
Wireless Networking Testbed and Emulator (WiNeTestEr)∗

Kiruba S. Subramani,
Joseph D. Beshay,

Niranjan Mahabaleshwar,
Ehsan Nourbakhsh,

Brooks McMillin,
Bhaskar Banerjee,

Ravi Prakash
The University of Texas at Dallas

Richardson, Texas, USA
{kiruba.subramani, joseph.beshay,
niranjan.mahabaleshwar, ehsaan,
brooks.mcmillin, bhaskar.banerjee,

ravip} @utdallas.edu

Yongjiu Du, Pengda Huang,
Tianzuo Xi, Yang You,

Joseph D. Camp,
Ping Gui, Dinesh Rajan

Southern Methodist University
Dallas, Texas, USA

{ydu, phuang, txi,yyou, camp,
pgui, rajand} @smu.edu

Jinghong Chen
The University of Arizona

Tucson, Arizona, USA
{jhchen}@email.arizona.edu

ABSTRACT
Repeatability, isolation and accuracy are the most desired
factors while testing wireless devices. However, they cannot
be guaranteed by traditional drive tests. Channel emulators
play a major role in filling these gaps in testing. In this pa-
per we present an efficient channel emulator which is better
than existing commercial products in terms of cost, remote
access, support for complex network topologies and scala-
bility. We present the hardware and software architecture
of our channel emulator and describe the experiments we
conducted to evaluate its performance against a commercial
channel emulator.

Keywords
Wireless; RF; Channel Emulation; Testbed

1. INTRODUCTION
The ability to conduct repeatable experiments is crucial

to the development of wireless devices and protocols. Most
of the time, researchers make simplifying assumptions about
the nature of their test environment and the experiment con-
trol procedures. However these assumptions do not always
hold good [1] making it harder to isolate device/protocol
performance from environmental effects.

The current wireless networking testbeds use a wide range
of approaches, varying from fully software-simulated testbeds
like ns-3 [2] to real hardware running in Faraday cages. How-

∗This work is supported in part by the National Science
Foundation MRI program under grant numbers 1040422 and
1040429.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are not
made or distributed for profit or commercial advantage and that copies bear
this notice and the full citation on the first page. Copyrights for components
of this work owned by others than ACM must be honored. Abstracting with
credit is permitted. To copy otherwise, or republish, to post on servers or to
redistribute to lists, requires prior specific permission and/or a fee. Request
permissions from Permissions@acm.org.
MSWiM ’14, September 21 - 26 2014, Montreal, QC, Canada
Copyright 2014 ACM 978-1-4503-3030-5/14/09 ...$15.00.
http://dx.doi.org/10.1145/2641798.2641809.

ever, the two extremes have their respective limitations.
Simulators are easy to implement but they are limited by
the models provided in software. Different simulators might
yield different results due to the assumptions and simulation
techniques used [3]. On the other hand using hardware in
Faraday cages is not always affordable and it does not allow
flexibility to test complicated scenarios involving mobility or
signal reflections. The balance between the two extremes is
provided by channel emulators.

The simplest form of channel emulation is achieved by us-
ing shielded RF cables between the transceivers and a pro-
grammable attenuator in the signal chain. An example of an
emulator based on this design was ASSERT [4], developed by
our group. By increasing (or decreasing) the attenuation we
simulated the transceivers moving apart (or moving closer).
The rate at which attenuation was varied corresponded to
the relative speed of the transceivers. This scenario covered
the fading effect of wireless channels.

However, wireless transmissions are not only affected by
fading but also by multiple reflections of the same signal
from obstacles in the surrounding environment (multi-path
effects). Devices with multiple antennas (MIMO) exploit
these signal reflections to achieve better throughput. Accu-
rate emulation of multi-path effects requires creating multi-
ple copies of the transmitted signal with different time delays
(phases). This cannot be achieved by attenuators. Instead
it is done by digitizing the signal and manipulating it using
digital signal processing (DSP). The resulting digital signal
is converted back to analog.

Commercial solutions exist for emulating environments
with multi-path effects [5] [6]. However they are prohibitiv-
ely expensive and are limited to simulating environments
with 2 pairs of devices or less. Commercial channel emu-
lators are thus impractical for researchers who are usually
cost-constrained and interested in experiments that involve
the interaction (and interference) between multiple devices
with a higher degree of connectivity. As a result, researchers
sought to develop their own channel emulators that could
achieve multipath effects for multiple devices while main-
taining relatively low cost. An example is the work in [7]
which uses a single field programmable gate array (FPGA)

to simulate a 90Mhz-wide environment for up to 15 devices
operating in the 2.4 GHz ISM band. The design in [7] cannot
scale due to the FPGA resource constraints.

In this paper, we present our Wireless Networking Testbed
and Emulator (WiNeTestEr) which is designed to simulate
100-Mhz-wide environments with multipath in the 2.4 GHz
ISM band. The main features of WiNeTestEr are:

• scalability: the system uses a distributed channel emu-
lation algorithm running on multiple FPGAs so it can
potentially scale to hundreds of nodes,

• remote access: a device control protocol allows the sys-
tem to run experiments without onsite-operator inter-
vention,

• concurrent experiments: the modular design allows for
multiple independent experiments to be run by differ-
ent users at the same time,

• multi technology support: experiments can be per-
formed on different technology devices operating in
their native frequencies (Bluetooth, WiFi, Zigbee, etc.).
The design is flexible to allow adding more frequency
bands in the future with minimal changes.

• full duplex channels: the channel between two devices
is full duplex with support for non-reciprocal channel
conditions i.e. the signal can experience a certain en-
vironment in one direction and a different one in the
other.

WiNeTestEr’s design is loosely based upon ASSERT [4].
ASSERT performs channel emulation in the 900 MHz ISM
band using attenuation. Attenuators are used to control the
transmitted signal strength to emulate the required chan-
nel conditions (deep fade, slow fade) but it cannot emulate
multi-path effects. WiNeTestEr was developed to bridge this
gap.

2. SYSTEM DESIGN
WiNeTestEr consists of two distinct networks; the control

network and the RF network as shown in Figure 1. The
control network is where the experiment control takes place.
It consists of the Control PC and Wireless Open-Access Re-
search Platform (WARP) v2.2 boards [8] connected by an
Ethernet network. The RF network is where the channel
emulation happens. It consists of a set of units under test
(UUTs) interconnected across RF and combiner boards. All
the connections in the RF network use shielded coaxial ca-
bles. The RF board has one input and three outputs, and
is responsible for converting the input signal from analog to
digital and passing it to the FPGA on the WARP board
on which the RF board is mounted. The FPGA applies
the desired channel conditions for each output. The RF
board converts each signal back to analog to be output on
the equivalent port. The combiner board is a passive board
that is responsible for combining up to four signals into one
to be sent to a UUT.

A unidirectional link from UUT A to UUT B is realized
through seven steps as shown in Figure 1:

1. UUT A’s output is connected to UUT A’s RF board
through a wideband duplexer (circulator).

2. RF board digitizes the signal and passes it to its WARP
board’s FPGA.

Figure 1: A simple topology of two UUTs connected
over a single bidirectional link.

3. FPGA makes copies of the signal for each of the three
outputs.

4. FPGA processes the digital signal based on the channel
conditions set by the control PC for each output.

5. RF board converts the signals back to analog and out-
puts each of them on its port.

6. The equivalent RF board output is connected to UUT
B’s combiner board through a coaxial cable.

7. Combiner board passes the combined signal of all of
its inputs to UUT B through the circulator.

Using the unidirectional link as a building block, it is pos-
sible to build any higher degree topology involving any num-
ber of UUTs. For example, a simple bidirectional link can
be formed from two unidirectional links as shown in Figure
1. More details on topology formation are discussed in the
implementation section.

An experiment is run by specifying the channel condition
that should be applied to each link in the topology for a
certain period of time. The Control PC orchestrates the
experiment by applying the channel conditions to each RF
board output and signaling the UUTs to start executing.
Once the experiment expires, the Control PC collects the
results from UUTs and resets the channel conditions.

In WiNeTestEr, the hardware and software modules go
hand in hand in carrying out the experiments scheduled by
the user. We introduce the hardware and software architec-
ture of our system in sections 2.1 and 2.2 respectively.

2.1 Hardware architecture
Our solution is based on development boards by WARP

Project [8]. The WARP development board version 2.2 has
a Xilinx Virtex 4 FPGA, 2 PowerPC cores, external memory
slots, a RAM slot and other peripheral connectivity solutions
to interface with external boards and controlling devices.
Each WARP board can house two RF boards which can be
connected to two different input UUTs. Figure 2 shows the
overall architecture of a WARP board with two RF boards
mounted.

Channel emulation can be accurately performed in the
digital domain. The signal transmitted by the UUT is down-
converted to baseband and digitized. Once the digitized

Figure 2: Architecture of a WARP board with two
attached RF boards.

signal is modified to reflect the desired channel emulation, it
is converted back to analog and then up-converted. Channel
emulation is done on the FPGA as instructed by a PowerPC
processor.

The RF board consists of two signal chains, namely down-
conversion and up-conversion. Each component on the board
can be broadly classified as being part of one of the two
chains. The down-conversion chain consists of digital step
attenuator (DSA), quadrature demodulator, variable gain
amplifier (VGA) and Analog to Digital Converter (ADC).
The up-conversion chain consists of Digital to Analog Con-
verter (DAC), VGA and quadrature modulator. Clock cir-
cuit present on each board helps in synchronizing data con-
version operations. The clock circuit also provides reference
input to Phase Locked Loop (PLL) which is used in gener-
ating Local Oscillator (LO) signal for down-conversion and
up-conversion operations. As shown in Figure 2, the FPGA
creates three identical copies of the original signal transmit-
ted by the UUT. These signals can be independently modi-
fied as instructed by the PowerPC processor to emulate the
desired environment. Each signal corresponds to an output
port that will eventually be connected to a UUT via the
combiner board.

2.2 Software architecture
The heart of WiNeTestEr’s software architecture is the

Control PC. It serves as the proxy between the user and
other system components. The Control PC maintains a
database of the experiment information as well as the hard-
ware resources available in the system (WARP boards, RF
boards, UUTs and cable connections). Users run a GUI ap-
plication on their local machines and connect to the Control
PC to retrieve the current system status, design their exper-
iments and submit them for execution. To set the environ-
ment conditions, the Control PC sends the link parameters
to the Power PC processors of the WARP boards to which
the experiment’s RF boards are connected.

The WARP board forwards the link parameters to the
FPGA which applies them to the digitized signal received
from the RF board. The FPGA could have directly read the
link parameters from the Ethernet interface of the WARP
board. However based on prior experiences from ASSERT,
we decided to run embedded Linux on the WARP board
(PowerPC processor) to provide a more advanced interface
that can do more than receiving and parsing link parameters.
Running Linux also allowed us to use high level libraries for
log collection and experiment monitoring.

We designed a UUT Management protocol to be able to
orchestrate experiments without human intervention. The

Figure 3: Software architecture.

UUT management protocol allows the Control PC to trans-
fer execution images to UUTs to be used for experiments.
The protocol also provides the interface to start, monitor,
stop and collect experiment results from the UUTs. For the
default setup, UUTs are Beagle Bone Black boards [9] which
have ARM processors running Linux. Each board has a
WiFi dongle (IEEE 802.11 b/g). Execution images are com-
pressed archives containing ARM binaries and configuration
files provided by the user. The UUT management protocol
is used to transfer the specific archive to each UUT and con-
trol the experiment execution. This protocol however is an
optional component of our system. Users who want to test
their devices without exposing their binaries/configuration
files may choose to use their own management protocol and
only use WiNeTestEr for simulating the environment. They
also have the option to implement the experiment control
subset of the protocol without the image transfer. Our de-
sign is flexible to support multiple heterogeneous UUTs to
exist and be one of multiple experiments running concur-
rently.

The software components running on the Control PC,
WARP board, UUTs are shown in Figure 3. The follow-
ing section outlines the purpose of each component and the
main design decisions involved.

3. IMPLEMENTATION

3.1 RF Board
The RF board is responsible for frequency translation of

the signal which allows channel emulation to be carried out
on the FPGA based on environment conditions provided by
the PowerPC processor. The architecture of the RF board
is shown in Figure 4. RF interface to the board is pro-
vided by means of SMA jacks and coaxial cables. The use of
coaxial cables minimizes interference among signals thereby
increasing the robustness and repeatability of experiments.
The RF board supports input signal power in the range of
-25 dBm to +26 dBm and an output power of -20 dBm to
-110 dBm. To achieve this target specification, a maximum
attenuation of 136 dB is required from the design. This
value is divided among multiple components on the board
such as DSA, VGA and FPGA.

DSA performs the first stage of attenuation on the input
signal. Owing to high signal strength of the input, there is
a very high chance of it saturating the quadrature demod-
ulator. Placing a DSA at the start of the chain helps re-
strain signal strength to reasonable values. Modern wireless
standards use complex modulation schemes such as QPSK
or QAM to achieve higher speed and lower error rate. To

support these standards, broadband quadrature modulator
and demodulator with good performance specifications have
been used in the up-conversion and down-conversion cir-
cuitry. For best-case performance of quadrature modulator,
signal properties of In-phase (I) and Quadrature (Q) com-
ponents need to be perfectly matched. In other words, a
mismatch between these two components in terms of DC
offset, gain and phase results in LO leakage and sideband
issues thereby degrading the quality of output signal. Base-
band VGAs are used to offset amplitude mismatches of I/Q
signals. To obtain very low value of sideband signal, both
gain and phase need to be carefully adjusted in the FPGA.
Also, in down-conversion chain, VGA helps to amplify or
attenuate the baseband signal to meet the dynamic range
requirements of ADC. In WiNeTestEr, since the baseband
signal has a bandwidth of 100 MHz, a sampling clock of 200
MHz is needed for the data converters to avoid aliasing. The
clock circuit consists of a voltage controlled crystal oscillator
(VCXO) as the clock source with clock distribution/divider
IC’s providing identical clocks to data converter chips (ADC
and DAC).

Resolution of data converter ICs has significant impact on
the performance of the system. During down-conversion, the
demodulator outputs I/Q signals, requiring separate ADC
to digitize each signal. Two 12-bit ADCs were used in the
design to satisfy the signal to noise ratio (SNR) requirement
of the receiver. Up-conversion, on the other hand, handles a
wide range of output signal strength. Also, each RF board
houses 3 up-conversion chains, with each chain having its
own I/Q signals. Hence a dual 16-bit DAC was used on
each chain to convert the signal back to analog domain.

Figure 5 shows the RF front end that was designed for
WiNeTestEr. A single ended signal from the circulator is
connected to the first SMA jack marking the input to the
board. The other three SMA jacks correspond to the out-
put from each up-conversion chain. The RF board sup-
ports three different power sources namely external adapter,
WARP FPGA board and screw terminal. Selected source is
regulated using low-dropout regulators (LDO) to generate
5V, 3.3V and 1.8V analog and digital supplies. Utmost care
has been taken to reduce supply noise with the help of global

Figure 4: RF board architecture.

Figure 5: RF Board for WiNeTestEr.

and local decoupling capacitors and ferrite beads. Care-
ful floor planning, layer management and termination tech-
niques have been followed to obtain the best performance
from the board.

3.2 WARP Board
We selected WARP v2.2 boards to house our RF boards

due to the large number of pins available on 4 daughter-
card slots. Each daughtercard slot has 124 pins which are
routed to the dedicated I/O on the FPGA. With 4 such
slots, we have 496 pins which are sufficient for communica-
tion between the FPGA and two RF boards. Xilinx Virtex
4 FPGA in WARP also has two PowerPC cores operating at
300 Mhz, one of which we used to run Linux. The Control
PC communicates with the Linux via the Ethernet port on
the WARP board.

Another notable feature in the WARP board is the System
ACE chip. This chip connected to the CompactFlash slot
on the board can program the FPGA and load Linux to the
PowerPC processor using a single image file which has both
the FPGA image and the Linux kernel. The System ACE
chip reads these files from a FAT16 formatted CompactFlash
card.

3.3 Combiner Board
The Combiner board is responsible for combining RF sig-

nals from different boards to implement multi-user inter-
ference. As shown in Figure 6, the combiner board con-
tains four commercial low-noise amplifiers (LNA), four RF
switches, and a custom designed 4-to-1 active combiner chip.
The combiner chip uses active method to realize wideband
RF signal combining and has a small chip area (1 mm × 1
mm, pads limited). The LNA is used to improve noise fig-
ure and sensitivity of the combiner board. When the input
signal level is high, RF switches are used to bypass the LNA
to improve the linearity of the combiner board.

3.4 Channel Emulation
The baseband channel emulation has been implemented

on the FPGA and its architecture is shown in Figure 7. Each

tap has a delay unit(rx) controlled by a user-defined value,
followed by scaling based on fading parameters (ρx(t)φx(t))
where x ∈ (0,6). The resulting signals from each tap are
added together to emulate a multi-tap fading channel.

In WiNeTestEr, summation of sinusoids (SOS) method
[10], [11] has been used to generate fading channel. This
method of channel generation for emulation has been widely
investigated in the past [12], [13], [14]. However, existing
fading channel emulators demand large memory source to
generate channels, which degrades the scalability. In this
project, a novel structure to implement SOS based channel
generation has been proposed [15]. With this structure, the
generation of one Rayleigh channel consumes only 1 unit
memory source (∼ RAMB16) of the available 376 in the
FPGA. Besides reducing memory requirements, this work
has also optimized word length selection and channel data
update rate. Intuitively, larger bit width generates higher
channel accuracy at the cost of hardware resources. Similar
tradeoff exists between channel data generation rate and ac-
curacy over time domain. In this project, optimization on
the two terms (bit width and update rate) are performed
[15], aiming at minimizing hardware resources at a certain
channel accuracy level. With the reduction of memory con-
sumption and optimization on the two terms, scalability is
drastically improved on WiNeTestEr.

Figure 6: (Left) Architecture of the combiner board.
(Right) Fabricated combiner board.

Figure 7: Multi-tap fading generator.

3.5 Software
WiNeTestEr is a distributed system with the Control PC,

WARP boards and the UUTs being its components. The
software slices running on each of these components are
shown in Figure 3. We select the most significant slices and
describe them in more details in the following paragraphs.

The different components of the system use a common
Communication Library to exchange messages. We wrote it
in both Java and C++. We used the Boost thread and sys-
tem libraries [16] to maintain cross-architecture and cross-
platform compatibility in C++. The library uses User Data-
gram Protocol (UDP) to provide services to send and receive
messages in both blocking and non-blocking modes. Relia-
bility is provided using optional acknowledgments and re-
transmissions on top of UDP. Communicating entities are
identified by a unique ID, port and sub-system ID. Each
module using the communication library creates an instance
of it with its identity and a separate thread handles all com-
munication responsibilities.

Logging is one of the integral part of our system. It is
used for both debugging and collecting results and statistics
of the experiment. We have implemented a log library which
is used by all other software modules to log system events.
Log messages are output to standard output/error streams
and a log file. The log library allows software modules to
log events and stamp them with the identity of the software
module, time and severity of events.

Experiment Control is the main coordinator of all the soft-
ware modules. It is present in the Control PC and coordi-
nates all activities from the time an experiment is created
until it is completed. When the user creates an experiment
topology using the GUI, experiment control interacts with
Topology Mapper and determines the the availability of the
desired number of sites and the interconnections between
them necessary to correctly emulate the network topology
specified by the user. Once the experiment is flagged fea-
sible, the Topology Mapper transfers the experiment pa-
rameters (channel conditions) from the GUI to the Chan-
nel Emulation module running on the PowerPC core which
later forwards it to the FPGA. If the user has a UUT im-
age, Experiment Control transfers the image to the UUT by
interacting with the UUT Management module. The UUT
management module controls the start and end of the exper-
iment. It is also responsible for collecting experiment logs
from the UUT and transferring them to the Control PC.
Experiment Control makes these logs available to the user
through the GUI.

A GUI application has been developed for the end user
to run experiments. This is a standalone application which
authenticates the user and allows them to create, start and
abort experiments. It is also used to load any UUT images
and collect the experiment logs. The user can create the ex-
periment topology using the GUI, selecting different UUTs
and specifying all the communication constraints among the
UUTs. This application communicates only with the Exper-
iment Control module in the Control PC. A screenshot of the
GUI is shown in Figure 8. As shown in the figure, the user
can create different types of UUTs, communication links be-
tween them and specify experiment parameters. This UUT
topology can be saved on disk which can be used when the
experiment needs to be repeated. The GUI can also be used
to view properties of the testbed like physical topology of
the UUTs, available/allocated UUTs for experiments etc.

A MySQL database stores all information about the test-
bed, completed and ongoing experiments. It stores informa-
tion about the physical topology and the different UUTs in
the testbed. When the testbed is first assembled, informa-
tion about the different RF links and UUTs are manually
entered into the database. When users want to use their
own UUTs, information has to be manually entered into the
database. All RF links are directed and are represented by
the tuple <UUT A, WARP board Number, Port Number,
UUT B> which captures the unidirectional connection from
UUT A to UUT B through a RF board’s output port. An
RF link is considered available if and only if UUT A, UUT B
and the WARP board on which the RF board is mounted are
all up and running. Each of these components periodically
send Keep Alive messages updating the database. Topology
Mapper uses the requirements from an experiment and the
information in the database to check the feasibility of the
experiment. If it is feasible, it allocates RF links and UUTs
to the experiment. Apart from this, the database has in-
formation about all authorized users of the system. When
users first start the GUI, they are authenticated against the
information in this database. Data Access is a library which
wraps all the internals of database access and provides ap-
plication specific primitives for the other software modules
to access the database.

Topology of an experiment is restricted by the physical
topology of the testbed and the presence of other concur-
rent experiments. The problem of mapping a set of links
required by the user to the available physical connections
in the testbed is an instance of Directed Subgraph Isomor-
phism. Topology Mapper uses an approximation algorithm
to find a subgraph of the physical connections in the testbed
that satisfies the user requirements. If such a subgraph is
found, its links are exclusively allocated to the user exper-
iment for the required duration. As explained above, the
information about the available links and whether they are
being used by other experiments or not, is retrieved from
the database.

As the name suggests UUT Management controls the ac-
tions of the UUT. It accepts the execution image which con-
sists of a user image and a start-up script having all the pa-

Figure 8: A screenshot of the GUI showing a topol-
ogy of four UUTs.

rameters, environment variables necessary for the execution
of the user application. When the user uploads an execution
image through the GUI, it is stored in the file server which
is later fetched by the UUT Management using Trivial File
Transfer Protocol (TFTP). It accepts commands to start,
stop, abort an experiment from the user through the Exper-
iment Control. It also informs the user about any premature
termination of the user image. Once the experiment is ter-
minated, it transfers the experiment logs back to the user.
UUT Management communicates with the Experiment Con-
trol in the Control PC using the Communication Library .

Channel Emulation is responsible for transferring the ex-
periment parameters from the user to the FPGA to get the
desired channel conditions. Channel Emulation slice on the
ControlPC reads the parameters from the user and writes it
to the database. The Control PC sends the experiment ID to
the channel emulation slice running on WARP boards allo-
cated to this experiment by the Topology Mapper. Channel
Emulation slice on the WARP board reads the emulation
parameters from the database, converts them to the for-
mat required by the FPGA and writes them to a designated
memory location.

4. EXPERIMENTAL VALIDATION
In this section we compare WiNeTestEr’s channel emula-

tion performance with a commercial channel emulator, Az-
imuth ACE MX MIMO [5]. It is one of the state-of-the-art
channel emulators used by industry and academia to test
complex wireless protocols. We chose not to perform any
over-the-air experiments due to the difficulty in controlling
the multi-path parameters. Even a seemingly simple envi-
ronment like an open-air football field will have several taps
(paths taken by different signal reflections).

We used two Ubiquiti SR-71 Cardbus WiFi adapters (Atheros
AR9160 chipset) as UUTs. The cards were connected to two
laptops running Linux 3.2 which includes the ath9k driver.
Both cards were set to join an adhoc network operating on
channel 14 (center frequency 2484 MHz) as per the IEEE
802.11 PHY/MAC standard for the 2.4 GHz ISM band. The
basic rate of the adhoc network was fixed to 36 Mbps to
avoid the results being affected by the driver’s auto-rate al-
gorithm. We could have picked another value for the fixed
rate. However, we found 36 Mbps to provide a good balance
between sensitivity to different channel conditions and the
ability to gracefully degrade in performance as the channel
worsens.

An experiment starts by the cards joining the adhoc net-
work. Once the cards associate, we use Iperf [17] to send
UDP packets carrying a 1470 byte payload from one ma-
chine to the other for 4 minutes while recording the average
throughput achieved every second. At the end of the exper-
iment, Iperf reports the number of packets lost during the
session.

We defined four environments (channel conditions) each
with a different number of taps. Table 1 shows the emulation
parameters for Environment 1. It represent the basic case of
having a single copy of the signal propagating through the
channel. Environments 2, 3 and 4 use the top 2, 3 and 4
taps (respectively) of the ITU Vehicular - A Channel Model
[18] shown in Table 2. The model uses a Doppler value of
184 Hz which results in the signal fading in a way roughly
equivalent to that experienced by a vehicle traveling at 80
km/hr.

Doppler 1 Hz

Tap Delay(ns) Tap Gain(db) K-Factor(db)
Tap 1 0 0 -99

Table 1: Environment 1 channel parameters.

Doppler 184 Hz

Tap Delay(ns) Tap Gain(db) K-Factor(db)
Tap 1 0 0 -99
Tap 2 310 -1.0 -99
Tap 3 710 -9.0 -99
Tap 4 1090 -10.0 -99
Tap 5 1730 -15.0 -99
Tap 6 2510 -20.0 -99

Table 2: ITU Vehicular A Channel Model.

Figure 9: Throughput vs. Time plot for the experi-
ments through WiNeTestEr.

Figure 10: Throughput vs. Time plot for the exper-
iments through Azimuth.

For each environment, we ran the experiment through
both WiNeTestEr and Azimuth and recorded the through-
put results. Figures 9 and 10 show the results obtained from
WiNeTestEr and Azimuth, respectively.

4.1 Results Analysis
The results show a dip in the throughput roughly every

minute. This happens with both WiNeTestEr and Azimuth.
To isolate the issue, we ran the experiment over-the-air in an
indoor interference-free environment. The cards experienced
the same dips in throughput. While it would be interesting
to dig deeper into this observation and find the root cause,
it is out of the scope of this paper. We attribute these dips
in throughput to the hardware or the driver of the adapters.

Both WiNeTestEr and Azimuth results share a trend of
decreasing throughput with the increase of the number of
taps. This matches the expectations we have for different
environments especially environments 2,3 and 4 which emu-
late high mobility.

The results however are not identical. Despite sharing
the same trend, WiNeTestEr and Azimuth achieve differ-
ent throughput for the same channel parameters. We at-
tribute this to the different level of control we have over the
low level multi-path parameters in Azimuth compared to
WiNeTestEr. Each tap in the multi-path parameters con-
sists of a set of components. Unlike WiNeTestEr, Azimuth
does not provide an interface to specify the value of each of
these components. WiNeTestEr allows for repeating exper-
iments under identical multi-path parameters even in terms
of individual tap components. It is worth noting that spec-
ifying these components is optional and WiNeTestEr pro-
vides a set of default components for unfamiliar users.

5. CONCLUSION AND FUTURE WORK
Winetester is a scalable and cost-effective channel emula-

tor that allows researchers to perform accurate, repeatable
and complex experiments (topology, multipath effects). The
distributed design of the system is evident in both the hard-
ware and the software architecture. The hardware consists
of UUTs, RF boards and combiner boards, interconnected
to form the base topology. The software consists of a central
Control PC that communicates with embedded Linux run-
ning on WARP boards and the FPGA that manipulates the
signal using DSP. The paper discussed the different design
and implementation aspects of each of the components.

Experimental results show that performance of WiNeTestEr
is comparable to commercially available solutions. Being
remotely accessible makes it an efficient alternative for re-
searchers in academia and the industry alike.

WiNeTestEr is currently limited to operating in the 2400-
2500 MHz band due to the RF board design. We intend to
address this in the future revision of the RF board to be able
to emulate environments in the range of 700 MHz to 6 GHz.
Old RF boards will be swapped with the new ones without
requiring any modification to the rest of the system. This
will allow testing a wider range of devices and technologies
(GSM, CDMA, LTE, 5 GHz Wifi, etc.).

6. ACKNOWLEDGMENT
We thank Krypton for their input in the design of RF

and Combiner boards. We also thank Amba Kalur for her
support during the initial phases of the RF board design.

7. REFERENCES
[1] Ryan Burchfield, Ehsan Nourbakhsh, Jeff Dix, Kunal

Sahu, S Venkatesan, and Ravi Prakash. RF in the
jungle: Effect of environment assumptions on wireless

experiment repeatability. In IEEE International
Conference on Communications, pages 1–6. IEEE,
2009.

[2] NS-3. Network Simulator 3. http://www.nsnam.org/.

[3] David Cavin, Yoav Sasson, and André Schiper. On the
accuracy of MANET simulators. In Proceedings of the
second ACM international workshop on Principles of
mobile computing, pages 38–43. ACM, 2002.

[4] Ehsan Nourbakhsh, Jeff Dix, Paul Johnson, Ryan
Burchfield, S Venkatesan, Neeraj Mittal, and Ravi
Prakash. ASSERT: A wireless networking testbed. In
Testbeds and Research Infrastructures. Development of
Networks and Communities, pages 209–218. Springer,
2011.

[5] Azimuth. ACE MX MIMO Channel Emulator for
Broadband Wireless. http://www.azimuthsystems.
com/products/ace-channel-emulators/ace-mx/,
fetched April 2014.

[6] octoScope. octoBox MPE (Multi Path Emulator)
Wireless Testbed. http://www.octoscope.com/
English/Products/octoBox_MPE/octoBox_MPE.html,
fetched April 2014.

[7] Kevin C. Borries, Glenn Judd, Daniel D. Stancil, and
Peter Steenkiste. FPGA-based channel simulator for a
wireless network emulator. In 69th Vehicular
Technology Conference, VTC, pages 1–5. IEEE, 2009.

[8] WARP Project. http://warpproject.org.

[9] Beagle Board. Beagle Bone Black.
http://beagleboard.org.

[10] R.H. Clarke. A statistical theory of mobile-radio
perception. Bell Syst. Tech. J., 47:957 –1000, 1968.

[11] W.C. Jake. Microwave Mobile Communication.
Wiley-IEEE Press, Piscataway, NJ, 1974.

[12] A. Alimohammad and B.F. Cockburn. Modeling and
hardware implementation aspects of fading channel
simulators. IEEE Tran. on Vehicular Technology,
57(4):2055 –2069, Jul 2008.

[13] Chengshan Xiao et al. Novel sum-of-sinusoids
simulation models for rayleigh and rician fading
channels. Wireless Communications, IEEE Tran. on,
5(12):3667 –3679, Dec 2006.

[14] Jianguo Xing et al. FPGA-accelerated real-time
volume rendering for 3d medical image. In 3rd Int.
Conf. on Biomedical Engineering and Informatics
(BMEI), volume 1, pages 273 –276, Oct 2010.

[15] Pengda Huang, M.J. Tonnemacher, Yongjiu Du,
D. Rajan, and J. Camp. Towards scalable network
emulation: Channel accuracy versus implementation
resources. In Proceedings of IEEE INFOCOM, pages
1959–1967, April 2013.

[16] Boost C++ Libraries. http://www.boost.org.

[17] Iperf. http://iperf.fr/.

[18] WP2.1 SUIT Project Deliverable. Fixed and Mobile
Channel Models Identifications, July 2006.

