EE 5345
Biomedical Instrumentation
Lecture 19: slides 371-391

Carlos E. Davila, Electrical Engineering Dept.
Southern Methodist University
slides can be viewed at:
http://www.seas.smu.edu/~cd/ee5345.html
Matrices

Consider the matrix A having m rows and n columns, the size of the matrix is m by n.

$$A = \begin{bmatrix}
a_{11} & a_{12} & \cdots & a_{1n} \\
a_{21} & a_{22} & \cdots & a_{2n} \\
\vdots & \vdots & \ddots & \vdots \\
a_{m1} & a_{m2} & \cdots & a_{mn}
\end{bmatrix}$$

transpose of A: $A^T = \begin{bmatrix}
a_{11} & a_{21} & \cdots & a_{m1} \\
a_{12} & a_{22} & \cdots & a_{m2} \\
\vdots & \vdots & \ddots & \vdots \\
a_{1n} & a_{2n} & \cdots & a_{mn}
\end{bmatrix}$
Matrix Arithmetic

Let \(x = [x_1 \ x_2 \ \cdots \ x_n]^T \in \mathbb{R}^n \) and
\[
y = [y_1 \ y_2 \ \cdots \ y_n]^T \in \mathbb{R}^n
\]
then
\[
x + y = \begin{bmatrix} x_1 + y_1 \\ x_2 + y_2 \\ \vdots \\ x_n + y_n \end{bmatrix} \quad cx = \begin{bmatrix} cx_1 \\ cx_2 \\ \vdots \\ cx_n \end{bmatrix} \quad c, \text{ scalar}
\]
Matrix Arithmetic (cont.)

Let \(x = [x_1 \ x_2 \ \ldots \ x_n]^T \in \mathbb{R}^n \) then

\[
[Ax]_i = \sum_{j=1}^{n} a_{ij}x_j, \quad i = 1, \ldots m
\]

Let \(B \) be \(n \) by \(r \), then

\[
[AB]_{ij} = \sum_{k=1}^{n} a_{ik}b_{kj}, \quad i = 1, \ldots m, \quad j = 1, \ldots r
\]

Inner product between two vectors in \(\mathbb{R}^n \):

\[
x^T y = \sum_{k=1}^{n} x_k y_k
\]
Brief Introduction to Linear Algebra

- **Euclidean Vector Space** \mathbb{R}^n: set consisting of all $n \times 1$ vectors.

- **Subspace of** \mathbb{R}^n, S:
 - if $x \in S$ and $y \in S$ then $x + y \in S$
 - if $x \in S$ then $cx \in S$, $c = $ scalar (1x1).

- **Span of Subspace** S:
 - $\{w_1, w_2, ..., w_r\}$ is a span of S if every vector in S can be expressed as the linear combination:

$$
\sum_{k=1}^{r} \beta_k w_k
$$
Orthogonality Relationships

- Two vectors x and y are orthogonal $(x \perp y)$ if:
 \[x^T y = 0 \]

- Two subspaces $P \subseteq \mathbb{R}^n$ and $Q \subseteq \mathbb{R}^n$ are orthogonal if
 \[x \perp y, \quad x \in P, \quad y \in Q \]
 we say $P \perp Q$
Brief Introduction to Linear Algebra (cont.)

- Basis of S is a set of vectors $\{v_1, v_2, \ldots, v_l\}$ which:
 - spans S
 - is linearly independent
- $\{v_1, v_2, \ldots, v_l\}$ are linearly independent if:
 \[\sum_{k=1}^{l} \beta_k v_k = 0, \text{ iff } \beta_k = 0, \quad k = 1, \ldots, l \]
- dimension of $S = \text{number of basis vectors.}$
- θ: zero vector belongs to any subspace
Subspaces Associated with Matrices

- Column space (range) of A: subspace consisting of all possible linear combinations of the columns of A, denoted as $R(A)$.

- Row space of A is the subspace consisting of all possible linear combinations of the rows of A, denoted $R(A^T)$.

- Null space of A is the subspace consisting of all $n \times 1$ vectors x satisfying: $Ax = 0$, denoted $N(A)$.

- Left null space of A is the subspace consisting of all $m \times 1$ vectors x satisfying: $x^T A = 0$, denoted $N(A^T)$.
Some Important Theorems

- \(N(A) \perp R(A^T) \), (\(n \) by 1 vectors)
- \(R(A) \perp N(A^T) \), (\(m \) by 1 vectors)
- def’n: rank of \(A \) = number of linearly independent columns of \(A = \text{rank}(A) \).
- rank of \(A \) = dimension of \(R(A) \).
- def’n: Let \(C \) be an \(n \) by \(n \) square matrix, \(C^{-1} \) is the inverse of \(C \) if:

 \[
 C^{-1}C = I
 \]
- \(\text{rank}(A) = n \) if and only if \(A^TA \) has an inverse.
Identity Matrix

\[I = \begin{bmatrix}
1 & 0 & \cdots & 0 \\
0 & 1 & \cdots & 0 \\
0 & 0 & \ddots & 0 \\
0 & 0 & \cdots & 1
\end{bmatrix} \]

\[AI = A \quad IA = A \]

Euclidean norm of a vector:

\[\|x\| = \sum_{k=1}^{n} x_k^2 \]
Projection onto a Subspace S

Suppose $y \not\in S$, the projection of y onto S is denoted y_P. Then

$$P_s y \in S \quad y - P_s y \perp x \in S$$

P_s : projection matrix

$\theta = \text{zero vector}$
Projection Theorem

- We seek a vector x in S that is “closest” to y in the sense of minimizing

$$\min_{x \in S} \|x - y\|$$

- The vector minimizing the above norm is given by

$$y^* \equiv P_S y$$

and y^* is unique.
Computation of Projection Matrix

If S has the basis:

\[\{v_1, v_2, \ldots, v_l\} \]

Let $V = [v_1, v_2, \ldots, v_l]$, then:

\[P_S = V(V^TV)^{-1}V^T \]

P_S is idempotent: \[P_S P_S = P_S \]

P_S is symmetric: \[P_S = P_S^T \]
Least Squares Linear Prediction

- Available Data: $x[0], x[1], x[2], \ldots, x[M - 1]$

- LS Equations: $X\alpha \approx d$

$$X = \begin{bmatrix}
x[p-1] & x[p-2] & \cdots & x[0] \\
x[p] & x[p-1] & \cdots & x[1] \\
\vdots & \vdots & \ddots & \vdots \\
\end{bmatrix}$$
Least Squares Linear Prediction (cont.)

\[d = \begin{bmatrix} x[p] & x[p+1] & \cdots & x[M-1] \end{bmatrix}^T \]

\[\alpha = \begin{bmatrix} \alpha_1 & \alpha_2 & \cdots & \alpha_p \end{bmatrix}^T \]

• usually, \(X \) has more rows than columns (overdetermined system of equations).
• note that in general, the left-hand side of the LS equations \(X\alpha \approx d \) do not equal the right-hand side.
LS Equations (Covariance Method)

\[
\begin{bmatrix}
 x[p-1] & x[p-2] & \cdots & x[0] \\
 x[p] & x[p-1] & \cdots & x[1] \\
 \vdots & \vdots & \ddots & \vdots \\
\end{bmatrix}
\begin{bmatrix}
 \alpha_1 \\
 \alpha_2 \\
 \vdots \\
 \alpha_p
\end{bmatrix}
\approx
\begin{bmatrix}
 x[p] \\
 x[p-1] \\
 \vdots \\
 x[M-1]
\end{bmatrix}
\]

\(X\begin{bmatrix}\alpha \\ d\end{bmatrix}\)

\(M - p\) equations

\(p\) unknowns: \(\alpha_k, \ k = 1, \ldots, p\)
Solution of LS Problem

- We seek α so that prediction error vector $\|X\alpha - d\|$ is minimized.
- $X\alpha$ lies in the range of X.
- So we seek the vector in $R(A)$ that is closest to d in Euclidean norm.
- From Projection Theorem:

$$d - X\alpha \perp R(A)$$

equivalently:

$$X^T(d - X\alpha) = 0$$
Solution of LS Problem (cont.)

- **LS normal equations:**

 \[X^T X \alpha = X^T d \]

- **LS Solution:**

 \[\alpha = (X^T X)^{-1} X^T d \]

 provided dimension of \(R(X) = p \) (columns of \(X \) are linearly independent).
Autocorrelation Method: \(X_a \alpha \approx d_a \)

\[
\begin{bmatrix}
 x[0] & 0 & \ldots & 0 \\
 x[1] & x[0] & \ldots & 0 \\
 \vdots & \vdots & \ddots & \vdots \\
 x[p-1] & x[p-2] & \ldots & x[0] \\
 \vdots & \vdots & \ddots & \vdots \\
 x[N-2] & x[N-3] & \ldots & x[N-p-1] \\
 x[N-1] & x[N-2] & \ldots & x[N-p] \\
 0 & x[N-1] & \ldots & x[N-p+1] \\
 \vdots & \vdots & \ddots & \vdots \\
 0 & 0 & \ldots & x[N-1]
\end{bmatrix}
\begin{bmatrix}
 \alpha_1 \\
 \alpha_2 \\
 \vdots \\
 \alpha_p
\end{bmatrix}
\approx
\begin{bmatrix}
 x[1] \\
 x[2] \\
 \vdots \\
 x[p] \\
 \vdots \\
 x[N-1]
\end{bmatrix}
\]
Autocorrelation Method (cont.)

Solution:

\[\alpha = \left(X_a^T X_a \right)^{-1} X_a^T d_a \]

The matrix \(X_a^T X_a \) is Toeplitz, meaning elements along any diagonal are equal:
Computational Considerations

- Covariance method requires $O(p^3)$ operations to invert $X^T X$ (this can be expensive).
- Autocorrelation method requires $O(p^2)$ operations to invert $X_a^T X_a$
- In differential quantization, must also encode prediction filter α.
- If prediction filter is recomputed every N samples, get adaptive DPCM (ADPCM).