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a b s t r a c t

Repeatability, isolation and accuracy are the most desired factors while testing wireless devices. However,

they cannot be guaranteed by traditional drive tests. Channel emulators play a major role in filling these gaps

in testing. In this paper we present an efficient channel emulator which is better than existing commercial

products in terms of cost, remote access, support for complex network topologies and scalability. We present

the hardware and software architecture of our channel emulator and describe the experiments we conducted

to evaluate its performance against a commercial channel emulator.

© 2015 Elsevier B.V. All rights reserved.
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. Introduction

The ability to conduct repeatable experiments is crucial to the de-

elopment of wireless devices and protocols. Most of the time, re-

earchers make simplifying assumptions about the nature of their

est environment and the experiment control procedures. However

hese assumptions do not always hold good [1] making it harder to

solate device/protocol performance from environmental effects.

The current wireless networking testbeds use a wide range of ap-

roaches, varying from fully software-simulated testbeds like ns-3

2] to real hardware running in Faraday cages. However, the two ex-

remes have their respective limitations. Simulators are easy to im-

lement but they are limited by the models provided in software.

ifferent simulators might yield different results depending on the

ssumptions and simulation techniques used [3]. On the other hand

sing hardware in Faraday cages is not always affordable and it is not

exible enough to test complicated scenarios involving mobility or

ignal reflections. The balance between the two extremes is provided

y channel emulators.

The simplest form of channel emulation is achieved by replacing

he antennae of two communicating transceivers with shielded RF

ables and a programmable attenuator in between. An example of

n emulator based on this design is ASSERT [4], developed by our

roup a few years back. By increasing (or decreasing) the attenuation

t simulates the transceivers moving apart (or moving closer). The
∗ Corresponding authors.
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ate at which attenuation is varied corresponds to the relative speed

f the transceivers. This scenario covers the fading effect of wireless

hannels.

However, wireless transmissions are not only affected by fading

ut also by multiple reflections of the same signal from obstacles

n the surrounding environment (multi-path effects). Devices with

ultiple antennae (MIMO) exploit these signal reflections to achieve

etter throughput. Accurate emulation of multi-path effects requires

reating multiple copies of the transmitted signal with different time

elays (phases). This cannot be achieved by attenuators. Instead it is

one by digitizing the signal and manipulating it using digital signal

rocessing (DSP). The resulting digital signal is converted back to

nalog.

Commercial solutions exist for emulating environments with

ulti-path effects [5,6]. However they are prohibitively expensive

nd are limited to simulating environments with 2 pairs of devices

r less. Commercial channel emulators are thus impractical for

esearchers who are usually cost-constrained and interested in

xperiments that involve the interaction (and interference) between

ultiple devices with a higher degree of connectivity. As a result,

esearchers sought to develop their own channel emulators that

ould achieve multipath effects for multiple devices while maintain-

ng relatively low cost. An example is the work in [7] which uses a

ingle field programmable gate array (FPGA) to simulate a 90 MHz-

ide environment for up to 15 devices operating in the 2.4 GHz

SM band. The design in [7] cannot scale due to the FPGA resource

onstraints.

In this paper, we present our Wireless Networking Testbed and

mulator (WiNeTestEr) which is designed to emulate 100-MHz-wide
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Fig. 1. A simple topology of two UUTs connected by a bidirectional link.
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environments with multipath in the 2.4 GHz ISM band. The main fea-

tures of WiNeTestEr are:

• Scalability: the system uses a distributed channel emulation ar-

chitecture running on multiple FPGAs so it can potentially scale to

hundreds of nodes,

• remote access: a device control protocol allows the system to run

experiments without onsite-operator intervention,

• concurrent experiments: the modular design allows for multiple

independent experiments to be run by different users at the same

time,

• multi technology support: experiments can be performed on dif-

ferent technology devices operating in their native frequencies

(Bluetooth, WiFi, Zigbee, etc.). The design is flexible to allow

adding more frequency bands in the future with minimal changes,

• full duplex channels: the channel between two devices is full du-

plex with support for non-reciprocal channel conditions i.e. the

signal can experience a certain environment in one direction and

a different one in the other.

WiNeTestEr is our followup to ASSERT [4]. ASSERT performs chan-

nel emulation in the 900 MHz ISM band using attenuation. Attenua-

tors are used to control the transmitted signal strength to emulate the

required channel conditions (deep fade, slow fade) but it cannot emu-

late multi-path effects. WiNeTestEr was developed to bridge this gap.

2. System overview

WiNeTestEr is a DSP-based channel emulator. The system is built

around the following core function: RF signals generated by a trans-

mitter are digitized, processed in the digital domain, converted to

analog and delivered to the receiver. The processing phase can apply

attenuation and amplification to emulate fading, or create multiple

copies of the signal with different signal levels and phases to emulate

multipath effects.

WiNeTestEr can be logically broken into three parts: units under

test (UUTs), DSP sites and the Control PC. UUTs are the devices with

RF transceivers. Signals traveling between pairs of devices are ma-

nipulated to provide the desired channel conditions for the exper-
ment being conducted. The device antennae are removed and re-

laced with coaxial cables connected to the DSP sites.

DSP sites, we call them sites for short, are the heart of channel

mulation. A site takes the signal transmitted by a UUT, manipulates

t in the digital domain using an FPGA to apply the specified channel

onditions and delivers the resulting analog signal to the receiving

UT via a coaxial RF cable. This constitutes a uni-directional link be-

ween two UUTs. Bidirectional communication is achieved by using

ultiple sites. The interconnection of UUTs in the emulated environ-

ent is realized by coaxial cables between sites. This implies that a

ransciever needs to have at least two coaxial cables connected to its

ntenna port; one for outgoing and the other for incoming signals.

he higher the degree of connectivity the more cables that need to be

onnected to the UUT. This is achieved by using circulators and com-

iner boards. A circulator has three terminals; signal from terminal

1 goes to #2, #2 to #3 and #3 to #1. A combiner board takes a num-

er of input signals over different coaxial cables and combines them

nto one output signal over a single coaxial cable. The desired connec-

ivity is achieved by connecting the UUT antenna port to terminal #1

f the circulator. The transmitted signal comes out on #2 which goes

o the site. The combiner board takes all received signals and passes

hem to #3 which comes out on #1 and goes into the UUT. This setup

s illustrated in Fig. 1.

The Control PC is what glues the whole system together.

iNeTestEr software is highly distributed with different subcompo-

ents running on UUTs, sites and a remote GUI running on user ma-

hines. These subcomponents are all connected to the Control PC over

n IP network. The Control PC is responsible for:

• Keeping track of the status of all UUTs and sites.

• Keeping track of the environment topology (cable interconnec-

tions between sites and UUTs).

• Accepting requests to run experiments from users.

• Coordinating sites and UUTs to run the desired experiments.

• Collecting results and delivering them to the user.

Another approach to understanding the design of WiNeTestEr is to

onsider the hardware and software aspects separately. Fig. 1 shows

ow the hardware is physically connected to emulate a bidirectional
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Fig. 2. Software architecture.
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ink between two UUTs. The numbers on the figure correspond to the

teps involved in emulation of a single direction of the channel:

1. UUT A’s output is connected to UUT A’s site through a wideband

duplexer (circulator).

2. Site digitizes the signal and passes it to the FPGA.

3. FPGA makes copies of the signal for each of the three outputs.

4. FPGA processes the digital signal based on the channel conditions

set by the control PC for each output.

5. Site converts the signals back to analog and outputs each of them

on its port.

6. The equivalent site output is connected to UUT B’s combiner board

through a coaxial cable.

7. Combiner board passes the combined signal of all of its inputs to

UUT B through the circulator.

WiNeTestEr software runs on different flavors of Linux deployed

n UUTs, sites and the Control PC. The devices are connected over a

ocal area network and they share access to database and file servers.

elated subsets of functions are packaged in distinct executable files

hat run on the relevant devices, we use the word slices to refer to

hese subsets. The software architecture of the system is shown in

ig. 2.

In the following sections we take a closer look at the components

f WiNeTestEr , how they are designed and how they work.
Fig. 3. DSP site s
. DSP sites

We start our discussion with the site since that is where channel

mulation happens. WiNeTestEr emulates a 100 MHz-wide environ-

ent which requires very high processing power to manipulate in re-

ltime. We chose a development board by Khattab et al. [8] as the ba-

is for the site. The WARP development board version 2.2 has a Xilinx

irtex 4 FPGA, a PowerPC processor, a RAM slot, a CompactFlash card

lot, Ethernet and serial ports. We designed an RF board to handle the

nalog-to-digital and digital-to-analog conversion of the signal. Two

F boards are mounted on one WARP board using four daughtercard

lots with 124 pins each. The large number of pins was crucial to our

hoice of the board so the digitized 100 MHz-wide signal can flow to

nd from the FPGA in realtime. A schematic of the site is shown in

ig. 3.

We run Linux on the PowerPC processor and use it to control the

PGA and coordinate the execution of experiments with the rest of

he system.

.1. RF board

The RF board consists of two signal chains for down-conversion

nd up-conversion. Each component on the board can be broadly

lassified as being part of one of the two chains. The down-conversion
chematic.
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Fig. 4. Multi-tap fading generator.
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chain consists of digital step attenuator (DSA), quadrature demodu-

lator, variable gain amplifier (VGA) and Analog to Digital Converter

(ADC). The up-conversion chain consists of Digital to Analog Con-

verter (DAC), VGA and quadrature modulator. Clock circuit present

on each board helps in synchronizing data conversion operations. The

clock circuit also provides reference input to Phase Locked Loop (PLL)

which is used in generating Local Oscillator (LO) signal for down-

conversion and up-conversion operations. As shown in Fig. 3, the

FPGA creates three identical copies of the original signal transmit-

ted by the UUT. These signals can be independently modified as in-

structed by the PowerPC processor to emulate the desired environ-

ment. Each signal corresponds to an output port that will eventually

be connected to a UUT via its combiner board.

The architecture of the RF board is shown in Fig. 5. RF interface

to the board is provided by means of SMA jacks and coaxial ca-

bles. The use of coaxial cables minimizes interference among signals

thereby increasing the robustness and repeatability of experiments.

The RF board supports input signal power in the range of −25 dBm to

+26 dBm and an output power of −20 dBm to −110 dBm. To achieve

this target specification, a maximum attenuation of 136 dB is required

from the design. This value is distributed among multiple compo-

nents on the board such as DSA, VGA and FPGA.

DSA performs the first stage of attenuation on the input signal.

Owing to high signal strength of the input, there is a very high chance
Fig. 5. RF board a
f it saturating the quadrature demodulator. Placing a DSA at the

tart of the chain helps restrain signal strength to reasonable values.

odern wireless standards use complex modulation schemes such

s QPSK or QAM to achieve higher speed and lower error rate. To

upport these standards, broadband quadrature modulator and de-

odulator with good performance specifications have been used in

he up-conversion and down-conversion circuitry. For best-case per-

ormance of quadrature modulator, signal properties of In-phase (I)

nd Quadrature (Q) components need to be perfectly matched. In

ther words, a mismatch between these two components in terms

f DC offset, gain and phase results in LO leakage and sideband is-

ues thereby degrading the quality of output signal. Baseband VGAs

re used to offset amplitude mismatches of I/Q signals. To obtain very

ow value of sideband signal, both gain and phase need to be carefully

djusted in the FPGA. Also, in down-conversion chain, VGA helps to

mplify or attenuate the baseband signal to meet the dynamic range

equirements of ADC. In WiNeTestEr since the baseband signal has a

andwidth of 100 MHz, a sampling clock of 200 MHz is needed for the

ata converters to avoid aliasing. The clock circuit consists of a volt-

ge controlled crystal oscillator (VCXO) as the clock source with clock

istribution/divider IC’s providing identical clocks to data converter

hips (ADC and DAC).

Resolution of data converter ICs has significant impact on the per-

ormance of the system. During down-conversion, the demodulator

utputs I/Q signals, requiring separate ADC to digitize each signal.

wo 12-bit ADCs were used in the design to satisfy the signal to noise

atio (SNR) requirement of the receiver. Up-conversion, on the other

and, handles a wide range of output signal strength. Also, each RF

oard houses 3 up-conversion chains, with each chain having its own

/Q signals. Hence a dual 16-bit DAC was used on each chain to con-

ert the signal back to analog domain.

Fig. 6 shows the RF front end that was designed for WiNeTestEr. A

ingle ended signal from the circulator is connected to the first SMA

ack marking the input to the board. The other three SMA jacks cor-

espond to the output from each up-conversion chain. The RF board

upports three different power sources: external adapter, WARP FPGA

oard and screw terminal. Selected source is regulated using low-

ropout regulators (LDO) to generate 5 V, 3.3 V and 1.8 V analog

nd digital supplies. Utmost care has been taken to reduce supply

oise with the help of global and local decoupling capacitors and
rchitecture.
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Fig. 6. RF board for WiNeTestEr.

0 1 2 3 4 5 6 7

L’reading address

writing address

0 1 2 3 4 5 6 0 1

x0 x1 x2 x3 x4 x5 x6 x7 x8Input sequence:

writing address:

…...
…...

21 2 3 4 5 6 0 1reading address: …...
output sequence: x0 x1 x2 …...xx xx xx xx xx xx

Fig. 7. Address operation for generating arbitrary number of clock-cycle delay.
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Fig. 8. Autocorrelation of a fading channel generated on WiNeTestEr DSP site.

Fig. 9. Crosscorrelation of two fading channels generated on WiNeTestEr DSP site.
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errite beads. Careful floor planning, layer management and termina-

ion techniques have been followed to obtain the best performance

rom the board.

.2. FPGA

The digitized baseband signal is forwarded from the RF board to

he FPGA where channel emulation is implemented. An emulated

hannel is characterized by the number of copies of the transmit-

ed signal that reach the receiver, their phases and their attenuation

evels. This way the channel can represent a multipath environment

here the signal reaches the receiver via multiple reflections on sur-

ounding obstacles. A copy of the signal along with its phase and fad-

ng parameters is called a tap.

A block diagram for our channel emulation method is shown in

ig. 4. Each tap has a delay unit(rx) controlled by a user-defined value,

ollowed by scaling based on fading parameters (ρx(t)φx(t)) where

∈ (0,6). The resulting signals from all taps are added together to

mulate a multi-tap fading channel.

For each tap, there is a separate signal delay and a fading pa-

ameter. We use dual-port RAMs (random access memory) to real-

ze the user-specified time delay. Assume the memory depth allo-

ated to each tap is L, which depends on τmax, the maximum delay

hat the emulator aims to support. Let fs denote the sampling clock

requency of the signals. Then, we can express L as follows:

= �τmax fs� (1)

The users are allowed to configure the tap delay for each tap with

range of 0 ≤ τ ≤ τmax. The tap delay, τ , is then translated to the

umber of clock cycles to be delayed, denoted by L′, with a value of

τ fs�. By manipulating the reading and writing address of the dual-

ort RAM, we can realize the delay function, as shown in Fig. 7. The

riginal data is written to one port of the RAM and the delayed data is

ead out from the other port of the RAM. The reading address always

eads the writing address by one. Whenever either the reading ad-
ress or the writing address reaches L′, they restart from the address

f zero.

In our implementation, we support a maximum of 7 taps, with

ach tap has a maximum delay of 1024 clock cycles (1.024 μ s with a

ampling clock of 100 MHz).

For the channel emulation in a wireless network, if there con-

urrently exists more than one communication link, multiple fad-

ng channels are needed. Therefore, WiNeTestEr board needs to be

quipped with the ability of generating multiple fading channels si-

ultaneously. In real communication environments, the fading chan-

els are different from each other which means they are statistically

ndependent.

To generate the independent fading channels simultaneously,

e consider the method proposed in [9]. According to the method

n [9], fading channels is generated by summing the phase-frequency-

ithered sinusoids (SODS). Different from the conventional sum-of-

inusoid method, the SODS method add random disturbances on the

requency and the initial phase of each sinusoid. The values of the dis-

urbances are much smaller than the frequency and the initial phase

espectively. Using the SODS method, we can generate the indepen-

ent fading channels on our board.

Figs. 8 and 9 illustrate the autocorrelation and the crosscorre-

ation function of the fading channels which are generated via the

xed-point computation on MATLAB. The maximum value of the

utocorrealtion is normalized to unit one, and the crosscorrelation

s also normalized via dividing it by the maximum value of the

utocorrelation. From Figs. 8 and 9, compared with the
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autocorrelation, the value of the crosscorrelation function is in

a small range. Thus, the independence of the generated fading

channels is achieved.

In WiNeTestEr , summation of sinusoids (SOS) method [10,11] has

been used to generate fading channel. This method of channel gener-

ation for emulation has been widely investigated in the past [9,12,13].

However, existing fading channel emulators demand large memory

resources to generate channels, which degrades the scalability. In

WiNeTestEr a single FPGA is required to process two different input

signals and produce up to 6 outputs (two RF boards) with different

channel conditions. We proposed a novel structure to implement SOS

based channel generation specifically for this purpose [14]. With this

structure, the generation of one Rayleigh channel consumes only 1

unit memory resource ( ∼ RAMB16) of the 376 available in the FPGA.

Besides reducing memory requirements, this work has also op-

timized word length selection and channel data update rate. Intu-

itively, larger bit width generates higher channel accuracy at the cost

of hardware resources. Similar tradeoff exists between channel data

generation rate and accuracy over time domain. We chose to opti-

mize the two terms (bit width and update rate) aiming at minimiz-

ing hardware resources while maintaining a certain channel accuracy

level. Our technique is discussed in more detail in [14]. With the re-

duction of memory consumption and optimization on the two terms,

scalability is drastically improved in WiNeTestEr.

3.3. Linux

The resources saved by the new channel emulation method made

it possible to fit the necessary components on the FPGA to be able

to run Linux. WARP board has a 2GB RAM chip that can be accessed

by the PowerPC processor. Unfortunately the processor does not have

access to persistent storage, the board has a CompactFlash slot which

is only connected to the System ACE chip [15].

Booting Linux on the board involves two steps; writing the FPGA

bitstream (system.bit file) to the FPGA and loading the Linux Kernel

Image to the PowerPC processor. The bitstream and the kernel im-

age are combined into the system.ace file and placed it on a FAT12

formatted CompactFlash card. The SystemACE chip reads the file and

writes its components to the FPGA and the PowerPC processor. We

configured the kernel to use an NFS share as its root filesystem to

overcome storage limitations and centrally manage the root filesys-

tem for all sites. The NFS rootfs mounting details are provided to the

board through the DHCP server.

We use Linux 3.0 and our root filesystem is based on ELDK 4.2 [16].

A number of libraries required for our software slices had to be cross-

compiled, including The Boost C++ Libraries and MySQL Connector

for C++. This was achieved using the ELDK 4.2 ppc4xx toolchain.

4. Control PC

The Control PC is the where WiNeTestErś control network meets

the rest of the world. On one side it accepts connections from users

to submit experiments and collect results. On the other side it con-

nects to the different software slices running on the sites and UUTs

to coordinate the execution of experiments. An experiment submit-

ted by the user includes the requested number of UUTs and the set

of links between them. For every link the user defines the channel

conditions to be emulated by WiNeTestEr. The user may also specify

different binaries to be executed on the UUTs. In the following sec-

tions, we discuss the different software slices that work together on

the Control PC to fulfill the user experiment.

4.1. Diagnostics

The diagnostics slice maintains information about running ex-

periments as well as the hardware resources available in the sys-
em (sites, UUTs and cable connections). It communicates with cor-

esponding slices running on sites and UUTs to monitor their status

nd update the database accordingly.

Detecting cable connections is more complicated since

iNeTestEr sites do not have built-in rssi (signal strength) me-

ers or signal generators. The diagnostic slice has to coordinate

etween sites and UUTs to detect which UUT is connected to which

ite’s input and also the virtual topology between sites. A directed

ink between two UUTs in WiNeTestEr is captured by the tuple <UUT

, site, output number, UUT B>. An outline of the algorithm is shown

n listing 1. The functions performed by the UUT are part of the UUT

anagement protocol described later.

Algorithm 1: Topology (physical cable connection) detection

algorithm.

Data: U =set of available UUTs, S =set of available sites

Result: UUTMap<UUT, site>, List<DirectedLinks>

UUTMap ←− ∅;

DirectedLinks ←− ∅;

put all UUTs in listen mode;

set high attentuation on all outputs of all sites;

for u ∈ U do

uutMapped ←− false;

put u in broadcast id mode;

for s ∈ S do

for each output o ∈ s do

set 0 attenuation on output o;

for v ∈ U ′ = U − u do

retrieve the set of heard UUT id’s H;

if H �= ∅ then

/* H is a singleton. H = {u} */
if (u : s) �∈ UUTMap then

add (u : s) to UUTMap;

uutMapped ←− true;

end

add <u, s, o, v> to DirectedLinks;

break;

end

end

set high attenuation on output o;

end

if uutMapped then

break;

end

end

put u in listen mode;

end

.2. Topology mapper

The topology mapper slice is responsible for selecting the set of

UTs to run the experiment. UUTs selected along with their associ-

ted sites must have the physical connections to embed the topol-

gy specified by the user. This problem is an instance of Directed

ubgraph Isomorphism. Given the physical system graph G = (V,
−→
E )

nd an experiment topology H = (V ′,
−→
E′ ) , the goal is to find a sub-

raph I = (V ′′, E′′) of G for which the following function is defined

f : V ′′ −→ V ′ such that (v1, v2) ∈ E′′⇔(f(v1), f(v2)) ∈ E′. This problem is

P-Complete even with undirected edges [17]. In WiNeTestEr we use

n approximation algorithm with worst-case complexity O(n3) for a

andom topology and O(n2) or O(n) for common topologies like linear

raphs and star graphs. The algorithm is a result of the work in [18].
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Fig. 10. A screenshot of the GUI showing a topology of four UUTs.

Table 1

Environment 1 channel parameters.

Doppler 1 Hz

Tap_Delay (ns) Tap_Gain (db) K-Factor (db)

Tap 1 0 0 −99
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The success of the topology mapper is dependent on the avail-

bility of links in the physical topology. We collected the usage re-

orts from our previous testbed ASSERT to identify the most common

xperiment topologies. A thorough study of the possible physical

opologies was conducted in [18]. A number of topologies of different

izes are proposed to enable embedding various experiment topolo-

ies and also to maximize the number of concurrent experiments.

.3. Channel emulation

Once the topology mapper has decided on the physical sites and

UTs for an experiment, the channel emulation slice on the Control

C passes the user specified channel conditions for each link to the

hannel emulation slice on corresponding site. The slice provides a

et of preconfigured environments for different mobility patterns as

efined in [19]. Advanced users are given the option to create their

wn environments from scratch by defining the parameters for indi-

idual taps.

The links in a WiNeTestEr experiment are not reciprocal due to the

esign of the system. Each direction of a link is handled by a different

ite and thus can potentially have different channel conditions. The

reedom is given to the user to configure the environment on each di-

ection separately. However, when a reciprocal channel is desired, the

hannel emulation slice sends the parameters to the site along with

future timestamp to apply them. The sites are locally synchronized

ith the Control PC to sub-millisecond accuracy.

.4. UUT management

UUT management is essential for running fully automated experi-

ents. We developed a protocol that allows the Control PC to perform

he following actions on the UUT:

• Discover available UUTs.

• Transfer executable images. These are the different binaries UUTs

will run to perform the experiment.

• Begin experiment execution.

• Query experiment status.

• Terminate experiment.

• Collect logs.

Implementing this protocol on the UUT is optional. We have

mplemented it on ARM boards running Linux like Raspberry Pi and

eagleBone Black which we currently use as UUTs in WiNeTestEr.
˙ sers wishing to use other UUTs can either implement the protocol

o the Control PC can talk to them directly or just use WiNeTestEr to

rovide the environment and manually start and stop their devices

hrough an out-of-band method. Resource constrained UUTs such

s sensor nodes can provide a UUT management proxy that receives

ommands from the UUT management slice on the Control PC and

orward them to the actual nodes by other means.

. Using the system

A GUI application has been developed for the end user to run ex-

eriments. This is a standalone application which authenticates the

ser and allows them to create, start and abort experiments. It is also

sed to load any UUT images and collect the experiment logs. The

ser can create the experiment topology using the GUI, selecting dif-

erent UUTs and specifying all the communication constraints among

he UUTs. This application communicates only with the Control PC.

screenshot of the GUI is shown in Fig. 10. As shown in the figure,

he user can create different types of UUTs, communication links be-

ween them and specify experiment parameters. This UUT topology

an be saved to disk and used whenever the experiment needs to be

epeated. The GUI can also be used to view properties of the testbed

ike physical topology of the UUTs, available/allocated UUTs for

xperiments etc.
. Experimental validation

The performance of the novel implementation of fading channels

n FPGA is thoroughly discussed in [14]. In this paper, we focus in-

tead on comparing the performance of WiNeTestEr as a complete

ystem. We compare WiNeTestErś channel emulation performance

ith a commercial channel emulator, Azimuth ACE MX MIMO [5]. It

s one of the state-of-the-art channel emulators used by industry and

cademia to test complex wireless protocols. We chose not to perform

ny over-the-air experiments due to the difficulty in controlling the

ulti-path parameters. Even a seemingly simple environment like an

pen-air football field will have several taps (paths taken by different

ignal reflections).

We used two Ubiquiti SR-71 Cardbus WiFi adapters (Atheros

R9160 chipset) as UUTs. The cards were connected to two laptops

unning Linux 3.2 which includes the ath9k driver. Both cards were

et to join an adhoc network operating on channel 14 (center fre-

uency 2484 MHz) as per the IEEE 802.11 PHY/MAC standard for the

.4 GHz ISM band. The basic rate of the adhoc network was fixed

o 36 Mbps to avoid the results being affected by the driver’s auto-

ate algorithm. We could have picked another value for the fixed rate.

owever, we found 36 Mbps to provide a good balance between sen-

itivity to different channel conditions and the ability to gracefully

egrade in performance as the channel worsens.

An experiment starts by the cards joining the adhoc network.

nce the cards associate, we use Iperf [20] to send UDP packets car-

ying a 1470 byte payload from one machine to the other for 4 min

hile recording the average throughput achieved every second. At

he end of the experiment, Iperf reports the number of packets lost

uring the session.

We defined four environments (channel conditions) each with a

ifferent number of taps. Table 1 shows the emulation parameters

or Environment 1. It represent the basic case of having a single copy

f the signal propagating through the channel. Environments 2, 3 and

use the top 2, 3 and 4 taps (respectively) of the ITU Vehicular A

hannel Model [19] shown in Table 2. The model uses a Doppler value

f 184 Hz which results in the signal fading in a way roughly equiva-

ent to that experienced by a vehicle traveling at 80 km/hr.

For each environment, we ran the experiment through both

iNeTestEr and Azimuth and recorded the throughput results.

igs. 11 and 12 show the results obtained from WiNeTestEr and Az-

muth, respectively.
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Table 2

ITU Vehicular A channel model.

Doppler 184 Hz

Tap_Delay (ns) Tap_Gain (db) K-Factor (db)

Tap 1 0 0 −99

Tap 2 310 −1.0 −99

Tap 3 710 −9.0 −99

Tap 4 1090 −10.0 −99

Tap 5 1730 −15.0 −99

Tap 6 2510 −20.0 −99

Fig. 11. Throughput vs. time plot for the experiments through WiNeTestEr.

Fig. 12. Throughput vs. time plot for the experiments through Azimuth.
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6.1. Results analysis

The results show a dip in the throughput roughly every minute.

This happens with both WiNeTestEr and Azimuth. To isolate the is-

sue, we ran the experiment over-the-air in an indoor interference-

free environment. The cards experienced the same dips in through-

put. While it would be interesting to dig deeper into this observation

and find the root cause, it is out of the scope of this paper. We at-

tribute these dips in throughput to the hardware or the driver of the

adapters.

Both WiNeTestEr and Azimuth results share a trend of decreasing

throughput with the increase of the number of taps. This matches the

expectations we have for different environments especially environ-

ments 2,3 and 4 which emulate high mobility.

The results however are not identical. Despite sharing the same

trend, WiNeTestEr and Azimuth achieve different throughput for the

same channel parameters. We attribute this to the different level of

control we have over the low level multi-path parameters in Azimuth

compared to WiNeTestErĖach tap in the multi-path parameters con-
ists of a set of components. Unlike WiNeTestEr Azimuth does not

rovide an interface to specify the value of each of these compo-

ents. WiNeTestEr allows for repeating experiments under identical

ulti-path parameters even in terms of individual tap components.

t is worth noting that specifying these components is optional and

iNeTestEr provides a set of default components for unfamiliar users.

. Conclusion and future work

WiNeTestEr is a scalable and cost-effective channel emulator that

llows researchers to perform accurate, repeatable and complex ex-

eriments (topology, multipath effects). The distributed design of the

ystem is evident in both the hardware and the software architec-

ure. The hardware consists of UUTs, DSP sites and combiner boards,

nterconnected to form the base topology. The software consists of

central Control PC that communicates with embedded Linux run-

ing on sites to control the FPGA that manipulates the signal using

SP, and UUT to automate the execution of experiments. The paper

iscussed the different design and implementation aspects of each of

he components.

Experimental results show that performance of WiNeTestEr is

omparable to commercially available solutions. Being remotely ac-

essible makes it an efficient alternative for researchers in academia

nd the industry alike.

WiNeTestEr is currently limited to operating in the 2400–

500 MHz band due to the RF board design. We intend to address

his in the future revision of the RF board to be able to emulate en-

ironments in the range of 700 MHz to 6 GHz. Old RF boards will be

wapped with the new ones without requiring any modification to

he rest of the system. This will allow testing a wider range of devices

nd technologies (GSM, CDMA, LTE, 5 GHz Wifi, etc.).
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