7 (-82.9)
Multi Family 4.1 (-80.3) 2.7 (-79.1) 3.5 (-80) 1.1 (-77.6)

(a) Location: Dresden, Germany
with γa=3.3

(b) Location: Artesia, New Mexico
with γb=2.7

(c) Location: Macon, Georgia with
γc=2.5

(d) Location: Thiersheim, Germany
with γd=2.1

Figure 10: Path Loss Analysis for Crowdsourced Data Sets in Four Different Regions.

Table 6: Path loss characteristics obtained by four devices in
three modes: matched, aggregated, compensated mode.

Device
Single
Family

Multi-
Family

Down-
town

Channel Scanner 3.01 3.33 3.61
W1 (GS5) 3.21 3.50 3.80
W2 (N5X) 3.18 3.54 3.78
W3 (Pixel) 3.38 3.58 3.90
W4 (GS8) 3.19 3.47 3.75
Aggregated 3.27 3.53 3.83
Compensated 3.09 3.34 3.63

4 RELATEDWORK
The Minimization of Drive Tests (MDT) initiative in the 3GPP stan-
dard has been created to exploit the ability of smartphones to collect
radio measurements in a wide range of geographical areas to en-
hance the coverage, mobility, capacity optimization, and path loss
prediction [1]. Also, a few measurements studies have been con-
ducted to use API-level measurements to estimate different Key Per-
formance Indicators (KPIs) of the cellular networks [13, 21, 25, 29].
They each measured KPIs in terms of throughput, received signal
power, and delay and involved regular users to provide the mea-
surements (i.e. crowdsourcing) across a large geographical region
in some cases. In contrast, we focus on characterizing the wireless
channel using diverse end user devices at different levels of the soft-
ware stack. Predicting the cellular network coverage by using the

crowdsourced data has been studied in a few studies. For example,
network coverage maps using crowdsourced data is studied in [18].
However, the authors provided the observed received signal level
without a discussion of the differences across end user devices. In
addition, anther work used a similar idea of using crowdsourced
data along with interpolation techniques to predict the coverage
area [19]. Although, the impact of location inaccuracy and data
distribution of the interpolation techniques was investigated, the
impact of the imperfections of end user devices was not explored.
Furthermore, others proposed the Bayesian Prediction method to
improve the coverage estimation obtained by drive test and MDT
measurements, but the results were strictly based on advanced de-
vices as opposed to mobile phone measurements [26]. The provided
X-map’s accuracy, from simulated data in [20] has been evaluated
in terms of the position inaccuracy, UE inaccuracy, and number
of measurements. However, to analyze crowdsourced data, using
in-field experimentation is important to distinguish between the
performance of more advanced equipment versus a mobile phone
in channels similar to those experienced by user devices.

To estimate the channel quality, we are using RSRP as our metric
from the LTE standard. It was previously observed by [5] that the
reported value by a mobile phone in terms of RSRP is influenced
by averaging but did not consider the compounding effects. Sim-
ilarly, [17] depicts that the received signal power by commercial
phones is comparable to an advanced tool. While this is close in



nature, we also consider many of the spatial and temporal down-
sampling effects that would cause imprecise estimation of the path
loss estimation for a given environment.

5 CONCLUSION
In this work, we take a first step towards crowdsourcing wireless
channel characteristics in LTE cellular networks (and beyond) by
considering the relationship between received signal strength mea-
surements of diverse mobile phones at the firmware and API level
versus advanced drive testing equipment. In particular, we per-
formed extensive experimentation across four mobile phone types,
two pieces of software, and a channel scanner in three representa-
tive geographical regions: single-family residential, multi-family
residential, and downtown.With these devices and in-field measure-
ments, we evaluated the effects of averaging over multiple samples,
uniform and non-uniform downsampling (in time and space), quan-
tization, and crowdsourcing on the path loss exponent estimation.
We showed that both types of non-uniform downsampling have
the most dramatic effects on path loss calculation. Conversely, we
showed the quantization impact can largely be ignored since it
showed a negligible influence on our estimation. One key result
of note stems from the spatial non-uniformity of clusters of mea-
surements observed within our crowdsourcing database, which
required far more measurements than more uniformly spaced mea-
surements. Using the MDT specification of LTE release 10 carriers
could request specific measurement locations and times from users
to be far more efficient in polling signal quality. Finally, we showed
four regions around the globe and predicted the channel character-
istics of these regions from our crowdsourced data. In summary,
we lay a strong foundation for understanding a large majority of
the issues involved with crowdsourcing channel characteristics.
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