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Abstract—Cellular networks have addressed the multi-fold
increase in traffic demand through various approaches from
increasingly smaller cells to offloading demand to unlicensed
spectrum, such as WiFi and TV white spaces. The latter approach
has a tremendous cost benefit as unlicensed hardware can be co-
located with existing cellular infrastructure. However, in these
situations where demand is the greatest, WiFi spectral activity
could be high and the total number of available white space
channels are often inversely proportional to the population due to
the existence of TV broadcast channels. Moreover, the additional
hardware induces a higher energy demand of the cell site.
In this work, we perform extensive spectral measurements of
unlicensed bands in a major metropolitan area and crowdsource
user mobility to consider potential swings in network load. Using
these measurements, we design a queuing-based approach to
serve these network demand dynamics in an energy-efficient
manner according to differing qualities of service. In particular,
we perform in-field experimentation of the diurnal spectrum
activity across white space (54-806 MHz) and WiFi (2.4 and
5.8 GHz) bands in typical settings across the Dallas-Fort Worth
metroplex. We also consider mobility patterns from Android-
based crowdsourced measurements in four major Texas cities
to infer the change in traffic demand induced by users. Driven
by both data sets, we propose a Greedy Server-side Replace-
ment (GSR) algorithm to estimate the power consumption for
the use of unlicensed bands in cellular offloading. In doing so,
we find that networks with white space bands reduce the power
consumption by up to 513% in sparse rural areas over WiFi-only
solutions via measurement-driven numerical simulation. In more
dense areas, we find power consumption reduction across a 24-
hour period to be, on average, 24%, 44%, 63% over WiFi-only
offloading with one to three white space channels, respectively.
Finally, we consider the quality of service impact on power
consumption and find that up to 151% of the power can be
saved with only a slight relaxation of waiting times.

I. INTRODUCTION
Cellular network providers have been forced to address

multi-fold increases in traffic demand due to such factors as the
ubiquity of mobile devices, the growth in on-the-go bandwidth
needs such as streaming video and social media, and the rise
of Internet-of-Things technologies. To meet this increasing
demand, cellular carriers have shifted towards smaller cells
and greater levels of offloading of user traffic to unlicensed
frequency bands. In addition to the use of available WiFi
channels, recent FCC changes have allowed the use of the
white spaces of UHF bands formerly used exclusively for
TV broadband services to now be used for data networks.
These white space bands operate in available channels from
54-806 MHz, allowing far greater propagation range than
WiFi bands for similar transmission powers [1]. However,
data communication on the white space spectrum is only
allowed when TV broadcast stations are not present, making

the availability of white space channels inversely proportional
to user population. Moreover, the co-location of unlicensed
hardware with cellular hardware has implications on energy
expenditure and ongoing network costs.
Unlicensed frequency bands have a wide range of prop-

agation characteristics and policy differences (between 54-
806 MHz for white spaces and 2.4 and 5.8 GHz for WiFi).
For the same transmission characteristics such as transmission
power and antenna gain, the white space spectrum allows a
propagation range of multiple times that of WiFi spectrum.
The increased range of white spaces can be beneficial for low
population densities (e.g., rural areas) since the user demand
of a large area could be served by a single tower. However,
for high population densities (e.g., dense urban areas) there
are two issues that could make WiFi a more desirable option.
First, the greater spatial reuse of WiFi can offer higher demand
levels to be served. Second, in dense areas where user traffic
demand is generally the highest, there are relatively few white
space channels available. For example, there are no white
space channels available in downtown New York City [2]. In
most major cities in the United States, however, one to eight
white space channels are available [2].
Unlicensed white space resources have previously been

discussed as a WiFi-like resource [3]. In particular, solutions
are actively being sought for the use of white spaces in
data networks across the US and Europe [4], [5]. Most of
these works focus on spectrum sensing and opportunistic
access as opposed to cellular offloading. Previous cellular
offloading works focus on the switching times and perfor-
mance improvements for cellular, WiFi, and other wireless
technologies [6]. However, up to this point, the performance
of white space spectrum in cellular offloading has not been
fully investigated. Many works on mobile data offloading have
focused on reducing the power consumption, and business
models have been proposed [7]. For example, Han et al. [8]
have shown an offloading strategy that reduces the power
consumption through signal strength sensing among cellular
and WiFi users. More general power saving strategies have
also been explored [9]. Reducing powerer consumption saving
not only benefits the carriers, but also reduces the cost for
users. However, these works do not consider the large-scale
channel variation and user mobility impacts on the capacity
and power consumption of the offloaded network.
In this work, we perform measurements via spectral

wardriving and crowdsourced user mobility to provide a
measurement-driven characterization of residual channel ca-
pacity and total user demand, respectively, to gain a better



understanding of these time- and spatial-dependent properties.
We then design a queuing-based approach which considers
the current channel capacity to serve the dynamic user de-
mand in an energy-efficient manner according to differing
qualities of service. Specifically, we perform extensive spectral
measurements in the Dallas-Fort Worth metroplex at various
times of the day to compose a diurnal pattern of spectral
activity across WiFi and white space channels. Moreover, we
examine mobility patterns from 60k users who are actively
using our Android application and uploading signal strength
measurements to a measurement repository. The measurement-
driven spectral activity and load are used by our Greedy
Server-side Replacement (GSR) algorithm which seeks to
minimize the power consumption of the offloaded unlicensed
network, considering the implications of varying qualities of
service requirements.
In particular, our main contributions are as follows:
• We perform 24 hours of spectral measurements in di-
verse parts of the Dallas-Fort Worth metroplex, including
neighborhoods, campus, a downtown business district,
and an urban business district. Through these in-field
measurements, we estimate the achieved channel capacity
of these representative areas of a metropolitan region.

• We leverage our Android-based application, WiEye, to
consider the mobility patterns of users in Dallas and
three other large Texas cities: Houston, San Antonio, and
Austin. Through these crowdsourced measurements, we
anticipate the diurnal traffic demand dynamics of large
metropolitan areas.

• Driven by these in-field and crowdsourced measurements,
we formulate the wireless network structure as a queu-
ing system, considering cellular, WiFi, and white space
channels. We analyze the potential capacity and resulting
energy consumption of the offloaded unlicensed network
based on differing waiting times. Based on the analysis,
we propose a Greedy Server-side Replacement (GSR)
algorithm to allocate the unlicensed channel resources to
minimize the power consumption.

• We perform measurement-driven numerical simulations
to analyze various scenarios of unlicensed channel re-
sources and users distributions. Our results show that the
use of white space bands can reduce the power consump-
tion in sparse areas by up to 512.6%. We further show
that the power savings can be up to 150.9% over a WiFi-
only configuration with the use of white space channels
and relaxed but realistic waiting time constraints. Even in
dense urban areas we show the average power consump-
tion for a 24-hour period can be reduced by up to 63.3%
over a WiFi-only network. Lastly, our analysis shows
that while we achieve an average power consumption
reduction of 19.6% over all the areas considered, we
have analyzed a wide-range of realistic scenarios and
established a framework to understand where the highest
levels of gains will occur.

The rest of the paper is organized as follows. We describe
the system and formulate the problem in Section II. Then, we
present the queuing theory analysis and the Greedy Server-
side Replacement (GSR) algorithm in Section II. We then

San Francisco Seattle Houston Austin Dallas
Channels 2 7 3 1 3

TABLE I
NUMBER OF WHITE SPACE CHANNELS IN MAJOR CITIES

discuss our spectral analysis and crowdsourced measurements
in Section III and resulting measurement-driven analysis of
GSR in Section IV. We discuss related work in Section V and
conclude in Section VI.

II. WHITECELL FOR ENERGY-EFFICIENT CELLULAR
OFFLOADING

A. WhiteCell Network Architecture
Wireless propagation refers to the signal loss characteristics

when wireless signals are transmitted through the wireless
medium. The strength of the received signal depends on both
the line-of-sight path (or lack thereof) and multiple other paths
that result from reflection, diffraction, and scattering from
obstacles [10]. The widely-used Friis equation characterizes
the received signal power Pr in terms of transmit power Pt,
transmitter gain Gt, receiver gain Gr, wavelength λ of the
carrier frequency, distance R from transmitter to receiver, and
path loss exponent n according to [11]:

Pr = Pt + Gt + Gr + 10n log10

(
λ

4πR

)
(1)

Here, n varies according to the aforementioned environmental
factors with a value ranging from two to five in typical outdoor
settings [12]. The propagation range of low-frequency white
space channels is many times larger than high-frequency WiFi
channels. For instance, 450 MHz has more than 12 times the
propagation range of 5 GHz according to the Friis model.
Thus, a single white space access point can cover an area
up to hundred times of a WiFi access point (if the network
was not capacity constrained). The large propagation of white
space channels can potentially be applied for the reduction
of network deployment costs [13], adaptation of vehicular
dynamic access [14], or improvement of network capacity
via additional channel resources [3]. However, previous works
that focus on the application of many white space channel
resources or point-to-point communication requiring a small
amount of white space resources often fail to investigate the
joint use of WiFi and white space bands with their respective
advantages and disadvantages.
In wireless network design, a wider range of carrier fre-

quencies allows greater flexibility and potentially better per-
formance. White space frequency bands are a relatively new
opportunity for wireless data networks which have yet to be
fully deployed and exploited. However, the FCC restricts the
number of white space channels in most dense urban areas to
protect existing television broadcasts. The minimum number
of white space channels in some major cities of the U.S are
listed in Table I [2]. In New York City and Los Angeles (not
listed), some districts have zero white space channel available.
The densest urban areas of Austin have only one white space
channel available. Most of the other cities in the table have 2
to 7 white space channels. Thus, insufficient channel capacity
exists to serve all urban users in the coverage region of
these cities with a strictly white space network. Moreover,



Fig. 1. WhiteCell Structure

most of the dense urban areas already have deployed cellular
(and potentially WiFi) networks, which should be exploited
jointly with white space networks. Our proposed wireless
system leverages the existing infrastructure, adding additional
frequency efficiency and lower energy usage.
Here, we introduce a wireless network structure that lever-

ages existing cell sites but additionally uses WiFi and white
space radios for offloading of mobile traffic. We assume that
each cell contains a cellular and WiFi transmitter. However,
due to the range of white space transmitters, we assume that
the central cell can cover all six surrounding adjacent cells
with at least one white space transmitter (as shown in Fig. 1),
forming a WhiteCell. We assume that these seven smaller
cells that compose one WhiteCell can operate independently of
surrounding WhiteCells due to spatial reuse. For our analysis,
we will consider up to three white space transmitters and chan-
nels are available per WhiteCell, subject to the availability of
white space channels in that geographical region. The system
can adapt the channel resource allocation to reduce power
consumption according to the variation in traffic demand. The
N users that exist in the WhiteCell network architecture have
M access points equipped with WiFi and cellular capabilities
and M/7 cells equipped white space capabilities. Fw is the
number of white space radios installed on the central cell’s
access point. We assume each radio has a channel capacity of
C if the channel is free of spectral activity (i.e., if the channel
is idle) and reduced according to the percentage of time the
channel is in use. We assume that sufficient memory space
exists to buffer traffic to the users from each access point.
For this work, we consider only the offloaded traffic to the
unlicensed bands and the power consumption thereof. Hence,
the traffic aggregated at each access point could be served
via WiFi in each smaller cell or via white space in the larger
WhiteCell. The traffic is served in a first-in-first-out (FIFO)
scheduling strategy. In this structure, the traffic of each cell
could be transferred by Fw + Fm channels. Here, Fm is the
number of WiFi channels used in addition to the Fw white
space channels. We assume the users in the same cell are in
a single interference domain.
Instead of assuming the wireless channels are on-off [15]

or have equal capacity, we apply a measurement-driven esti-
mation to get the achieved channel capacity. The capacity of
the channel between the access points and each user is noted
as a matrix in the following way:

Hf
i,j(t) = G(ζ, t), i ∈ M, j ∈ N, f ∈ (FM + Fw) (2)

Here, ζ represents the in-field measured historical data
and dynamic sensing information. A context-aware method is
applied to estimate the jth user capacity H f

i,j(t) to an access
point i on channel f . The users in a single cell have the
same channel status. We assume the channel capacity is flat
during a certain time slot. The switching time is negligible
in the system. The calculation of achieved channel capacity
is introduced in Section IV-A. The traffic demand of a user
obeys a Poisson process, with the vector noted as D(t) =

[D1(t), D2(t), ...DN (t)] and the sum rate D(t) =
N∑

i=1
Di(t).

The rate D(t) is the aggregate rate of data generated from all
users.
During a time slot, the unscheduled radios remain in sleep

mode to save energy. We also ignore the sleeping energy
as well as the amount of energy spent on channel or radio
switching. An operating radio will cost equal standby power
per unit time. Previous human factors research [16] shows
that users have a certain level of patience for a response. The
tolerance time of users varies across the traffic type, such as
text information, voice and video. To simplify the problem, we
assume an average value for tolerance response time W of all
the users in the system. The channel capacity is the maximum
achievable per spectral resource. A wireless system could serve
users faster with less response time via more channel capacity.
While at the same time, the power consumption increase with
the amount of spectral resources allocated. Thus, if users have
a less strict requirement on the response time, less channel
resources (bandwidth and energy) are necessary.

B. Problem Formulation and System Model
We formulate the wireless network system introduced in

Section II-A as a discrete-time queuing system shown in
Fig. 2. The channels are represented as servers in the queuing
model. Table II summarizes the notation used in this work.
In the system, there are Fw white space radios and M cells.
FM represents the WiFi channels allocated to each of the M
cells. Multiple cells may share the same WiFi channel, but we
assume there is no overlap of their service areas due to spatial
reuse. Thus, the queuing system has M queues of the cells
and FM + Fw servers in total, which are connected via time-
varying WiFi and white space channels H ∗(M, FM + Fw).
The matrix {Si,j(t), i ∈ (FM + Fw), j ∈ M} denotes the

wireless resource association as shown below:

Si,j(t) =

⎧
⎨

⎩

1 if Dj∈M , is associated with
radio i ∈ (FM + Fw)

0 Otherwise
(3)

To maintain the quality of service, the queuing system
restricts the expected response time of the system w to no
more than the tolerance threshold W :

E[w] ≤ W (4)



t Time slot
N Set of users
M Set of WiFi cells
Hf

ij Measurement based Capacity between AP i and user j on channel f
Fm WiFi Channels in the cells
Fw Set of White Space Channels
S(t) User access channel schedule
A Activity Level
C Clean Radio Capacity
D User Demand
R Operating Radio
ζ In-Field Measurements
W User Tolerance time window
µ Channel capacity assigned for a cell
Ps Standby Power Consumption
Pt Transmission Power Consumption

TABLE II
TABLE OF NOTATIONS

Fig. 2. System Model

When the total traffic demand of the users in the system is
relatively small, the channel capacity of a single white space
channel could achieve the quality of service in response time
for all the users. In this scenario, all cell radios could be
switched to sleep mode for power saving. On the other hand,
as the traffic demand increase with the number of users or the
demand per user, the channel resources need to be increased as
the number of servers in the queuing system increases to meet
the user response time tolerance requirements. Thus, in this
extreme case, all the radios have to keep operating to provide
the appropriate quality of service. Moreover, when the users
are distributed non-uniformly, the white space channels are
able to deliver more capacity for the cells with more traffic
to balance the system load without adding new infrastructure.
The flexibility of white space channels offers new opportunity
for power saving and offered load adaptation in network
design.

In this work, we focus on analyzing the power savings
for the WhiteCell system. To model the power consumption
of the system, we sum the power consumption of each
operating radio in two power consumption categories: standby
and transmission. We assume the sleeping or standby power
consumption is negligible as well as the on-off switching
power consumption.We defineRi as radio status of each of the
i ∈ Fw, FM radios in the system. The value of Ri denotes the
power consumption of the radio for standby and transmission.
When the radio is in sleeping mode, Ri = 0. Otherwise, the

Ri is defined as follows:

Ri(t) =

⎧
⎨

⎩
Ps + Pt · µ

N∑
j=1

Si,j(t) ≥ 1

0 Otherwise
(5)

Here, Ps is the standby power consumption of a radio,
which is a constant value, Pt is the unit transmit power
consumption of the assigned channel capacity, and µ is the
allocated channel capacity of the radio. R i(t) is the power
consumption of the radio during the time slot.
Thus, to reduce the power consumption of the system, it

could be implemented via minimizing the sum of R i under
the quality of service constraints. The objective is to minimize
the power consumption of the system:

R∗(t) = min {
(FM+Fw)∑

i=1

Ri(t)} (6)

where R∗ represents the minimum operating power consump-
tion required of the system. The allocated resources µ could
be adjusted to approach the minimum power consumption in
the model. According to the queue-based quality of service
model and power consumption model, we further analyze the
WhiteCell system and propose our greedy solution.

C. WhiteCell Challenges And Analysis
Prior works formulate similar multi-channel systems as

M/M/m queuing systems for analysis [15]. However, the
WhiteCell system is not able to be formulated as such due
to the non-equal assignment of channel capacity to each cell
across white space and WiFi channels. Thus we first analyze
the queuing system and apply the previous work on M/M/m
queuing theory to approach a solution for the system.
In the WhiteCell system, the users of a cell have ac-

cess to both the WiFi channel assigned for the cell and
the white space channels, which covers one WhiteCell or
seven adjacent WiFi/cellular cells. The division of white space
channel capacities forces capacity variation of the servers
in the queuing model, thereby removing the equal service
capacity assumption of the queuing system. However, the
equal server capacity is a requirement for a general M/M/m
queuing system analysis. Thus, the M/M/m queuing system
of a multi-channel version is not directly applicable for this
WhiteCell system model.
The response time W represents the duration of time from

when user sends a request to when the server responds. In
the system design, the response time W constraint has to
be satisfied to maintain the quality of service. The channel
quality in multiple cells varies throughout a single time slot,
which is mentioned as part of multi-user diversity in previous
works. Multi-user diversity is a form of diversity inherent
in a wireless network provided by independent time-varying
channels across the different users [17]. The diversity could be
generated by the interference from a device inside or outside
of the network as well as environmental variations. Some cells
may have idle white space channels while the other cells may
suffer from TV-broadcast occupancy or other spectral activity.
To address the variation, we utilize in-field measurements to



infer channel capacity in this work as opposed to an on-off
channel availability assumption. We define the activity level
as the percentage of time that the measured signal strength
exceeds a threshold to estimate the residual capacity of the
channel. We perform measurements to sense the spectral ac-
tivity in multiple locations in North Texas through our portable
spectrum analyzer (discussed in more detail in Section III-A).
The percentage of sensing samples (δθ) above an interference
threshold (θ) over the total samples (δ) per unit of time is the
activity level (A):

A =
δθ

δa
(7)

The capacity of a clean channel is denoted by C. With the
protocol model, the achieved capacity of a channelC r could be
represented as the remaining free time of the channel capacity
according to:

Cr = C ∗ (1 − Ā) (8)

Ā represents a long term activity level measurement.
The user mobility footprint is one of the key points in the

wireless resource allocation. As more users stay in or move
into a cell, the more wireless channel resources are need to
be allocated to the cell to serve the demand. Thus, the user
distribution is a critical aspect of resource allocation. The large
propagation of white space channels allows them to be used
flexibly over a WhiteCell to balance the non-uniform user
distribution by compensating channel allocation for additional
capacity on demand. To identify the user mobility patterns, we
analyze the data set from WiEye, an Android application that
reports the location, velocity, and signal information to lever-
age the mobility patterns of users. The user mobility footprints
are derived from leveraged from crowdsourcing thousands of
users. The setup and results are shown in Section IV.
With these measurements, we further analyze the chan-

nel capacity allocation for the WhiteCell system. We first
investigate the channel capacity allocation sub problem in
a single cell (1/7th of a WhiteCell). The users of the the
same WiFi cell are in a heterogeneous queuing system with
servers of WiFi channels and white space channels with each
having a capacity represented by µ1, µ2, ...µ(Fw+Fm). Here, µ
denotes the capacity of a channel allocated in this cell for all
channels. There are multiple accessible channels in the cell:
the WiFi channel and the white space channels, which could be
allocated to other small cells within the same WhiteCell. Since
the white space channel is divided over seven cells and that
cell has at least one dedicated WiFi channel, the capacity of a
white space channel division is typically the smallest portion
of channel capacity in a cell. Therefore, there are three cases
of channel capacity comparisons in a single cell.
The first case occurs when two or more channels are

assigned to the cell and the capacity of the least contributing
white space channel is several times less than the maximum
channel capacity (typically a WiFi channel). In Eq. 12, we
see that this occurs when the maximum over minimum ratio
is greater or equal to 2. An example of this scenario could
be when one WiFi channel and one white space channel exist
and the white space capacity is equally divided (1/7th) across
the cells that compose a WhiteCell.

For the first case, called a heterogeneous server queuing
system, we apply the transformation model in [18] to estimate
the response time w̄. In the transformation model, the actual
arrival rate for one specific server λs is defined as:

λs = Dcell/(FcW + FcM ) (9)

where Dcell is the traffic aggregated from the users in the cell,
FcW represents the set of white space channels assigned in the
cell, and FcM notes the WiFi channels in the cell. λs in terms
of statistic average for a specific channel in this work.
The other parameters are defined in Eq. 10 through 12.

µmin = min (µ1, µ2, ...µ(Fw+1)) = µ̄ (10)

µmax = max (µ1, µ2, ...µ(Fw+1)) (11)

k = ⌊µmax

µmin
⌋ (12)

When k ≥ 2 the average response time of such a heteroge-
neous system [18] could be represented as in Eq. 13:

w̄ =
1

1
3 µ̄(2k + 1) − λs

(13)

Through the transformation model, we can further search the
channel capacity required for the response time constraints.
Additionally, the power consumption can be found for the
system.
The second case is one in which only a single channel serves

the cell, either the WiFi channel or part of a single white space
channel. This case can be simplified to a M/M/1 queuing
system that only has one server in the model. When the traffic
is able to be served by part of a single white space channel
or the WiFi channel, as in the second scenario, the system
converges to a M/M/1 queue. The response time w̄ can then
be estimated from Eq. 14 [19].

w̄ =
1

µ+ − D
(14)

µ+ represents the channel capacity of the single channel
capacity allocated in the cell.
The third case (like case one) also has more than one

channel operating in the cell. However, the key distinction
from case one is that the capacity of the channels are approx-
imately the same (i.e. when k = 1). This system becomes a
queuing system, which has multiple equal capacity servers in
the model. We remark it as a homogeneousM/M/m system,
and the first case as a heterogeneous M/M/m system.
The average response time can be found through a search

strategy [19]:

w̄ =
1
µ∗ (1 +

c(m, ρ)
m(1 − ρ)

) ≈ 1
µ∗

1
1 − ρm

(15)

where µ∗ is the average capacity of channels in the M/M/m
queuing system. A half-search strategy is applied to find the
minimum value of µ∗ to reduce the power consumed by
transmission. Here, ρ = λ

mµ∗ is the traffic density, and c(m, ρ)
is the Erlang-C formula [19].



Algorithm 1 Greedy Server-side Replacement (GSR)
Input:

N : Users
Hf

i,j : Vector of channel capacity
D: Traffic Rate
M : WiFi Cells

1: Find the WiFi cell with the lowest traffic rate D, break the tie
with the small index

2: Calculate the power consumption according to Eq. 13 14 15
3: if If channel allocation is feasible and unserved traffic demand
exists then

4: List available options
5: if Single channel is chosen (M/M/1) then
6: Apply half-interval search to find the minimum capacity for

the users
7: else if Homogeneous M/M/m is chosen then
8: Allocate the resource for the cell
9: Keep the WiFi channel and find the minimum capacity for

the users
10: else if Heterogeneous M/M/m∗ is chosen then
11: Adding white space capacity to the cell
12: end if
13: else
14: Get the waiting time of the cell with all available resources
15: end if
16: Update the system information
17: Repeat the process for all the cells
18: Calculate the power consumption
Output:

The power consumption, resource allocation, and the maximum
waiting time

In the WhiteCell, the less radios that are in operation, the
less power is consumed by the system as shown in Eq. 5.
The central idea of power saving in each WhiteCell is to
alleviate the use of the decentralized WiFi radios with the
centralized white space channels. To implement the division
of the white space capacity, we propose a Greedy Server-side
Replacement (GSR) algorithm to minimize power consump-
tion in the system as shown in Algorithm 1.
The GSR algorithm inputs are the measurement-based

residual channel capacity, the crowdsourced user distribution
information, the number of white space channels, and the
WiFi cells. The more cells that can be served by a largely-
propagated white space channel, the less radios need to be
turned on. To turn off more radios, the algorithm starts to
replace the cell radios with white space channels in the cells
with less traffic demands. The algorithm compares the three
configurations of channel capacity assignment in each cell and
chooses the setup with the lowest power consumption. Further,
the process is repeated until all traffic demand is served or the
channel resources have been used up. Finally, GSR outputs
the power consumption and channel allocation of the system.

III. IN-FIELD EXPERIMENTATION
In this section, we introduce our in-field measurement

experimentation, consisting of both spectral wardriving and
crowdsourcing of mobility patterns using an Android ap-
plication. In doing so, we compose an empirically-driven
understanding of diurnal spectral activity in diverse areas of
representative metropolitan areas and infer diurnal shifts in
user demand as users move throughout a region.

Fig. 4. Long Term Measurements Locations

A. Spectral Wardriving
When considering networks that can leverage a wide range

of carrier frequencies, an in-situ understanding of spectral
activity is critical in determining the optimal network con-
figuration. To this end, we collected spectral user activity
measurements in several typical areas including urban and
suburban business districts and neighborhoods and a university
campus in Dallas, TX, as seen in Fig. 4.
In each of the locations, we collect channel state information

measurements for a 24-hour period during weekdays. For spec-
tral analysis, we employ a Rohde & Schwarz FSH8 portable
spectrum analyzer that operates in frequencies from 100 KHz
to 8 GHz. This portable spectrum analyzer is controlled by
a Python script on a laptop that records the received signal
strength over time. To the best of our knowledge, there is no
commercially-available, mobile, multi-band antenna from 450
MHz to 5.2 GHz on the market. Due to this limitation, we use
a 700-MHz mobile antenna to perform in-field measurements
and normalize the mobile antenna gain across all bands with
indoor experimentation. To do so, we use a Universal Software
Radio Peripheral (USRP) N210 to generate signals at 450
MHz, 800 MHz, and 2.4 GHz. We feed these signals directly
to the spectrum analyzer and adjust the configuration of USRP
to make the received signal strength the same as the 5.2
GHz signal from Gateworks 2358 with a XR5 radio. We then
connect the signal source to a fixed multiband antenna (QT 400
Quad Ridge Horn Antenna) and measure the received signal
at a fixed distance with the 700 MHz antenna and antennas
for different bands to obtain the antenna loss for each band.
We adjust the in-field received signal strength collected via
the 700-MHz mobile antenna according to this normalization.
After the adjustment, any received signal over −79 dBm is
denoted as activity on the channel.
When wireless devices operate in WiFi bands, the chan-

nel separation and resulting differences in propagation are
relatively small (e.g., 5 MHz for the 2.4 GHz band). As a
result, many works assume that the propagation characteristics
across different channels are similar. However, with the large
carrier frequency differences of WiFi and white space bands
(e.g., multiple GHz), propagation becomes a key factor in
the deployment of wireless networks with both bands. Here,
a frequency band is defined as a group of channels which
have little frequency separation, meaning they have similar
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Fig. 3. Measured Activity Level (Percentage)

propagation characteristics. In this work, we consider the
diverse propagation characteristics for four frequency bands:
450 MHz, 800 MHz, 2.4 GHz, and 5.2 GHz. We refer to the
two former frequency bands as white space bands and the
two latter frequency bands as WiFi bands. The differences in
propagation and spectrum utilization create opportunities for
their joint use in cellular offloading according to the environ-
mental characteristics (e.g., urban or rural and downtown or
residential) of the deployment location.
Through the measured data set, we are able to calculate

the activity level via Eq. 7 with respect to the −79 dBm
threshold. We calculate a single activity level per one-minute
time window, and then average these activity levels over each
hour across the 24-hour duration as shown in Fig. 3.
Through the activity-level results in Fig. 3, we can see

several interesting differences between frequency bands, time,
and locations. The frequency of variation of 450 MHz and
800 MHz is relatively large compared to the bands 2.4 GHz
and 5.2 GHz which have more of a daily pattern. In fact,
the 450 MHz band has more variation in the downtown area
than other areas, whereas the 800 MHz band has similar
behavior across the four areas. The 800 MHz band is used for
emergency communication, which may explain the dynamics
of the spectral activity in all areas across time. We also observe
that the maximum activity levels of the 2.4 and 5.2 GHz bands
occur in the neighborhood, which could be explained by home
WiFi that are increasingly dual band. In the urban area, the
activity of 2.4 GHz has two peaks in most activity around
10:00 AM and 4:00 PM. In the downtown area, the single
peak of 2.4 GHz spans from 11:00 AM to 8:00 PM. In the
campus environment, the peak starts at 11:00 AM which is
a popular time for courses being taught in the building. The
spectral activity peak for the neighborhood area with 2.4 GHz
starts at 6:00 PM and lasts until 11:00 PM. The 5.2 GHz band
has a similar peak but lower activity than 2.4 GHz and with a
peak in neighborhood at around 9:00 PM. We integrate these
activity level results into the analysis of our GSR algorithm
in the following section.

B. Crowdsourcing User Mobility
To identify user mobility patterns, we leverage the data

from our Android-based application, WiEye, to analyze user
locations and mobility across time. The WiEye application,
created for the data collection, is currently available for
download and use via the Google Play store. Our application
offers connection quality information for WiFi access points
in both graphical and tabular form as a download incentive.

There are over 60k active users throughout the world, which
have collected a total of over 200 million measurements of
WiFi and cellular signal strengths. All data collection is done
as a background process: for opted-in users, signal strength
measurements are performed periodically as a uniform random
interval from 4 to 6 hours or for SMU researchers, who contin-
uously log signal strength measurements to make the most of
the time in the field. Additionally, the data collected has been
approved by the Southern Methodist University Institutional
Review Board, a human subjects research committee, ensuring
that all ethical precautions have been taken in collecting user
data with our application.
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User mobility data has a direct impact on the power
consumption and resource allocation of a wireless network.
For our user mobility analysis, we pull data from the WiEye
database in several Texas cities, including Houston, Dallas,
San Antonio, and Austin in weekdays from October 1st
2014 to March 20th 2015. Since we assume large downloads
do not occur at high mobility, we removed all data points
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Fig. 7. WiEye Regional Grids

with reported speeds above 30 km/h. We first query the all
Dallas measurements in the range restricted from 32.7471S
to 33.2153S latitude, and from 97.1677W to 96.5600W
longitude. We then superimpose the same area from Dallas
over Houston, Austin, and San Antonio according to the
difference of latitude and longitude between the center of the
cities as defined by Google maps. We split each area into a
36-region grid as shown in Fig 7, quantize time into six 4-
hour slots per day, and record in each grid the number of
unique users according to the device ID records from the
WiEye database. We compress the data set into one weekday
since WiEye reports the measurements only periodically, and
the data set has a limited number of users for a given region.

The total users are shown in Fig. 5, but due to space
limitations, the detailed results of each tile are available upon
request. From the data set, we identify up to 597, 292,

219, 187 users in Dallas, Austin, San Antonio and Houston,
respectively. There are several interesting findings in user
numbers that we can take away from the data set. The number
of user peaks happen at the time slot between 16:00-20:00 in
Dallas, Austin, and San Antonio, the exception being Houston
during the 8:00-12:00 slot. The lowest number of users occur
at the time slot between 0:00-4:00 in Houston, Austin, San
Antonio while between 4:00-8:00 in Dallas.

In Fig. 6(a), the tile that has the most fluctuation in Dallas is
C2 with a 600% swing and is a residential area with multiple
highway intersections. In Fig. 6(b), F4 has the least fluctuation
with a 60% swing and includes part of a downtown and dense
urban area of Dallas. The other 3 cities also have C2 tile with
the most user fluctuation, Austin (1100%), Houston (285.7%),
and San Antonio (1466.7%). The least fluctuating tiles are C4
in Austin with 66.7% variation, F3 in Houston with 71.4%



variation, and A3 in San Antonio with 46.7% variation. The
number of users in tile F4 of Dallas fluctuate less than other
tiles. A similar phenomenon is seen in F4 of the Houston
measurements. Since we have few data points collected from
the area in Austin and San Antonio, it is not clear of the
fluctuation in downtown area of these two cities. Grid regions
A2 and B2 of Dallas both contain part of a lake, but B2
always has more users than A2, most likely caused by the
highway in grid B2. Similar highway influences can be seen
in D5, C5. Regions C3 and D3 have more users than other
regions in column 3 across almost nearly all time since they
have highway intersections. In Austin, we find that more than
70% of users are located in 3 tiles: C2, C3, and C4. There
are several companies located in these tiles, such as Samsung
semiconductor, which seem to attract most of our users in
Austin. With the limited number of measurements, it is hard
to discern all of the factors that lead to user mobility. Since
we have the highest density of measurements in Dallas, our
analysis is based on Dallas for the rest of the paper. In the
future, more patterns are able to be leveraged clearly from the
WiEye application’s ongoing data collection.

IV. EVALUATION OF GSR
In this section, we apply our GSR algorithm to analyze the

factors that influence the performance of wireless networks
and evaluate the gains of the WhiteCell structure.

A. Experimental Setup
We select a WhiteCell topology over a 7-unit cell with

1 km2 area, as depicted in Fig. 1. We use the in-field
measurements from the previous section in GSR. For our
analysis, all the cells are in considered to be the size of a single
WiFi cell. The white space channels have more than 3 times
the propagation range of WiFi channels even with the lowest
frequency WiFi channel and the highest frequency white space
channels according to the Friis transmission equation and the
protocol model. Hence, one or more white space channels are
assumed to be shared over the 7-unit cell.
The standby power consumption of a radio is set as 500

Watts and transmit power of 1 Watt per Mbps. The population
density of the area is configured to 2000 per km2, the same
as Dallas. The population distribution among the 7 cells are
according to the measurement analysis shown in Fig. 12 at
11:00 AM. We set the traffic demand per user as 0.2 Mbps
and assume 30% of the users will take the service (i.e., the
take rate is 30%). We assume the tolerated response time of
users is 15 ms and adopt an 802.11n maximum data rate of
600 Mbps for all radios. For the single white space channel
setup, the first channel is assumed to be from the 800 MHz
band. For two white space channels, one channel is from the
450 MHz band, the other is assumed to be from the 800 MHz
band. With three white space channels, we use two channels
from the 800 MHz band and one channel from the 450 MHz
band.

B. Analysis in Extreme Scenarios
First we investigate the impacts of channel quality and user

mobility pattern on power consumption. In the measurements

shown in Fig 3, the most available channel has a 1.5% activity
level, and the most busy channel has a 31.4% activity level.
The area with the most user fluctuation has a 600% (Dallas
C2) user variation, and the least fluctuation area has a 40%
fluctuation. We have identified four scenarios based on these
measurement extremes: A) low activity level and high user
demand, B) high activity level and high user demand, C) low
activity level and low user demand, and D) high activity level
and low user demand.
We assume the user mobility varies linearly from the lowest

amount of users to the highest amount of users. When the users
are uniformly distributed in the cells, the power consumption
will be the highest. The total users are represented as 100%,
each cell has 14.3%. Thus, with 600% fluctuation, the user
distribution noted in percentage varies from 2.3% to 14.3%.
To contrast the high fluctuation configuration, we set the low
fluctuation scenario to vary form 6.9% to 9.7%, maintaining
the same average user distribution across time, 8.3%, as the
high fluctuation scenario. We assume that only a single white
space channel is available in the simulation.
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From the simulation results shown in Fig. 8, the minimum
power consumption in high user fluctuation (A and B) is lower
than in low user fluctuation (C and D) by 75.1% and 69.2%,
respectively. The average power consumption in high user
fluctuation (A and B) is lower than the low user fluctuation
(C and D) by 16.3% and 18.6%, respectively, but the peak
power consumption is higher than in low user fluctuation by
7.7% and 2.6%, respectively. When the number of users is
lower, the white space radio will replace one or more WiFi
or cellular radios to reduce the power consumption. Thus, the
total and average power consumption is reduced by serving the
traffic demand via less active radios. In contrast, with a higher
activity level, the offloading system has to spend more power
to achieve the same quality of service due to the reduction in
capacity.
We also study the impact of differing response times, the

user may tolerate W , on power consumption. The tolerance
response time is varied from 5ms to 90ms, using 5ms steps.
From the results shown in Fig. 9, we see that the lower the

requirement on response time, the less power is consumed.
As the tolerance response time increases, the power consump-
tion of both WiFi and heterogeneous configurations decrease
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monotonically. The WiFi configuration’s power savings mainly
stems from the reduction of channel capacity delivered. The
white space configuration, however, saves power from both
the reduction of channel capacity delivered as well as radios
being disabled. With this in mind, we can see sharp reductions
in power consumption using the white space configuration
due to radios (seen in the step behavior of the curves). WiFi
also experiences a reduction in power consumption, but it
is more gradual. We observe the power consumption can
be most greatly reduced by 151.2% with three white space
channels under the tolerance response time of 90 ms. When
the tolerance response time is more than 50 ms, there is a
slight difference between the two white space channels and
one white space channel. As discussed in the previous section,
most of the major cities in the U.S. have restrictions on the
number of white space channels available. Thus, the network
carrier is able to estimate the quality of service they can offer
according to the population density of the region, the number
of white space channels available, the expected response time
required, and the power available for operation.
Further, we utilize our previous measurement study of

channel activity in multiple cities of the DFW metroplex to
study the population density variation in white space network
design [13]. For this analysis, we use the achieved channel
capacity that maps to the population distribution.
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From the results shown in Fig. 10, we see that as the pop-
ulation increases, all the network configurations require more
power to serve the users. The power saving gains of a single
white space channel reach their peak, 512.6%, at a user density
of 50 users/km2, and the users are able to be satisfied by only

Fig. 11. Virtual City

one white space channel. The results provide a reference for
carriers to choose the resource allocation method according to
the population density. Increasing the number of white space
channels does not provide any additional reduction in power
consumption. We see a similar capping out at a user density of
100 users/km2 with two white space channels available. The
number of white space channels reaches a point of consistent
power consumption increases with the population. At a user
density of 50 users/km2, one white space channel may be
sufficient while 100 users/km2 requires two white space
channels. Also, the gain of a single white space channel
decreases as the number of white space channels increases.
This diminishing-returns effect on the gain can be seen at a
user density of 1000 users/km2: the first white space channel
gains 70% of power consumption, the second channel adds
48% to the system gains, and the third channel adds only
2.3%. Therefore, when the number of white space channels
are limited, splitting the channels to serve more WiFi cells
could decrease power consumption, though the power saved
decreases as the population density increases.

C. Evaluation in Dallas-like Virtual City

In practice, an area that has a stable channel state and
constant user mobility does not exist. Thus, in-field measure-
ments are required to infer the expected performance in the
real world. To evaluate the system performance with a more
practical configuration, we query multiple types of areas in
Dallas to find the percentage of user activity across time. In
a similar fashion to our prior in-field measurement database
query, we pull measurements from downtown areas, urban
areas, and suburban neighborhoods around Dallas in areas of
fixed size equal to the area of SMU’s campus.
Specifically, we use urban area measurements from the east

of SMU’s campus and from a shopping mall (North Park
Mall). Suburban neighborhood area measurements were taken
from the Highland Park residential area north of campus, from
a residential area north of North Park Mall, and from The
Village apartment complex east of campus. The number of
users located in these area are counted according to the GPS
locations. The distribution of the percentage of users across
these areas during a given weekday is recorded in Fig. 12.
The measurements are put in a WhiteCell configuration as

previously described, assuming the residents in the city are
held constant. The channel variation across the spectrum is
established according to both the channel state measurements
as well as the user mobility from the measurement results of
WiEye discussed in Section III. The results across 24 hours
of the simulated city are shown in Fig. 13.
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In this simulation, we observe that the WiFi power con-
sumption remains constant in cases when the users are more
uniformly distributed. This is because the WiFi radios must be
operating in order to serve the users due to the relatively-low
propagation range. The white space radios have the advantage
of adapting to the non-uniform user distribution and mobility.
When the user distribution changes quickly (e.g., at 9:00
AM), the white space configuration can reduce the power
consumption by approximately 20% compared to the previous
user distribution. Three white space channels reduce power
consumption by nearly half. As mentioned earlier, the reduc-
tion in power consumption is mainly caused by the ability to
disable the radios when the white space channels can be used
instead of the WiFi channels. From the numerical simulation,
one white space channel could reduce the power consumed
by 23.5% on average over 24 hours. Additionally, our results
show that using two white space channels reduces power
consumption by 44.6%, and using three white space channels
reduces power consumption by 63.3%. Similar to the previous
result, as the number of white space channel increases, the
power consumption gains per channel will become constant
since there is enough channel capacity to satisfy the users.
According to this result, we can design the offloaded network
to utilize unlicensed bands more efficiently, complementing
the existing cellular infrastructure.

V. RELATED WORK

Since FCC policy changes have made white space bands
available for use in data networks, many works have stud-

ied how to leverage white spaces [20]. In [3], the authors
considered a cognitive method to avoid collision between
white space data networks and TV broadcasting channels.
Many other works increase the convenience of using white
space databases (e.g., Microsoft’s White Space Database [21]).
Google has even visualized the licensed white space channels
in U.S. cities with an API for both research and commercial
use [22]. In our previous work, we studied point-to-point
communication with white space bands [23], and wireless
network deployment with many white space channels [13].
However, many of the major cities in the U.S. do not have
many white space channels, which seems to advocate for these
networks to supplement (and jointly used with WiFi) instead
of supplant cellular networks in dense urban areas.
Multi-user diversity is a topic of focus in the late 1990s [24],

where the channel quality varies across users due to differences
in environmental factors. As a result, transmitted wireless
signals are influenced by large-scale propagation, multi-path
fading, and several other factors [25]. Previous work has also
identified multi-user diversity for MIMO and beamforming
applications [26], [27]. However, most of these works do not
empirically derive in the field both the spectral activity and
user mobility patterns that contribute greatly to multi-user
diversity.
Applying white spaces to wireless networks is similar to the

previous multi-channel works with the exception of greater
propagation range. In [15], a multi-channel framework is
formulated as a queuing system, and a Server-Side Greedy
algorithm is proposed to optimize the throughput with low
complexity. In [28], a Delay-based Queue-Side-Greedy algo-
rithm is proposed with low complexity for optimal throughput
and near-optimal delay. Lastly, a multi-objective optimization
framework has been used to minimize energy consumption
in a multi-channel multi-radio system [29]. Other works [30]
focused on full-duplex technology. However, these works do
not address minimizing the power consumption to achieve a
certain quality of service and all assume an on-off channel
model versus a measurement-driven residual capacity and user
demand. Spectral diversity is isolated for a single user in [31].
In [32], multi-user dynamic channel access is proposed jointly
considering the temporal and spectral diversity in a multi-
channel model. However, none of these works address the
channel association problem in a multiple frequency band
scenario such as is the case with WiFi and white spaces.
White spaces have been applied in a scenario with spectral
diversity in a previous work of ours [13]. Energy and spectral
efficient study has been done for transmission delay [33], [34]
and interference reducing [35]. However, these works fail to
leverage white space frequencies for multi-user diversity in
both spectral and temporal scenarios.
Previous works in real-time systems have focused on mini-

mizing required hardware resources [36] or proven the capac-
ity augmentation bounds for schedulers of parallel tasks [37]
However, these works assume the parallel tasks have uniform
servers. White space use was investigated in [14] via a queuing
system, but only the homogeneous case was explored. In
contrast, we study the performance of a heterogeneous queuing
system with both white space channels and WiFi channels for



cellular offloading.

VI. CONCLUSION
In this paper, we considered the joint use of white space and

WiFi channels for cellular offloading with a minimum power
consumed and according to differing qualities of service. To
achieve this goal, we performed spectral wardriving in a major
metropolitan area and leveraged crowdsourced mobile phone
data over multiple large metropolitan areas to infer user mobil-
ity and resulting network demand. Using these measurements,
we proposed Greedy Server-side Replacement algorithm that
was inspired by a heterogeneous queuing system. Further we
investigated the performance in a virtual city to simulate the
expected in-field performance. Through this simulation, we
showed that using white space channels can greatly reduce
the power consumption of such cellular offloading systems in
most scenarios. From our results, we also saw the advantage
of using white space channels in adapting user mobility to
reduce power consumption. Through extensive analysis of
spectrum utilization and user mobility, we showed that power
consumption in WhiteCell offloaded networks can be reduced
by up to 513%. Finally, we considered the quality of service
impact on power consumption and found that up to 151% of
the power can be saved with only a slight relaxation of waiting
times.
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