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Abstract—In drone swarms, where multiple drones collaborate
closely to achieve shared objectives within constrained spatial
domains, the intricacies of these interrelated actions can lead
to potential issues. Despite rigorous pre-deployment planning,
the inherent probability of complications persists. These compli-
cations stem from onboard computational resources, hardware
failures, and network communication disruptions. While the
malfunction of an individual drone may seem inconsequential,
it can escalate into a substantial predicament when it disrupts
the seamless coordination of the entire swarm. Therefore, the
need to proactively monitor drones for predictive failure analysis
and the subsequent examination of failed drones to mitigate
future occurrences becomes imperative. This paper introduces
a comprehensive framework for systematically collecting and
processing data within drone swarms. The framework gathers
critical information about onboard characteristics and commu-
nication metrics. These data points are subjected to advanced
analysis using Complex Bayesian Networks to probabilistically
uncover complex and hidden relationships between random
features. The results demonstrate exceptional accuracy, with
influences ranging from 99% to 79%, that ensures the reliability
and effectiveness of the predictive capabilities in enhancing drone
safety and network performance.

Index Terms—Drone swarms, Digital twin systems, Metric
dependencies, Bayesian networks, Performance analysis

I. INTRODUCTION

Nowadays, deploying multiple drones in defence operations
is pushing technological barriers, and they are seen as low-cost
alternatives to overwhelm anti-aircraft systems. Besides mili-
tary operations, drone swarms can be deployed in various non-
military operations like search and rescue, humanitarian aid
supply in disaster scenarios, large-scale agriculture surveying,
and many more. When drone swarms are deployed in different
aerial applications, one vital component is the intercommuni-
cation of the drones (D2D) and drone-to-infrastructure (D2I)
communications [1], [2]. Though drones can perform fully
autonomous operations using advanced technologies (like ar-
tificial intelligence and computer vision), they are less popular
due to power constraints linked to the trade-off between flight
time and onboard computational chores [3]. So, drones often
send data to ground stations for computationally intensive
tasks and return the computed results.

The swarms can be laid down differently [4], central-
ized, semi-autonomous distributed, and fully autonomous
distributed deployments. One such scenario of the semi-
autonomous distributed swarm (Hybrid swarm) is presented
in Fig. 1 where drone swarms act as service relays.

Fig. 1. Hybrid swarm with relay services using directional antennas

The depicted scenario considers when some relay nodes
fail, and backup relay nodes are required to keep the system
running by providing necessary network services. In swarms,
the mobility of drones brings in many challenges, e.g., drones
behaving unexpectedly during their flight and failing drones
in the swarms [5]. There have been incidents reported where
drones exhibited faulty or unexplained behavior. For example,
in a drone swarm of around 500 drones, due to unexplained
reasons, around 440 drones crashed into one another, and
some drones even escaped the geo-fence, leading to what is
known as docklands drone swarm accident1. Such incidents are
unacceptable due to public safety concerns; hence, keeping a
vigilant eye on all swarm participants becomes critical, among
which the onboard characteristics of drones and network
interactions are on the line of fire as failure of either can prove
fatal. Some of the vital drone characteristics [6] of interest
include physical parameters (battery discharge rate, remaining

1https://www.atsb.gov.au/media/2023/docklands-drone-swarm-accident
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battery capacity), performance metrics (CPU and RAM uti-
lization), and external factors (the effect of weather, i.e., wind
on required rotary power to maneuver). Similarly, network
parameters are of interest while ensuring the optimal coverage
to the drones, like received signal power and supportable data
rate, as these factors let the dynamic topology policies adapt
for alternative ad-hoc networks for service relaying.

A. Motivation

Considering the above discussion, it becomes essential to
understand the key reasons that can lead to potential drone
failures while a drone is maneuvering. Generally, some un-
expected behavior or incident is visible in the case of drone
failure, but it may not be the actual cause of the drone failure or
malfunction. A deeper reason may have led to this unexpected
observation (i.e., failure). Consider, for example, two cases (as
depicted in Figure 2), one or more drones in the drone swarm
depict two different kinds of unexpected failures.

Fig. 2. Motivation cases

In this example, the localization or identification of the
root cause behind the observed failures (e.g., faulty drone
for case 1 and high delay for case 2) can be conducted only
through a deep analysis of the vital drone parameters (e.g.,
battery) and network statistics (e.g., affordable transmission
rates). Regarding case 1, the vital drone physical parameter,
i.e., battery, is critical. It may be tough to understand the exact
reason behind the critical battery status as there may be several
reasons (e.g., over-discharged or over-charged). However, a
deep analysis of all the vital physical parameters can help to
locate the root cause behind the critical battery, and here, in
this case, it is a sudden voltage drop.

In case 2, the critical parameter, i.e., transmitter-receiver
rates, are low, and this may also be related to several reasons
(channel capacity, bandwidth issues, supportable data rate).
However, analysis showed that channel capacity was the key
reason behind the sudden drop in the transmitter-receiver
rates, leading to an observed high delay. From this example,
analysis of all the parameters can help to localize the root
cause behind the observed failures in the drone swarms. As
elaborated above, the factors involving different onboard and

network interaction needs to be explored to lead toward root
cause analysis of drone failures. In case 2, the received signal
strength indicator (RSSI) is one of the critical factors that can
help to localize the root cause. The RSSI [7] is defined below.

RSSI → RTX + TXgain − Ploss − Satt + RXgain (1)

where, RTX signifies the radio transmit power, TXgain and
RXgain are the transmitter and receiver antenna gains, Ploss

is the path loss of signal power, Satt is the signal attenuation.
The RSSI signifies the actual signal strength at a given

point within the given coverage area. If RSSI is low, it can be
linked to several other parameters used within the Eq. (1). So,
monitoring these parameters can help establish the correlation
between the signal strength and its impact on drone failure.

Also, the channel capacity impacts the deployment of
swarms significantly; during the deployment, the communica-
tion channels between the drones cannot support the required
capacity, and the system will experience issues leading to
failures. So, the channel capacity [8] is defined below.

C = Wlog2

(
1 +

P
N0W

)
(2)

where, W is the total bandwidth (in Hertz), N0 is the power
spectral density of noise, and P

N0W is the received signal-to-
noise ratio.

So, in case 2, if we experience a high delay due to
low transmitter-receiver rates, after analysis, the root cause
detected was concerned with the channel capacity. Thus, as
per Eq. (2) there are several metrics like, W or N0 or received
signal-to-noise ratio that can impact the channel capacity.

Some of the existing works [9], [10] proposed some so-
lutions to detect drone faults. Like, in [9], the importance of
time synchronization on the performance of drone swarms has
been considered as key to evading failures in drone swarms.
Likewise, in [10], a reliability-based drone swarm structuring
approach was developed for dealing with swarm failures.
Although these approaches focused on drone failures, none
went beyond limited factors (like time synchronization or
swarm structures). Moreover, they need to consider analyzing
vital drone parameters or network statistics to understand the
key reason behind the failures.

B. Contributions

However, analyzing the vital parameters or metrics is not
straightforward. It has to deal with several challenges linked
with a) vital metrics or drone data collection, b) data size, and
c) appropriate analysis methods. Thus, we create a digital twin
for drone swarms to collect realistic data about drone vital
parameters and performance statistics subjected to complex
Bayesian networks to uncover relationships between these
parameters and drone failures. The following contributions
have been provided in this paper.

• Proposing an innovative drone monitoring system that
systematically collects and processes data related to on-
board characteristics and communication metrics within
a drone swarm to identify potential issues proactively.
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• Presenting a robust drone warning system that uti-
lizes Complex Bayesian Networks to address safety and
network-related challenges by introducing a drone safety
system that can predict drone safety warning levels and
network anomalies.

II. PROPOSED WORK

This section provides comprehensive details about the com-
ponents of the proposed digital twin of the drone swarm
network. A digital twin is a virtual replica of the physically
configured components in the drone swarm system. The digital
twin of the physical drone swarm collects real-time data with
the help of a monitoring agent configured on the physical
systems and performs advanced data analysis to understand the
relationship between drone metrics and the observed failures
to enhance the physical system’s performance. The analyzed
data may be used to provide intelligent decisions to pinpoint
the faults or highlight the performance failures on time. The
pipeline of the proposed system shown as a digital twin is
depicted in Fig. 3. The proposed system contains two layers;
the top layer is the physical layer comprising the drone swarm,
core network, and drone base station, whereas the bottom
layer contains a virtual replica of the drone swarm, monitoring
component, data analysis system, and warning generation
component. The data is collected from the physical layer
and sent to a data analyzer, which uses a Complex Bayesian
Network to understand the hidden relationships between the
drone metrics and drone safety and performance. Based on the
outcomes of the data analyzer, the warning generator alerts the
base station, which in turn feeds back the action into the actual
environment. The major components of the proposed system
are elaborated in the subsequent sections.

Fig. 3. Digital Twin of the Drone Swarm Network

A. Smart Monitoring System

Monitoring is critical to collecting drone vital metrics and
parameters that can further point out any emergent faults or
pinpoint the potential root cause faults responsible for any
performance degradation in drone swarm systems. Hence,
the proposed drone swarms digital twin system employs a
comprehensive monitoring component for data collection. The
architecture of the monitoring process is elaborated in Fig.

4. The monitoring component contains four key sub-parts:
a) smart agent, b) collector, c) filter, and d) publisher. The
monitoring component is activated through a smart agent
deployed as a virtual API at the interface of the digital twin.
They monitor the physical parameters (e.g., battery health,
range of flight), computational metrics (e.g., CPU usage), and
network parameters (e.g., bandwidth). The Smart Agents are
also configured on the base station, where the collector aggre-
gates all the statistics and metrics. The collector aggregates
the different categories of the monitoring logs and forwards
the collected data to the Filter agent. The Filter agent removes
the non-important data logs and irrelevant data to reduce the
overhead of the analyzing system. The filtered data logs are
forwarded to the data analysis system by the publisher through
RabbitMQ, an open-source distributed message broker.

Fig. 4. Smart Monitoring System

B. Drone Warning System

The drone warning system constitutes an advanced techno-
logical solution that takes input from the real-time collection
and performs the analysis. This analysis considers two cases
(drone safety metrics and network statistics) discussed in the
motivation section. We employ Bayesian networks (BNs) to
analyze these cases due to their manifold benefits. BNs offer a
unique set of advantages in data analysis and decision-making
[11]. One key strength lies in their ability to adapt and learn
from limited and fragmented data, making them particularly
useful in scenarios with sparse datasets. Moreover, BNs exhibit
remarkable versatility by accommodating a wide range of data
types, including numerical, non-numerical, binary, categorical,
and ordinal data, a feature that sets them apart from other
modeling techniques like neural networks or decision trees.
Additionally, BNs excel at integrating domain-specific or ex-
pert knowledge, a capability that surpasses traditional methods
such as linear and non-linear regression. Using conditional
reasoning and hidden variables, BNs can unveil intricate inter-
dependencies that often remain concealed when employing
alternative methodologies. These networks are also efficient
in learning from data through structural learning algorithms,
and if a BN structure is already established, they can be fine-
tuned using the well-established expectation-maximization
(EM) algorithm. Furthermore, BNs demonstrate their efficacy
in real-time and non-real-time systems for predictive tasks and
can be seamlessly extended to Dynamic Bayesian networks
(DBN) to address temporal aspects. Importantly, they can be
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seamlessly integrated with utility theory to support decision-
making under conditions of uncertainty by underscoring their
broad applicability in various fields. In this work, we adopt a
Complex Bayesian Network to analyze the cases considered.
The detailed explanation is provided below.

In this work, we adopt a Complex Bayesian Network to pre-
dict drone health status by leveraging comprehensive datasets
encompassing crucial metrics about drone health and network
status. Complex Bayesian Networks enable us to delve into
these diverse features’ intricate and concealed relationships.
By employing this approach, we aim to unravel the nuanced
dependencies and interactions between the various drone per-
formance and network metrics, ultimately providing valuable
insights into predicting potential safety issues and enhancing
drone operations’ overall reliability and performance. Directed
acyclic graphs (DAGs) are constructed using the Complex
Bayesian Network and represent the probabilistic connections
among these features. In the directed graphs, nodes represent
different variables, and edges illustrate how they influence one
another within a Complex Bayesian model.

1) Case 1-Drone Safety Warning: In the first case, the
key objective is to analyze the drone’s physical statistics and
performance metrics to uphold safety standards during flight
operations. This intricate system continuously observes and
assesses vital parameters, including voltage, current, load, and
RAM utilization, to evaluate the drone’s operational perfor-
mance. The amassed data is then subjected to comprehensive
analysis to calculate the alert level, an important indicator of
the drone’s safety status. Should the warning level ascend to
level 3, it is imperative to promptly ground the drone to avert
potential mishaps or hazardous situations.

2) Case 2-Network Anomaly Detection System: In the sec-
ond case, the key objective is to analyze the vital network
parameters that ensure timely and reliable delivery of traffic
packets generated from the drone swarm to the base station or
other drones. The dataset includes 14 key features representing
drone network metrics. The label feature gets two values
where 0 represents normal while 1 represents anomalies.

3) Proposed Algorithm: To implement Complex Bayesian
Networks in both scenarios, we deployed Algorithm 26. This
algorithm is designed to make predictions based on drone
network metrics data (N) and drone performance metrics data
(A). It starts by sorting the nodes topologically in the directed
acyclic graph G to create a list W (line 2). Then, each node X i
and X m in W checks if X i and X m are observed in N and
A, respectively. If observed, it sets their values accordingly,
and if not, it uses rejection sampling to sample values from
their conditional probability tables CPT (lines 8 and 14).
For unobserved nodes, it estimates the CPT using Bayesian
parameter estimation based on the respective data (lines 19 and
22). Finally, it calculates the predicted drone health status (P1)
and predicted network anomaly (P2) based on the probability
of each node given its parents and the CPT (lines 25 and 26).
This method considers observed and unseen data and their
relationships in the graph to forecast drone health and network
status using Complex Bayesian networks.

Algorithm 1: Complex Bayesian Network
Input: N : Drone network metrics data,

A: Drone performance metrics data,
G: Directed acyclic graph,
V : Nodes,
E: Directed edges,
CPT : Conditional probability table.

Output: P1(HealthStatus|N,G): Predicted drone health status,
P2(NetworkStatus|A,G): Predicted network anomaly.

1 // Sort the nodes in the graph topologically to obtain a list W
2 W ← Sort V in G
3 for each Xi and Xm in W do
4 if (Xi is observed in N ) then
5 Xi ← SetN ;
6 end
7 else
8 Xi ← RejectionSampl(P (Xi|Pa(Xi), CPT )) ;
9 end

10 if (Xm is observed in A) then
11 Xm ← SetA ;
12 end
13 else
14 Xm ← RejectionSampl(P (Xm|Pa(Xm), CPT )) ;
15 end
16 end
17 for each Xi and Xm in W do
18 if (Xi is not observed in N ) then
19 CPT ← BayesianParameEst(Xi, Pa(Xi), N) ;
20 end
21 if (Xm is not observed in A) then
22 CPT ← BayesianParameEst(Xm, Pa(Xm), A) ;
23 end
24 end
25 P1(HealthStatus|N,G) =

∏
i P (Xi|Pa(Xi), CPT ) ;

26 P2(NetworkStatus|A,G) =
∏

i P (Xm|Pa(Xm), CPT ) ;

III. RESULTS

This section provides the results regarding Complex
Bayesian Network implementation to probabilistically predict
the drone warning level.

A. Prediction of Drone Safety Warning Level

The statistical insights derived from the drone’s dataset2,
employed for model training and testing. This dataset encom-
passes a wide array of information, including power statistics,
load characteristics, and RAM utilization. The warning level
feature is of particular significance, which indicates the drone’s
operational health, ranging from 0 to 3.

TABLE I
CPT FOR VOLTAGE FILTERED V AND DRONE WARNING LEVEL

volt f volt f (< 17) volt f (17>= & <=18) volt f (> 18
warning level 0 0.010 % 11.114 % 89.600 %
warning level 1 0.010 % 5.033 % 0.079 %
warning level 2 0.010 % 1.790 % 0.079 %
warning level 3 99.967 % 82.060 % 10.239 %

Abbreviations: volt f, voltage filtered v.

The CPT (Table I) illustrates the relationship between drone
warning levels and voltage filtered v probabilistically, with
each row representing a specific warning level and each
column representing a range of voltage values. Notably, for
warning level 3 and voltage filtered v (> 18), the table reveals

2https://github.com/RuslanAgishev/drone arm data

2024 IEEE International Conference on Communications (ICC): SAC Aerial Communications Track

1948
Authorized licensed use limited to: SOUTHERN METHODIST UNIV. Downloaded on September 12,2024 at 17:05:23 UTC from IEEE Xplore.  Restrictions apply. 



a high conditional probability of 99.967% in which there is
a strong association between elevated voltage levels and the
drone operating in warning level 3. Conversely, the conditional
probabilities for warning levels 1 and 2 are notably lower in
this voltage range. These findings provide valuable insights
into how voltage levels influence warning levels to aid in
drone safety and risk assessment. The results presented in
Fig. 5 reflect the accuracy of a complex Bayesian network
model in predicting various performance metrics related to a
drone system. Notably, the model achieved high accuracy for
certain metrics, such as scale and remaining, with accuracies
exceeding 99%. In contrast, metrics like voltage v and warn-
ing exhibited lower accuracy levels, approximately 79% and
98%, respectively. These results provide valuable insights into
the model’s predictive performance for different drone metrics.

Metrics
0.0

0.2

0.4

0.6

0.8

1.0

Ac
cu

ra
cy

0.99 0.99 0.99 0.99 0.98 0.98 0.98 0.98 0.95

0.84
0.79

Performance metrics
scale
ram_usage
remaining
load
voltage_filtered_v
current_filtered_a
current_a
warning
Average
discharged_mah
voltage_v

Fig. 5. Prediction accuracies for each drone performance metrics

Fig. 6 shows the dependencies and the probabilities for
all drone performance metrics and four drone warning levels
ranging from 0 to 3. Fig. 6(a) shows the dependencies and
probabilities while the drone is safe (warning level is 0).
As expected, all the voltage levels are quite high in this
state, while current values are at their lowest level. When
the warning level increases (see Fig. 6(b), Fig. 6(c)), the
probability of the mentioned values changes in the opposite
direction. For example, the likelihood of remaining feature
reduces dramatically for the highest values. When the warning
level is at the highest threshold (Fig. 6(d)), the probability of
scale metric for the highest threshold is around 98%, while
the remaining level experiences the lowest level with the
maximum probability.

B. Anomaly Detection Using Complex Bayesian Network
The dataset offers statistical insights into various aspects

of network behavior, with statistics calculated for each. dur
signifies the total duration of records, sbytes and dbytes
quantify the transaction bytes between source and destination,
while sttl and dttl depict time-to-live values in both direc-
tions. Metrics such as sloss and dloss measure signal loss,
retransmitted, or dropped packets, and sinpkt and dinpkt detail
interpacket arrival times. Jitter is assessed through sjit and djit,
while tcprtt gauges TCP connection setup times. is ftp login
reveals whether an FTP session is accessed with a user and
password. ct ftp cmd counts flows with FTP commands, and
label signifies the presence of attacks (1) or normal records
(0). These features collectively offer valuable information for
understanding and analyzing drone network status.

(a) Warning level 0

(b) Warning level 1

(c) Warning level 2

(d) Warning level 3
Fig. 6. Dependencies and the probabilities for different drone warning levels

The CPT presented in Table II demonstrates the relationship
between drone anomaly detection and sloss (signal loss)
probabilistically. Notable, for the Normal drone state, the CPT
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reveals that the probability of observing a signal loss of less
than 1 is 8.89%, between 1 and 5 is 21.42 %, and greater than
5 is 17.60%. Conversely, the probabilities shift significantly in
the Anamoly situation, with a high likelihood of 78 % when
the sloss is less than 1. This indicates a strong association
between severe signal loss and detecting anomalies in the
drone’s operation, with a notable decrease in probability as
signal loss increases.

TABLE II
CPT SLOSS AND DRONE ANOMALY DETECTION

sloss sloss (< 1) sloss (1 ≤ & <= 5) sloss (> 5)
Normal 8.96 % 21.42 % 17.60 %
Anomaly 78 % 45.12 % 13.98 %

Fig. 7 underscores the efficacy of employing a Complex
Bayesian Network for network anomaly detection in drone
systems. Notably, this model exhibits outstanding accuracy,
with most performance metrics surpassing the 99% threshold
and an impressive mean accuracy of approximately 97%.
These results testify to the Complex Bayesian Network’s
aptitude for comprehensively capturing the dataset’s intricate
dependencies and probabilistic associations. The model’s con-
sistently high accuracy across various metrics underscores its
trustworthiness in delivering precise assessments and predic-
tions within a complex and interconnected network environ-
ment of drone systems.

Metrics
0.0

0.2

0.4

0.6

0.8

1.0

Ac
cu

ra
cy

1.0 1.0 1.0 1.0 0.980.980.980.980.980.980.980.980.97
0.92

0.87
0.82

Performance metrics
dbytes
dloss
is_ftp_login
ct_ftp_cmd
dur
sbytes
sloss
sinpkt

dinpkt
sjit
djit
tcprtt
Average
label
sttl
dttl

Fig. 7. Prediction accuracies for each drone network metrics

Fig. 8 demonstrates the dependencies and the probabilities
for drone anomaly detection, which examines the anomaly
cases. The metrics of djit, tcprtt, is ftp login, ct ftp cmd
experience their lowest levels with the highest probabilities.
Similarly, the other metrics except sttl have the highest prob-
abilities at their lowest values. sttl shows a trend opposite to
the other features, at its highest value with an 87% probability.

IV. CONCLUSION

This paper presents a comprehensive and innovative frame-
work for managing and optimizing drone swarm operations to
address such collaborative environments’ inherent complex-
ities and challenges. By proactively monitoring drones and
applying advanced analysis through Complex Bayesian Net-
works, we have achieved exceptional accuracy in predictive ca-
pabilities, with results ranging from 99% to 79%. These results
underscore the reliability and effectiveness of our approach in
enhancing both drone safety and network performance. Our
framework fosters safer and efficient applications in various
domains, from surveillance and delivery services to disaster
response, by reducing operational risks and disruptions. This
research enhances the usefulness of drone swarm digital twin
systems, which lays a basis for future advancements.

Fig. 8. Dependencies and the probabilities for drone anomaly detection
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