Issues in FPGA Technologies

• Complexity of Logic Element
 – How many inputs/outputs for the logic element?
 – Does the basic logic element contain a FF? What type?

• Interconnect
 – How fast is it? Does it offer ‘high speed’ paths that cross the chip? How many of these?
 – Can I have on-chip tri-state busses?
 – How routable is the design? If 95% of the logic elements are used, can I route the design?
 • More routing means more routability, but less room for logic elements and can increase delay due to interconnect

Issues in FPGA Technologies (cont)

• Macro elements
 – Are there SRAM blocks? Is the SRAM dual ported?
 – Is there fast adder support (i.e. fast carry chains?)
 – Is there fast logic support (i.e. cascade chains)
 – What other types of macro blocks are available (fast decoders? register files? advanced IP cores?)

• Clock support
 – How many global clocks can I have?
 – Are there any on-chip Phase Locked Loops (PLLs) or Delay Locked Loops (DLLs) for clock synchronization, clock multiplication?
Issues in FPGA Technologies (cont)

• What type of IO support do I have?
 – TTL, CMOS, etc
 – Support for mixed 5V, 3.3V IOs?
 • 3.3V internal, but 5V tolerant inputs?
 – Support for other low voltage signaling standards?
 • GTL+, GTL (Gunning Transceiver Logic) – as used on Pentium II
 • HSTL - High Speed Transceiver Logic
 • SSTL - Stub Series-Terminate Logic
 • USB - IO used for Universal Serial Bus (differential signaling)
 • AGP - IO used for Advanced Graphics Port
 – Maximum number of IO? Package types?
 • Ball Grid Array (BGA) for high density IO

CPLDs and FPGAs

<table>
<thead>
<tr>
<th>CPLD</th>
<th>FPGA</th>
</tr>
</thead>
<tbody>
<tr>
<td>Complex Programmable Logic Device</td>
<td>Field-Programmable Gate Array</td>
</tr>
<tr>
<td>Architecture</td>
<td>PAL-like</td>
</tr>
<tr>
<td>Density</td>
<td>Low-to-medium</td>
</tr>
<tr>
<td>Up to 16 22V10s</td>
<td>1K to 125K logic gates</td>
</tr>
<tr>
<td>Performance</td>
<td>Predictable timing</td>
</tr>
<tr>
<td>Over 100 MHz</td>
<td>High-performance</td>
</tr>
<tr>
<td>Interconnect</td>
<td>“Crossbar”</td>
</tr>
</tbody>
</table>

NOTE: First generation programmable devices (PROMs, PALS, PLAs, GPLAs) Analogous to 2-level Logic while CPLDs/FPGAs (programmable interconnects) Analogous to Multi-level Logic
Programmable Logic Resources

1) Configurable Logic Blocks (CLBs) or Logic Elements (LEs)
 - Memory lookup tables
 - AND-OR planes
 - Simple gates

2) Input / Output Blocks (IOBs)
 - Bidirectional
 - Latches, inverters, pullup/down

3) Interconnect or Routing
 - Local and global routing balance
 - Delay and area

Each of these three Basic Resources Require a Programmable Circuit

Programming Technologies

1) Bipolar fusible link (not commonly used in modern devices)
 - Closed device, burned open by high current
 - Smallest Area-more complicated to fabricate
 - One Time Programmable (OTP)

2) Antifuse
 - Open device, closes with high voltage
 - Small area but high voltage required
 - One Time Programmable (OTP)

3) SRAM based
 - Uses pass transistor controlled SRAM cell
 - Large Area
 - Volatile (Reprogrammable)

4) E/EEPROM/Flash based
 - Moderate Area
 - Non-Volatile (Reprogrammed)
Metal to Metal Antifuse Technology

Unprogrammed Antifuse

Antifuse

Metal 3

Via to Metal 4

Programmed Antifuse

23-MAR-01

AMER 7.0 kV X80.6K 375nm
Antifuse Technology

Actel Programmable Low Impedance Circuit Element (PLICE)

- ONO (oxide nitride oxide) Dielectric insulates diffusion and poly
- ONO “melted” by applying 16V pulse across it

Sources Hauck (IEEE Proc.), Actel Data Sheets 1994

ONO Antifuse Technology

(unprogrammed)

ONO Antifuse Photomicrograph
ONO Antifuse Technology
(programmed)

- Floating Gate (FG) is Completely Isolated
- Unprogrammed Transistor has no Charge on FG Operates Normal NMOS Transistor using Access Gate (AG) as gate
- Programmed by High Voltage on AG and Low Voltage on Drain Causing Neg. Charge on Floating Gate
- Source to Drain Path cannot be closed when programmed
- EPROM uses UV light to Discharge FG and erase
- EEPROM uses high voltages similar to programming but opposite polarity to erase

*Source Hauck (IEEE Proc.)
Pass Transistor is “on” during Programming and “off” during Normal Operation of Programmed FPGA

- Inverter Pair Latches Logic Value using the Upper “weak” Keeper Inverter
- Larger Area than E/EEPROM Based Cell
- More Easily Reprogrammed – Useful for Reconfiguration and Prototyping
- “Read” Function used for Debugging to Output Programmed Configuration

*Source Hauck (IEEE Proc.), Xilinx 1994, Compton

Q or Q’ Output from 1-bit SRAM Cell

- NMOS Pass Transistor

Routing Resource #1

Routing Resource #2

*Source Hauck (IEEE Proc.), Xilinx 1994, Compton
LE/CLB Structures

- Different Styles of Internal Structure
 - Look-Up Tables (LUTs)
 - PLA/PAL-based Macrocells
 - Arrays of Multiplexers
- Granularity Variations
- Delay Characteristics
- Internal Programming Technology
- Scalability - Logic Clusters

Generic Look-Up Table (LUT)

Source Compton
Registered/By-Pass Programmable Circuit

BYPASS bit is Programmed

*Source Compton

Generic LUT-Based LE

*Source Compton
Xilinx 6200 Logic Element

- Can Compute any 2-input and some 3-input functions
- Extremely Fine-grained
- Based on Multiplexers

*Source Compton

Increasing Granularity

\[\text{OUT} = (\overline{A}BCD + ABCD + \overline{A}BC \overline{C})EF \]
\[+ (AB\overline{G} + A\overline{B}H)F \]

*Source Compton
Xilinx 4000 Series CLB

- 3 function generators
- CLB inputs
 - F1-F4 to F
 - G1-G4 to G
 - H1 (F & G) to H
- 4 CLB outputs
 - F, G, or H
 - and registered

More Detail on Next Slide

Figure 1: Simplified Block Diagram of XC4000 Series CLB (RAM and Carry Logic functions not shown)
Device Architectures

- Proportion of Interconnect Resources Versus Logic Elements
- Routability Among Logic Elements
- Dedicated Interconnections Among Logic Elements
- Granularity
- Hierarchical versus Flat Interconnections

Routing Architectures

- Symmetrical
- Row Based
- Sea of Gates
- Routing Matrix
Conceptual Diagram of Island-style Architecture

Xilinx 4000 Series Architecture
Actel-like Row-based Architecture

Altera Flex10k Architecture

Figure 1. FLEX 10K Device Block Diagram
Altera Flex10k Architecture

• Hierarchical Interconnection Among Logic Elements
• Logic Arrays consist of 8 Logic Elements
• Each Embedded Array Block (EAB) has 2K bits of storage
• Architecturally in center of device
• LA and EAB connect to surrounding channel interconnect
Interconnect Structures

- Programmable Interconnects Generally Dominant Factor in Area and Delay
- Composed of Drivers on Wires and Switch Blocks
- Bidirectional Allow Signal Flow in Either Direction
- Directional Allow Signal Flow in One Direction Only
- Routing Accomplished via Switch Block and Driver Programming Bits
Bidirectional and Directional Interconnects

Interconnect Switch Blocks

Horizontal and Vertical Crossings Represent Programmable Switch Blocks

Lemieux et al., ICFPT 2004
Bidirectional Switch Block

Programmable Single-bit Cells
*Lemieux et al., ICFPT 2004

Directional and Bidirectional Switch Blocks

*Lemieux et al., ICFPT 2004
Commercial Trends Circa-2000

• Three main types: Antifuse, Flash, SRAM

Alterna FPGA Family Examples

• Altera Flex10K/10KE
 – LEs (Logic elements) have 4-input LUTS (look-up tables) +1 FF
 – Fast Carry Chain between LE’s, Cascade chain for logic operations
 – Large blocks of SRAM available as well

• Altera Max7000/Max7000A
 – EEPROM based, very fast (Tpd = 7.5 ns)
 – Basically a PLD architecture with programmable interconnect. (CPLD)
 – Max 7000A family is 3.3 v
Xilinx FPGA Family Examples

• Virtex Family
 – SRAM Based
 – Largest device has 1M gates
 – Configurable Logic Blocks (CLBs) have two 4-input LUTS, 2 DFFs
 – Four onboard Delay Locked Loops (DLLs) for clock synchronization
 – Dedicated RAM blocks (LUTs can also function as RAM).
 – Fast Carry Logic

• XC4000 Family
 – Previous version of Virtex
 – No DLLs, No dedicated RAM blocks

Actel FPGA Family Examples

• MXDS Family
 – Fine grain Logic Elements that contain Mux logic + DFF
 – Embedded Dual Port SRAM
 – One Time Programmable (OTP) - means that no configuration loading on powerup, no external serial ROM
 – AntiFuse technology for programming (AntiFuse means that you program the fuse to make the connection).
 – Fast (Tpd = 7.5 ns)
 – Low density compared to Altera, Xilinx - maximum number of gates is 36,000
Cypress CPLD Example

• Ultra37000 Family
 – 32 to 512 Macrocells
 – Fast (Tpd 5 to 10ns depending on number of macrocells)
 – Very good routing resources for a CPLD

SPEED Trends

FPGA Performance: 25% Growth Rate
2000: 100+ MHz - 1,000,000 Equivalent Logic Gates
1998: 60-80 MHz - 250,000 Equivalent Logic Gates
Delay Trends (‘95)

Effects of Scaling of Interconnection

![Graph showing Delay Trends for Interconnect Delay (RC) and Intrinsic Gate Delay as a function of feature size.](image)

Comparison of intrinsic gate delay and interconnect delay (RC) as a function of feature size. In sub-micron technologies, the interconnects delay becomes the dominant factor. Marzola 1995

Density Improvements

![Graph showing FPGA Density Projection: 50% to 60% Annual Growth Rate.](image)

FPGA Density Projection: 50% to 60% Annual Growth Rate
1998: 250,000 – 2000: 1,000,000 Equivalent Logic Gates
Summary

- Different FPGA/CPLD Device Technologies Offer Varying Performance/Area and Other Attribute Tradeoffs
- PLDs Less Flexible than FPGA/CPLD since no Programmable Interconnect Feature
- Reprogrammability
- Security
- Volatility
- Power Consumption
- Power-up Configuration
- Radiation Tolerance