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Abstract—We propose a mechanism for unlicensed LTE chan-
nel selection that not only takes into account interference to
and from Wi-Fi access points but also considers other LTE
operators in the unlicensed band. By collecting channel utilization
statistics and sharing this information periodically with other
unlicensed LTE eNBs, each eNB can improve their channel
selection given their limited knowledge of the full topology. While
comparing our algorithm to existing solutions, we find that the
similarity between sensed Wi-Fi occupation at neighboring eNBs
greatly impacts the performance of channel selection algorithms.
To achieve better performance across diverse scenarios, we
expand on our statistical channel selection formulation to include
reinforcement learning, thereby balancing the shared contextual
information with historical performance. We simulate operation
in the unlicensed band using our channel selection algorithm
and show how Wi-Fi load and inter-cell interference estimation
can jointly be used to select transmission channels for all small
cells in the network. Our approaches lead to an increase in user-
perceived throughput and spectral efficiency across the entire
band when compared to the greedy channel selection.

Index Terms—LTE-U, LAA, LBT

I. INTRODUCTION

Deployment of LTE technology on unlicensed bands allows
new spectrum opportunities for cellular-based mobile broad-
band. This new spectrum helps to improve downlink data rates,
increase network capacity, and, being free for use, allows
for new use cases such as neutral host. Moreover, the low-
power small/femto cells promise low spatial radio footprints
that enable multiplicative capacity gains via frequency reuse.
However, being unlicensed, it is possible to face significant in-
terference from incumbent Wi-Fi devices and other unlicensed
LTE operators.

Many other works have studied Wi-Fi coexistence with spe-
cific implementations of unlicensed LTE (generically referred
to as uLTE hereafter), such as LTE-U and its sister technology,
Licensed Assisted Access (LAA), and found that LTE can
coexist with Wi-Fi better than Wi-Fi can coexist with itself
[1–3]. As operator deployment on the unlicensed band ramps
up [4, 5], it is necessary to turn our attention to studying
coexistence between LTE cells operating in the unlicensed
band, which is largely neglected by past works.
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Figure 1. Unlicensed band deployment scenario. In practice, there may be
many incumbent Wi-Fi devices, new uLTE eNBs from multiple operators
(Ops), and their clients all possibly causing interference with each other.
Some sort of interference/collision avoidance mechanism will be necessary
to maintain a minimum QoS on the band.

Figure 1 shows a simple illustration of the challenges we
face on unlicensed spectrum. In dense deployments, there
may be many uLTE eNBs from many operators, uLTE user
equipments (UEs) communicating with uLTE Evolved Node
Bs (eNBs), Wi-Fi access points (APs), and Wi-Fi clients
operating on the same or adjacent channels potentially causing
interference.

There are two obvious ways to attempt to improve spectrum
sharing: improve sharing in the time-domain via improved
channel contention mechanisms, or improve sharing in the
frequency domain via improved channel selection. There has
been no shortage of papers on the issue of improving time-
domain sharing via contention and Listen Before Talk (LBT)
schemes [6]. However, the LBT mechanism is difficult to
optimize for since there are many competing regulatory re-
quirements. Alternatively, channel selection is not as burdened
by such issues, and improvements to the channel selection
procedure can yield concrete gains, agnostic to any specific
contention protocol.

We make the following observation and seek to exploit it
in this work. If the full unlicensed band channel utilization
at each small cell can be estimated and shared with other
small cells, a statistical model can be built for each cell
selecting the best channel to transmit such that expected
network capacity is maximized. This has the effect of not only
improving uLTE/Wi-Fi coexistence but also improving uLTE
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inter-operator coexistence. Therefore, in this paper, we seek to
improve channel selection by sharing and leveraging statistical
modeling of channel utilization over time between neighboring
unlicensed eNBs. To do so, we first present a framework that
allows uLTE small cells to collect and share their estimated
local channel utilizations with neighboring cells. Next, we
propose a novel reinforcement algorithm in which each small
cell can leverage channel utilization information provided by
neighboring cells to select the best operating channel. Finally,
we implement, simulate, and compare the performance of our
proposed algorithm against the few existing state-of-the-art
schemes. We find that by leveraging shared information and
reinforcement learning techniques for proper channel selec-
tion, aggregate eNB performance is improved for both random
scenarios and ones with a high degree of spectral congestion
from Wi-Fi devices by at least 10% over existing solutions. We
qualify these results by comparing channel selection algorithm
performance under specific network conditions to highlight
algorithm strengths and weaknesses.

The rest of the paper is organized as follows. We first
review related works in Section II. In Section III, we present
a mathematical model of the problem and then develop our
channel selection algorithm. We simulate and compare our
channel selection algorithm to existing and other proposed
solutions in Section IV. Finally, we conclude this work in
Section V.

II. RELATED WORK

Many works in the literature are concerned with the general
topic of LTE on unlicensed spectrum [1–10, 13–19]. However,
comparatively few are concerned with channel selection or
LTE to LTE coexistence on unlicensed spectrum. In this
section, we discuss other works that investigate this problem.

In [10] and [16], the authors focus on channel selection
and propose a Q-learning, reinforcement algorithm with [10]
originally formulating the algorithm and [16] expanding on it
for non-stationary environments. However, their Q-learning is
based entirely on past throughput that each small cell achieves
on the channel, neglecting the utilization of the channel.
Moreover, throughput is realistically a function of more than
interference levels, i.e., traffic rates, modulation and coding
scheme (MCS), number of users, etc. This could cause the
Q-Learning to take unnecessary actions depending on the in-
stantaneous status of the other settings, especially in a dynamic
environment. It will also take a long time to explore the entire
Q-table and will not be able to adapt to rapid fluctuations in
utilizations across the channels. Moreover, the authors do not
place Wi-Fi devices in any of their simulations. The authors
later also considered a game theory based approach and found
it to converge faster than their Q-learning method [15]. One
notable strength in all of their work is that their methods are
entirely decentralized with each small cell making decisions
based on their own throughput.

An alternative approach is taken in [17] where the authors
instead consider a joint optimization of the channel selection
and the frame scheduling to improve coexistence in the

frequency and time domains. Fairness to Wi-Fi devices is
included in the optimization as a constraint while maximizing
LTE throughput. However, this work relies on a complicated
cloud radio access network (RAN) scenario, which would be
unlikely to account for multiple operators.

Deep reinforcement learning was used in [18]. This work is
also entirely distributed. Although their results are promising,
the training data may be prohibitive as multiple days of
Wi-Fi utilizations and neighboring eNBs traffic loads are
required. Moreover, online training to continuously update
traffic models may be too computationally complex to do for
each small cell in a network. The Wi-Fi loads dataset used
in this work for training and evaluating their method is from
a 2003 dataset that polls for AP activity every five minutes.
It is unclear how their method would perform in modern and
likely less predictable traffic patterns where there are many
more Wi-Fi APs and clients in a region.

III. CHANNEL SELECTION ALGORITHM OVERVIEW

In this section, we outline various algorithms that could be
used for channel selection strategies. However, before doing
so, we first provide details relating to our system model.

We consider a field of operation in which there are three
types of entities deployed: eNBs operating in the unlicensed
band, Wi-Fi APs, and UE devices connected to the eNBs.
We lump Wi-Fi device behavior into that of the Wi-Fi AP,
as we are only looking at the downlink channel and are
not directly considering Wi-Fi performance in this paper, as
it is a well-studied topic. Most unlicensed LTE protocols
require or at least have some form of LBT available. In our
formulation, we consider an abstracted form of LBT between
cells and Wi-Fi APs, in which transmission opportunities are
slotted. In each slot, eNB transmission requires a clear channel
assessment (CCA) be performed to determine whether or not
the medium is idle. Since this work focuses primarily on inter-
cell coexistence, we do not specifically model Wi-Fi MAC
layer operation, instead assuming that Wi-Fi APs capture the
channel according to Poisson arrival process with independent
uniformly distributed random access duration bounded by the
CSMA protocol. The slots selected are assumed to be already
captured by the Wi-Fi in simulation without simulating specific
Wi-Fi MAC behavior. Each eNB only contends for the channel
in slots where Wi-Fi traffic is absent; channel access for the
slot is then randomized between all contending eNBs for each
slot. By modeling our setup in this way, we can abstract
away from specific protocol implementations (allowing for
this work to extend towards future spectrum sharing protocol
design) and reduce overall variability between simulations.
As a consequence of this, the mechanisms and performance
trade-offs involved with implementation of each algorithm is
not evaluated in this work, as such an evaluation, as such an
evaluation would require the study to focus on one specific
realization of unlicensed LTE. Moving forward, we define
eNBs that exist within contention range of any given eNB
as its neighbors. The neighbor set will be used to simplify
much of our analysis.
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Figure 2. MAC system overview. With a period of every M slots (or 1 epoch),
the eNB will operate on a DL channel. The eNB will scan the channel and
average utilization statistics over a window of the last N scans.
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Figure 3. Time domain representation of eNB behavior. An eNB scans all
channels for one slot to measure the energy in each channel (shown in blue).
Using this info, the eNB chooses a DL channel to operate on for the next M
slots (yellow). This process repeats for a total of N scans before the utilization
statistics are reported to neighboring cells.

The major objective of this work is to provide an improved
methodology for selecting an unlicensed channel for transmis-
sion, such that each eNB can the best quality of service for
their connected UEs. In order to do so, we modify the fixed-
channel operation of LTE and adapt it to our slotted trans-
mission system. The channel selection is done periodically
according to the following steps.

1) Each eNB scans the band for 1 full slot to measure the
power in each channel.

2) Based on this, it will choose its DL channel to operate
on for the next M slots based on the channel selection
algorithm implemented.

3) After M slots have passed, the eNB will re-scan the set
of channels. We call this duration of M an epoch.

4) After N scan cycles have completed, the eNB will share
its current channel utilization statistics with neighboring

eNBs before the channel selection.
A flow chart of the overall system algorithm is shown in
Figure 2, and a time domain depiction of basic operation is
shown in Figure 3. We note that the 1 slot scanning duration
is considered a silent period for the eNB in that it is unable
to transmit throughout. Additionally, we assume silent periods
are done simultaneously between all eNBs. The primary reason
for this is to allow each eNB to capture the Wi-Fi utilization
without the addition of inter-cell interference. While this is
not strictly necessary due to the ease in which an eNB could
differentiate between Wi-Fi and LTE transmissions, it is con-
venient for notation and simulation implementation. In terms
of performance, all presented algorithms (besides the greedy
selection) rely only on the measured Wi-Fi interference, as we
consider Wi-Fi sources as operating on fixed channels.

Since each scanning period is limited in duration by de-
sign, we track the utilization over time via an exponentially
weighted moving average as:

ui ← αûi + (1− α)ui. (1)

Here, the moving average for eNB i, ui ∈ [0, 1]|K|, is updated
by using its past value and most recent measurement ûi, both
being vectors representing the utilization on each channel, k, in
the set of channels, K. The scalar α ∈ [0, 1] is a weight that
balances recent measurements versus past measurements. If,
for example, eNB i measures channel k to be fully utilized by
Wi-Fi devices in its most recent measurement, then uik = 1.
The moving-average formulation strikes a reasonable balance
of prioritizing recent measurements while maintaining a long-
term history and having low implementation complexity.

A. Greedy channel selection

With a greedy channel selection algorithm, each eNB seeks
to optimize its throughput by choosing the channel with the
lowest utilization in the previous scan. This is similar to
how many uLTE base stations currently operate [7–9]. The
idea is to pick the least occupied channel possible, thus
minimizing the impact on existing Wi-Fi networks in the area
and maximizing channel access for the eNB. This is shown in
Equation 2 where kj is the channel for eNB j, t is the current
epoch, and uj,k is the most recent measured utilization by eNB
j for channel k.

kj(t+ 1) = arg min
k∈K

uj,k (2)

The greedy channel selection algorithm has the benefit
of being completely decentralized with each eNB making
decisions based only on local measurements. However, this
simple algorithm may suffer in scenarios where there are many
eNBs in close proximity as all eNBs would collide on the
channel with the lowest utilization.

B. SOPI — Stochastic Optimization with Partial Information

To improve on the greedy approach, we present two dif-
ferent algorithms that each consider not only local channel
utilization measurements but also neighboring measurements.

2019 IEEE International Symposium on Dynamic Spectrum Access Networks (DySPAN)



In both of these algorithms, each eNB locally calculates the
expected capacity for the network given its local sensing of the
unlicensed channels and neighboring reports of their sensing.
For the first algorithm, we use a statistical approach to leverage
local and neighboring channel utilization measurements to
optimize sum capacity. We consider this an optimization
with partial information, as the only information shared from
neighbors is the Wi-Fi utilization. This algorithm is performed
independently at each eNB. The process of each eNB is to first
estimate the expected network capacity for each channel, then
select the channel that maximizes this estimated capacity. To
properly calculate the expected capacity, we first estimate the
joint probability of channel selection between all neighboring
eNBs and each combination’s respective capacity.

We begin by estimating the probability that an eNB is able
to capture the channel for transmission. Each eNB, i, measures
the utilization of channel k, uik given from Eq. 1. For each
eNB, we can derive the probability of access, Pa, to channel
k as:

Pa(i, k) = 1− uik. (3)

Let eNB i have a set of neighbors, N . We define a subset
of neighbors simultaneously operating on the same channel as
J ⊆ N . We also define binary indicator vector, y, of length
|J | where each element represents the instantaneous channel
availability for eNB j ∈ J . All combinations of J ⊆ N must
be iterated through to calculate the expected network capacity.
We can then define the probability of eNB i capturing channel
k for a slot given the subset of neighbors J also choose k as:

Pcapt.(i, k, J) =
∑
y∈Y

∏
j∈J ((1− Pa(j, k))ȳj · (Pa(j, k))yj )

w(y) + 1

(4)

Here, w(y) is the Hamming weight of binary indicator vector
y, ȳ is the binary complement of y, and Y = Z|J|

2 is
a set containing all realizations of y. This channel capture
probability is based on the premise that the channel can only
be captured when the same channel neighbors either do not
have access to the channel for the slot, or they do have access
to the channel, and eNB i wins contention against them. With
the channel capture probability found, we calculate the channel
capacity for eNB i with contending set J on channel k as:

Ci(k, J) = Pa(i, k)Pcapt.(i, k, J)Ci,max (5)

Here, the probability of transmission is scaled by both the
access probability, Pa, for node i from Eq. 3 and the capture
probability, Pcapt. from Eq. 4, since the channel needs to be
available before it can be contended for. We define Ci,max
as the unimpeded channel capacity estimated by i based on
the average SNR experienced over all connected UEs as
W log2(1 + SNRi). Using a similar method, eNB i estimates
the expected capacity of neighboring eNB j by assuming that
j’s only neighbor is i and that average SNR for j is identical
to its own.

Cj(k, J) = Pa(j, k)Pcap(j, k, i)Ci,max (6)

Now that we have found both the local and neighboring
expected capacities for all k and J , we can begin calculating
the overall expected network capacity given eNB i selects
channel k.

For eNB i, we can estimate the probability that a neighbor-
ing eNB j ∈ N will have access to channel k by converting the
channel availability of each eNB to a probability distribution
given as:

Ps(j, k) =
1− ujk∑

γ∈K (1− ujγ)
(7)

While ideally, we would perform a joint optimization over
all channels, our model assumes eNB i only has local Wi-Fi
utilization of its neighbors and nothing else. Thus, this estimate
is subject to error based on discrepancies in actual access
probabilities, even if all neighboring eNBs are using identical
channel selection strategies. We address this problem in more
detail later on.

Next, we derive the probability that multiple neighbors,
denoted by the set J ⊆ N , will access the single channel
k. To calculate this, we multiply the individual probabilities
that a neighbor in J accesses the channel by the probabilities
that other neighbors access any other channel. This is given
as:

Ps(J, k) =
∏
j∈J

Ps(j, k) ·
∏

j∈N\J

(1− Ps(j, k)) (8)

The total capacity experienced by the network when eNB i
with the subset of neighbors J transmits on channel k is given
by:

Ci,net(J, k) =(1− uik)Ci(J, k)

+
∑
γ∈N

(1− uγk) (xγCγ(J, k) + x̄γCi,max) (9)

Here, xγ is an indicator. Namely, 1 if γ ∈ J and 0 for all other
cases. The variable x̄γ is an indicator that is the complement
to xγ .

The expected network capacity if eNB i chooses channel
k is given by summing the probability that a subset of
neighboring eNBs, J , transmit on the channel multiplied by
the network capacity in such a scenario over all possible
combinations of eNBs in the neighboring set, N , which is
given by the power set, P(N ).

Ĉi,net(k) = E [Ci,net(J, k)] (10)

=
∑

J∈P(N )

Ps(J, k)Ci,net(J, k) (11)

The channel chosen by eNB i for epoch t + 1 should there-
fore be selected such that the expected network capacity is
maximized according to:

ki(t+ 1) = arg max
k∈K

Ĉi,net(k) (12)

The result of this algorithm, then, is to select a channel
that maximizes the expected sum capacity in the network.
However, because the second-order neighbors (neighbors of
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each neighbor to a given eNB i) are unknown, the only
second order neighbor we can assume exists is eNB i itself.
Without a full neighbor graph, the neighbor channel access
probabilities estimated by Ps(J, k) can differ from reality.
Unfortunately, in the case where channel utilization statistics
are similar across all eNBs for each channel, each eNB will
have a high probability of selecting the same channel despite
any attempted avoidance due to all eNBs operating under the
same channel selection policy. An eNB following the same
policy with the same information will necessarily make the
same decision in a hard-decision maximization.

In such a situation, the issue of channel selection is a
game-theoretical problem. The algorithm performance can be
expected to be worse than the greedy selection algorithm
under the premise that at least the greedy selection algorithm
will lead to mass collisions on the channel with the lowest
measured Wi-Fi occupation, whereas the partial information
in the SOPI algorithm can drive eNBs to all simultaneously
select a busier channel, degrading performance further.

We can partially mitigate the damage in this situation by
converting the vector of expected network capacities for each
channel, Ĉi,net(k), to a probability distribution, where Pc(i, k)
represents the probability of eNB i selecting channel k given
by:

Pc(i, k) =
Ĉi,net(k)∑

γ∈K

(
Ĉi,net(γ)

) (13)

However, such a solution is not ideal as the result-per-game
is memory-less and does not converge to a Nash equilibrium
over time, resulting in a pseudo-random collision behavior.

C. Romero-Q — Reinforcement learning using throughput
from [10]

In [10] the authors adapt reinforcement learning for uLTE
channel selection. We detail their algorithm along with a brief
introduction to reinforcement learning below.

Reinforcement learning is an iterative interaction between
the agent (which hosts the algorithm) and the environment
used in many fields. Agents interact with the environment
via actions. Each action performed by the agent impacts the
environment in some way, causing the environment to emit
an observation and reward. The observation and reward are
used to refine the decision-making function, or policy, of the
agent. Reinforcement learning methods specify how the agent
changes its policy as a result of its experience. The agent’s
goal is to maximize the total amount of reward it receives
over the long term.

In [10], a subcategory of reinforcement learning called Q-
learning is used. The quality Qi(k) of eNB i taking the action
to select channel k based on the number of available channels,
k ∈ K, is defined by:

Qi(k)← (1− αL) ·Qi(k) + αL · ri(k) (14)

Here, αL is the learning rate and ri(k) is the reward the agent
received from the environment for selecting channel k. They

derive the reward is determined based on the achieved through-
put seen on channel k and the final decision is probabilistic
based on the soft-max policy described in [11]. This decision
is given as:

PQi(k) =
exp

(
Qi(k)
τ

)
∑
γ∈K exp

(
Qi(γ)
τ

) (15)

D. RLPI — Reinforcement Learning with Partial Information

In order to properly manage situations with similar channel
utilizations across neighboring eNBs, we propose a novel
reinforcement learning algorithm that combines prior work
for LTE-U channel selection from a purely game-theoretical
perspective [10] with our analytical model that includes both
local and neighboring channel utilization information.

Rather than allocate reward based on achieved throughput
as done in [10], we prefer to measure the average SINR
over the past epoch and calculate the reward directly using
how successful the eNB was at transmitting on the chosen
channel. Directly using a notion of contention is a natural
choice as throughput is a function of many parameters such
as UE placement, MCS, and inter-cell interference. The reward
used in this work is given as:

ri(k) =
mcap(i)

M
, (16)

Here, mcap(i) is the number of slots successfully transmitted
on by eNB i in the previous epoch, and M is the number
of slots in each epoch. By using a unit-less reward, we can
abstract away many of the dynamic aspects of the system,
such as interference, channel fluctuations, UE scheduling, and
modulation/coding scheme selection.

We define a metric for similarity, S, based on the Jensen-
Shannon divergence between all normalized channel utiliza-
tions. This normalization is given by:

Pu(j) =
ujk∑

k′∈K ujk′
. (17)

Using these normalized channel utilization distributions, we
define the channel utilization similarity for eNB i as:

Si =
1−

∑
j∈J JSD(Pu(i)|Pu(j))1/ω

|J |
(18)

Here, JSD(Pu(i)|Pu(j)) is the Jensen-Shannon divergence
between the normalized channel utilization experienced by
eNB i and neighbor j. We normalize by the cardinality of
J to bound the similarity between [0, 1], where a value of
1 indicates the channel utilization between the eNB i and
all of its neighbors is identical, and a value of 0 indicates
all neighboring channel utilizations diverge from the locally
measured channel utilization. We add an ω exponent as a tun-
able parameter that functions to scale how aggressively the
algorithm relies on the net capacity estimates over the Q-value.
Unless specified otherwise, we set ω = 2, which commonly
used as the Jensen-Shannon distance [12].
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Similar to Romero-Q, RLPI performs channel selection
through a soft-decision function based on the soft-max policy
[11] combined with the estimated channel capacities. The
probability for eNB i to select channel k via the modified
soft-max decision is given by:

PQi(k) =
exp

(
Si

˜Qi(k)+S̄iC̃i,net(k)
τ

)
∑
γ∈K exp

(
Si

˜Qi(γ)+S̄iC̃i,net(γ)
τ

) (19)

Here, S̄i is the complement to Si given by S̄i = 1 − Si,
˜Qi(k) and C̃i,net(k) are the scaled sets of eNB i’s Q values

and expected network capacities for each channel k ∈ K, such
that the maximum value in the set is 1 and other members of
the set are scaled relative to it. This scaling to unit values
allows the Q values and expected network capacities to be
compared on the same relative scale. τ is the temperature,
which is a function of the number of epochs experienced by
the algorithm as τ = τ0

log(1+t) . The temperature is used as
a way to increasingly polarize the selection probabilities the
longer the algorithm runs [10]. Consequently, more exploration
will occur during the earlier epochs, decreasing as time goes
on. The value of τ0, or the initial temperature, should be set
to tune the exploration. Equation 19 aims to strike a balance
between past performance represented by the Q value and
the expected network capacity for a given channel selection.
When the similarity is high, the selection will be primarily
based on past behaviors to avoid group-think between all
eNBs by using the experience-driven Q-value as the primary
selection metric. When the similarity is low, the selection will
be primarily based on the relative expected network capacity
between selected channels, exploiting the shared information
between eNBs.

E. SOFI — Stochastic Optimization with Full Information

To provide a reasonable upper bound for performance, we
evaluate a fully-informed algorithm in which the channel
selection for each eNB is performed jointly. This algorithm
operates as an exhaustive search over all possible combinations
assuming the decision is made for all jointly. While this is not
possible in a distributed cellular network, it would be possible
with centralized base-band processing across all nodes in
a cloud-RAN architecture. The SOFI algorithm operates as
follows.

Let k ∈ {1, . . . , |K|}|X | be a vector where each element de-
notes the channel selected for the eNB with the corresponding
index. This vector encapsulates the channel selection for all
eNBs in the system, which is denoted by the set X . The idea
here is to choose the k̂ that maximizes the net capacity, i.e.,
we globally assign each eNB a channel instead of having them
independently select their channel. This optimization is given
by:

k = arg max
k̂

Cnet(k̂) (20)

To accomplish this, we calculate the resulting expected
network capacity for all channel selection vectors k. Pa(j, kj)

is the probability that eNB j can access the channel assigned
in the scenario (Eq. 3). Lj ⊆ X is the set of eNBs on the
same channel as eNB j.

Cnet(k) =

|X |∑
j=1

Pa(j, kj)

1 + |Nj ∩ Lj |
Cj,max (21)

For a channel selection scenario, this equation sums the
product of the probability that a node will access the channel,
the probability it will win contention, and its max capacity if it
were to win contention. The probability of winning contention
is given by assuming that all neighboring nodes on the same
channel are equally likely to win contention.

This global channel selection is done by explicitly calculat-
ing the expected network capacity over all possible vectors k,
which may be a large search space in cases when there are
many channels and many nodes. This model is a reasonable
approximation of an upper bound. However, it is not a true
upper bound in the sense that we are unaware of future UE
and Wi-Fi traffic.

IV. SYSTEM-LEVEL ULTE SIMULATION

In this section, we compare the relative performance of each
algorithm in a system level simulator we developed to model
generalized uLTE operation. We first present details of our
simulation environment. Using our simulator, we compare the
performance of the five presented channel selection algorithms
in a randomly-generated topology with fixed parameters. We
then evaluate algorithm performance for both high and low
average similarity, S, across all deployed eNBs. We further
split the high average similarity result into low and high
overall Wi-Fi utilization to see the impact of abundant and
sparse transmission opportunity availability, respectively, for
each algorithm.

A. Simulation Environment

We test the algorithm in MATLAB where we design a simu-
lator that randomly places eNBs and UEs, model interference
using the ITU-INH channel model, and generate unique traffic
being requested by UEs at each transmission time interval
(TTI) according to a fixed traffic rate. TTIs can be equated
to slots from our previous formulation, and have a duration
of a single LTE subframe, 1 ms. Based on user positions, an
appropriate MCS is chosen. If the UE sees severe interference,
the cyclic redundancy check (CRC) on their transmission may
fail, prompting a re-transmission. We evaluate and update
performance metrics upon successful packet reception, which
can take several TTIs. In this simulator, we only model the
downlink traffic using a 20 MHz, FDD LTE-based signal. As
the scope of this work is focused on uLTE performance, the
Wi-Fi traffic is modeled as transmissions that occur according
to a regular traffic rate without modeling the individual Wi-Fi
clients, their detailed MAC behavior, or their throughputs.

The optimization from Equation 12 is performed through
a brute-force search. This method is not unreasonable given
the relatively small, discrete space that can explicitly be
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calculated. However, this space does grow exponentially with
the number of available channels and the number of neighbors.
In this case, heuristics or advanced optimization techniques
can be explored. However, such analysis is outside the scope
of this paper.

To quantify performance, we use the user perceived through-
put (UPT). The UPT is a metric of the throughput experienced
by each individual user after accounting for the total time,
including re-transmissions, taken for the complete packet to be
received by the user. Using this metric has several beneficial
consequences for analysis. UPT is significantly impacted by
temporary outages in service. For our application, this ampli-
fies the impact of poor channel selection, as the buffered data
for transmission grows. From a UE perspective, UPT is also
impacted by fairness and latency. This allows it to be used
as a general quality of service metric, something unachievable
when comparing throughput alone. We formally define UPT
in Equation 22.

UPT =
1

N

N∑
i=1

1

Ptotal

Pserved∑
j=1

M · rij
tij

+
bi

tserving,i

 (22)

Here, N is the number of UEs served by the eNB, and
i indexes the UEs. Ptotal is the total number of packets,
elaborated by Ptotal = Pserved+Pserving, where Pserved and
Pserving are the number of packets served and being served,
respectively. M is the number of bits per packet, rij is the
ratio of successfully transmitted bits over all bits in the packet
to UE i for packet j, and tij is the time taken to send the
same packet. bi is the number of bits sent to UE i as a partial
packet still in flight, and tserving,i is the time spent by the
packet.

B. Overall Performance

Using our simulation environment, we first evaluate per-
formance over many different random topologies. By doing
so, we can gain an understanding of how each algorithm can
be expected to perform in a generalized scenario. For this
evaluation, we employ Monte Carlo simulation over many
different “drops”, or realizations of random simulation param-
eters. These drop-randomized parameters include eNB, Wi-Fi
AP, and UE deployment locations, initial channel assignments,
and data traffic realizations.

In Figure 4a, we show an example random realization of
the network topology or “drop.” Here, the four eNBs and eight
Wi-Fi APs are uniformly randomly distributed in a 240×240
meter space. Each eNB has ten connected UEs uniformly
distributed in a sixty-meter radius around it.

For this simulation, we set the parameters as shown in
Table I and then perform a Monte Carlo simulation. We
simulate 100 unique drops with random topologies which
are run for 5,000 TTI, or 5 seconds. The relatively short
simulation duration functions as a snapshot of performance
within the physical network topology, and traffic sources are
unlikely to change significantly. Our further assumption is
that the performance of these algorithms over this duration is

Table I
PARAMETERS USED FOR OVERALL PERFORMANCE SIMULATION.

Parameter Value in Simulation
Number of Channels, |K| 4
Number of uLTE eNBs, |X | 4
Number of Wi-Fi APs 8
Scan Period, M 20 TTI
Update Period, N 100 TTI
Deployment Area 240m x 240m
Drops 100
eNB TX Power 18 dBm
Wi-Fi AP TX Power 14 dBm
ED Threshold -62 dBm

extendable to multiple subsequent durations with incremental
time-dependent changes to the topology. We plot the average
UPT for each algorithm in Figure 5.

We find, over an extensive series of random topologies, an
example of which is shown in Figure 4a, the Greedy algorithm
has the worst performance, while RLPI performs the best. It
is interesting to note that both of the reinforcement algorithms
outperform both SOPI and SOFI algorithms. One explanation
for this is the partial and full optimization algorithms in SOPI
and SOFI only considers channel selection with regards to
channel and Wi-Fi utilization, while remaining oblivious to
well known hidden factors such as exposed/hidden terminals
between eNBs. Reinforcement learning performs exceptionally
well in environments with hidden influences, allowing it to
out-perform others in the general case. However, these factors
alone may not account for such a discrepancy in performance
over a large number of simulation iterations. In the next set of
experiments, we isolate the utilization similarity metric, depen-
dence between channel access probabilities, and Wi-Fi traffic
load to better explain the underlying causes of performance
differences between these algorithms.

C. Utilization Similarity, Dependence, and Load

For our RLPI algorithm, we introduced a similarity metric,
S, to balance the Q-value impact and expected network
capacity when calculating channel selection probabilities. This
similarity metric can be thought of as the relative difference in
channel availability an eNB and its neighbors. In other words,
a high similarity indicates the Wi-Fi occupancy is roughly the
same between an eNB and its neighbors for each channel, and
a low similarity indicates the opposite.

However, we can also think of similarity as a metric of how
correlated the channel access probabilities between each eNB.
For example, if two eNBs share a common Wi-Fi AP nearby
on channel k, the access probabilities for the two eNBs on
channel k as defined in Equation 3 are not strictly independent,
distorting the calculation for capture probabilities in Equation
4. This interaction between instantaneous channel availability
correlation and similarity is not straightforward. For example,
while a high dependence between channel access probabilities
implies a high similarity metric, a high similarity can be
realized with completely independent channel access proba-
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(a) Example realization of the random topology
used in Monte Carlo simulation.
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(b) Example realization of the fixed topology
used for generating a low dependence scenario.
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(c) Example realization of the fixed topology
used for generating a high dependence scenario.

Figure 4. Example experimental topologies with four separate eNBs each with ten clients and eight Wi-Fi APs. The colors (blue, green, cyan, and magenta)
represent an eNB and its clients. The eNBs and the Wi-Fi APs are uniformly randomly distributed in a room that is 240×240 meters. The UEs are distributed
randomly in a 60-meter fixed radius around their eNB.
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Figure 5. Overall algorithm performance, averaged across 100 random drops
over 5,000 TTI to gauge the relative performance of each algorithm in
generalized circumstances.

bilities between neighbors. This relationship strictly depends
on whether an eNB neighborhood shares common Wi-Fi APs
(high dependence) or if they do not share APs, but the utiliza-
tion happens to be the same (low dependence). Unfortunately,
the eNBs and, by extension, the channel selection algorithm
they employ are unable to differentiate the access probability
dependence and must rely on the similarity metric alone.

Thus, we need to explicitly quantify the impact of similarity
on the performance for each algorithm. To do so, we first de-
fine an average similarity metric, Savg as the average similarity
for a simulation as:

Savg =
∑
i∈X

Si
|X |

(23)

For our analysis, we categorize similarities into two extreme
scenarios: low average similarity, Savg < 0.5, and high average
similarity, Savg > 0.9. The results for similarity values in-
between the high and low can be considered the general

case, which represents the majority of drop outcomes in the
Monte Carlo simulation. To elucidate these thresholds, we
have designed representative scenarios for each.

a) Low similarity: To properly analyze low similarity,
we modify our simulation environment to provide a more
deterministic topology for study. We fix the positions of 4
eNBs in a square pattern such that each eNB is considered a
neighbor to the two closest eNBs, creating a unique neighbor
set for each eNB. Four Wi-Fi APs are distributed near each
eNB such that other eNBs are not impacted. This creates
completely independent Wi-Fi interference sources for each of
the eNBs. An example deployment under this fixed topology
constraint is shown in Figure 4b.

To achieve the desired similarity for simulation, we ran-
domly select channels and generate traffic for the Wi-Fi APs
constrained such that Savg < 0.5. We show the resulting
algorithm performance for the low similarity scenario in Figure
6a.

We find that in a low similarity scenario, the greedy se-
lection algorithm and SOFI end up performing particularly
well. This is because a low similarity metric is generally only
achievable when the Wi-Fi channel occupancy tends to be
vastly different between neighboring eNBs across channels
and the channel with the lowest Wi-Fi occupancy in each
eNB will tend to be different from its neighbors. In such a
situation, the best channel for each eNB ends up being the
one with the lowest measured Wi-Fi occupancy locally, which
is ideal for the greedy algorithm and easily discovered by SOFI
as well. However, SOPI ends up under-performing due to the
probabilistic selection, since SOPI lacks sufficient information
to guarantee neighboring eNBs will select the channel with
the most local availability. Romero-Q’s performance is below
greedy simply because of the learning ramp-up.

b) High similarity: For the high similarity scenario, we
modify the fixed topology from the low similarity analysis
such that all Wi-Fi APs are deployed in a small radius around
the environment center. This placement results in a high de-
pendence between channel access probabilities, as each Wi-Fi
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(a) Algorithm performance in a low
similarity scenario.
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critical.
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(d) High similarity with independent
channel access probabilities.
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(e) High similarity with fully dependent
channel access probabilities.

Figure 6. Simulations evaluating the algorithm performance in various scenarios with high/low similarity and Wi-Fi utilization.

AP placed has a high probability of impacting multiple eNBs.
We reduce the total number of Wi-Fi APs to better control
average channel utilization while still randomizing traffic and
Wi-Fi AP channel assignments. An example deployment under
this fixed topology constraint is shown in Figure 4c.

Additionally, we simulate the high similarity scenario with
two different sub-conditions: low and high average Wi-Fi
utilization. We label the simulation realization as having a
low average Wi-Fi utilization when the average utilization
experienced at each eNB over all channels is under 10%.
Conversely, we label the simulation realization as having a
high Wi-Fi utilization when the average utilization is over
50%. We show the resulting algorithm performance for both
low and high Wi-Fi utilization settings in Figures 6b and 6c.

When the Wi-Fi utilization is not a factor due to low
occupancy, none of the eNBs have trouble offloading all their
traffic. This is true even if there is some frequency overlap
between them. This situation can be considered an abundance
of spectral resources, and thus the UPT is similarly high across
all channel selection algorithms. However, as licensed cellular
providers and a myriad of new Internet of Things (IoT) devices
pop up in unlicensed spectrum, the more likely (and important)
situation is one in which the spectrum is saturated.

When spectral resources are scarce in the high Wi-Fi utiliza-

tion case, proper channel selection becomes vital to achieving
serviceable performance. In this situation, slight differences in
channel availability between channels can have a significant
impact on expected capacity. The SOPI, RLPI, and SOFI
algorithms can evaluate and exploit these differences to great
effect. Our results show that these algorithms significantly
outperform Romero-Q and Greedy, demonstrating one of the
major benefits of sharing the Wi-Fi utilization information
between eNBs.

When considering the impact of Wi-Fi utilization similari-
ties between nodes, we can further differentiate between those
that are similar due to interference from the same Wi-Fi APs
and those that have different Wi-Fi APs, but similar traffic
statistics. The impact of these differences is most noticeable
in the channel access probability and the resulting channel
capacity calculation of the SOPI algorithm in Equations 4 and
5. The presented equation assumes independent channel access
probabilities between each eNB and its neighbors, which is
achievable when different Wi-Fi APs within the sensing range
of each eNB. However, when the Wi-Fi APs are shared, the
neighboring channel access probabilities should instead be
conditioned on i. This error leads to a differential in capture
probability and subsequent capacity calculation depending on
the dependence between neighboring eNB access probabilities.
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The impact of this error can be seen in Figures 6d and
6e, where we compare the performance of each channel
access algorithm given fully dependent or fully independent
channel access probabilities between eNBs. We generate the
independent access probability scenario using the topology
shown in Figure 4b and dependent access probability scenario
using the topology in Figure 4c. Both scenarios are crafted
with random Wi-Fi traffic generation.

In the fully dependent scenario, the SOPI and SOFI algo-
rithms overestimate their channel capture probabilities due to
the assumption of independence and end up being overshad-
owed by the reinforcement based algorithms. Conversely, the
SOFI algorithm ends up outperforming all other algorithms
when the access probabilities are independent, and the joint
optimization between eNBs can accurately calculate expected
capacities.

Overall, we see that while the context-reliant algorithms
are all impacted by the access probability dependencies, the
reinforcement learning algorithms remain unaffected. Alterna-
tively, context-reliant algorithms perform better when spectral
resources are scarce. Our proposed RLPI algorithm balances
these two approaches and achieves high performance across
each of the scenarios studied, and results in improved perfor-
mance in the general case as well.

V. CONCLUSIONS

In this paper, we examined uLTE coexistence with other
uLTE eNBs in the presence of spatially heterogeneous Wi-
Fi utilization. While other similar works consider uniform
Wi-Fi behavior or ignore Wi-Fi presence entirely, our work
used knowledge of Wi-Fi incumbency to outperform existing
solutions. To do so, we first formulated a framework under
which neighboring eNBs can share Wi-Fi utilization estimates
with each other. Next, we presented a unique algorithm in
which deployed eNBs exploit the shared utilization estimates
to select an optimal transmission channel. We then combined
this analytical model with state-of-the-art reinforcement learn-
ing techniques and presented a novel reinforcement learning
approach (RLPI) that leverages the shared utilization statistics.
Finally, we simulated five relevant channel selection algo-
rithms, showing significant improvements in performance in
both general random deployments and scenarios with high
spectral congestion.
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