Chapter 1

Signals and Systems

1.1 Basic Problems

1.1.1 Problem (1.21)
a It is just a shift for the signal z(¢) one unit to the right

b You can do it by shifting the signal first to the lift by two to produce z(t+2)
then reverse the signal (replacing each ¢ with —t) to produce z(—t + 2)
Another way is to write (2 —t) as (—(t — 2)) which is x(t) flipped about
the ¢ = 0 axis (to produce the function z(—t)) and then shifted by two
units to the right to produce z(—(t — 2))

¢ You can make the shift first by one in the left direction then apply the com-
pression by dividing the x-axis by two
Again, you can also write z(2t+1) as z(2(t+1/2)) and this later function
is z(2t) shifted by 1/2 to the left. The function x(2t) is a compression of
the t axis in the original function z(¢) by two

d This can be simply done by first shifting the signal :(¢) to the left by four to
produce z(t + 4) then make the reverse to produce xz(—t + 4) and finally,
stretch the signal along the x-axis by multiply the x-axis by two to produce
x(4—1/2)

e You can do it in two steps, first get z(¢)u(t) and z(t—)u(t) which have values
only in the positive direction then add the two figures to each other to find
that the values in the positive direction will cancel each other for x(¢) 1

f Note that §(¢+3/2) has value only at t = —3/2 and (¢t — 3/2) has value only
at ¢ = 3/2. So, you will keep the values of x(t) at t = —3/2,3/2 only.
Note that the solution in the graph for the signal of the following form:
x(t)[0(t —3/2) = 6(t + 3/2)]
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Figure 1.1: Problem Solution 1.21

1.1.2 Problem (1.22)
a Simply, shift to the right direction by four
b Shift to the left direction by three then reverse

¢ You shall scale the x-axis by 1/3 but note that in discrete you have values
only for the integer indexes of x-axis. Then you will have the values for
x[n] at n is multiple of three (i.e. -3,0,3 in this case) then put them at
n/3

d As in (c¢) but first, make a shift by one in the negative direction

e Note that u[3 — n] equals to one in the range of —inf < n <= 3 which covers
the range of the entire signal. So, z[n|u[3 — n] = z[n]

f Get z[n — 2] first by shift in the right direction by two. Then, keep only the
value of the resulted signal at n = 2 as §[n — 2] has value only at n = 2

g You can notice that the output signal equals to z[n] when n is even or zero,
and equals to zero when n is odd

h You can do it simply by substitution over the entire range
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Figure 1.2: Problem Solution 1.22

1.1.3 Problem (1.25)

(a) Periodic, period = 2w /(4) = /2.

(b) Periodic, period = 2nf(m) = 2.

(c) z(t) = [1 +cos(4t — 21 /3)]/2. Periodic, period = 2m/(4) = /2.
(d) z(t) = cos(4nt)/2. Periodic, period = 27/(4w) = 1/2.

(e) z(t) = [sin(4nt)u(t) — sin(4nt)u(—t)]/2. Not periodic.

(f) Not periodic.

Note: Sinusoidal signals (sin(t), Cos(t) and exp(t)) are always periodic with
period 27. Shifting the independent variable (¢) does not affect periodicity or
period. Scaling the independent variable keeps the signal periodic but only
changes the period to be 27/scale. Finally, in point number (e) the signal is
not periodic as the sign of sin function in the negative direction is reversed.



1.1.4 Problem (1.31)

(a) Note that z2(t) = z1(t) — z1(t — 2). Therefore, using linearity we get yo(t) = y1(t) —
y1(t — 2). This is as shown in Figure S1.31.

(b) Note that z3() = z1(t) + z1(t + 1). Therefore, using linearity we get ys(t) = vi(t) +
y1(t +1). This is as shown in Figure 51.31.
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Figure 1.3: Problem Solution 1.31



1.2 Advanced Problems
1.2.1 Problem (1.34)

(a) Consider

oo

Z z[n} = =z[0] + Z{w[n] + z[-n]}.

n=—0oo
If z[n} is odd, 2{n] + z[—n] = 0. Therefore, the given summation evaluates to zero.
(b) Let y[n] = z1{njz2[n]. Then
y[—n] = z1[-nzs[-n] = —z1[nealn] = —yln]-
This implies that y[n] is odd.
(¢) Consider

Z 2{n) Z {ze[n) + zo[n]}?

= Z x2[n] + Z z2[n] +2 Z Te[n)zo[n].

Using the result of part (b), we know that z[n]z,[n] is an odd signal. Therefore, using
the result of part (a) we may conclude that

2 z ze[n)zo[n] = 0.

n=-~00

Therefore,
o [o.<] o

Z z%[n] == Z z2n] + Z z2[n].

n=—oo n=—00 n=—oo

(d) Consider

o0

00 o0 00
/ 22 (t)dt = / o2 (t)dt + f z2(t)dt + 2 / Te(t)zo(t)dt.
—00 —00 —00 —00
Again, since z.(t)z,(t) is odd,

/ * z2(t)zo(t)dt = 0.

Therefore,

f_ 0; 2 (t)dt = /_ Z z2(t)dt + /_ o:o z2(t)dt.



1.2.2 Problem (1.36)

(a) If z[n] is periodic e/we("+MT = o, where wy = 2/To. This implies that

2
%N T =27k = % = % = 3 rational number.

(b) If /Ty = p/q then zn] = £327n(p/9) | The fundamental period is g/gcd(p,¢) and the
fundamental frequency is

2 2mp wp woT
ged(p,q) = —=ged(p, = —Zgcd(p,q) = —ged(p, q)-
25 (p,q) 2 ¢t (r,9) 6 (p.9) pal (»,9)

(c) p/gcd(p, q) periods of z(t) are needed.



1.3 Mathematical Review

1.3.1 Problem (1.51)

(a) We have
e/ = cos 6 + jsin®. (S1.51-1)

and

e = cos§ — jsind. (S1.51-2)

Summing egs. (S1.51-1) and (S1.51-2) we get

cosf = %(e"ﬁl +e70).

{b) Subtracting eq. (S1.51-2) from (S1.51-1) we get

sinf = %(ejg — e,

(¢) We now have e/(?+9) = /%3¢ Therefore,

(cos 0 cos ¢ — sin @ sin ¢)

cos(0 + ¢) + jsin(@+¢) =
+ j(sin®@cos ¢ + cos @ sin ) (S1.51-3)

Putting # = ¢ in eq. (51.51-3), we get
‘ 08 260 = cos® § — sin® 6.
Putting # = —¢ in eq. (S1.51-3), we get
1 = cos? 8 +sin® 6.
Adding the two above equations and simplifying

cos? = %(1 + cos 26).

(d) Equating the real parts in eq. (S1.51-3) with arguments (8 + ¢) and (6 — $) we get

cos(f + ¢) = cosfcos p — sinB'sin 1)

and
cos(0 — @) = cos @ cos ¢ + sinf sin .

Subtracting the two above equations, we obtain
1
sinfsin¢g = 5[005(9 — @) — cos(6 + ¢)).

(e) Equating imaginary parts in in eq. (S1.51-3), we get
sin(f + ¢) = sin@ cos ¢ + cosfsin .



1.3.2 Problem (1.52)

(2) 22" = reflred? =1
(b) z/z" = reifr—lei? = 120
(e} z+ 2" =g+ jy + x — jy = 2z = 2Re{z}
(@d)z—-z2" =5+ jy — z + jy = 2jy = 2Im{z}
(e) (71 + 22)* = ((m1 +32) + il +12))" =@~ + 22— G =2 + z;
(f) Consider (az22)* for a > 0.
’ (az122)" = (arlrgej(9‘+02))* = arle'jg’rge'j92 = az] z3.

For a < 0, a = |ae’™. Therefore,

j B N T N S
(azy2z2)" = (|a|r1rge](0‘+92+"))* = |ale™ I rie7 " rpe™? = aziz;.

(g) For |z2| #0,

& —jth *
Y Z Dleibigits = e s zl;
9 roe102 z

{h) From (c), we get



1.3.3 Problem (1.54)

(2) For o = 1, it is fairly obvious that

=
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For ar # 1, we may write

N-1 N-1 N-1
(1—a)Ea"=Za"—Za”+l=1——aN.
n=0 =0

n=0 n
Therefore,
N-1
Z Cln = 1-— (XN
l—«
n=
(b) For o} < 1, .
lim oV =0.
N-ooo

Therefore, from the result of the previous part,

N-1 co 1
lim E " = E o = ——.
N-oo l-«
n=0 =0

(c) Differentiating both sides of the result of part (b) wrt a, we get

2(5) - &5

_ 1
Zna"l = i a)

I

{d) We may write

m k n
§ o' =a 1?:0 T r |al

(04
n=k
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Chapter 2

Linear Time Invariant

2.1 Basic Problems
2.1.1 Problem (2.1)

(a) We know that

n[n] = z[n] * hln] = io: hlk]z[n — k] (52.1-1)

k=—00

The signals z[n] and h[n] are as shown in Figure 52.1.

.]2 20 3 hin
Al 1
‘0

}7'.14" -t o | 21

-1

Figure S2.1
From this figure, we can easily see that the above convolution sum reduces to

h{—1)z[n + 1] + hll]z[n — 1]
2z[n + 1] + 2zjn — 1]

y1[n]

[l

This gives
y1[n] = 26[n + 1] + 43[n] + 26[n — 1] + 2[n — 2] — 26[n — 4]
(b) We know that
yoln] = z[n + 2] * hin] = ki hiklz[n + 2 — k)

Comparing with eq. (S2.1-1), we see that
yofn] = yi[n + 2]

(c) We may rewrite eq. (52.1-1) as

yifn] = ofn] * hln) = Y zlklhln — k]
k=-o00
Similarly, we may write
11 00
ysl] = afn] # b+ 2 = S alklhfn +2 - K]
k=—~00

Comparing this with eq. (S2.1), we see that

ys[n] = yi[n + 2]



2.1.2 Problem (2.3)

Let us define the signals . .
1
ailnl = (3) ol

hi[n] = u[n}.

and

We note that -
‘ zln) = 21n—2] and  h[n] = hin + 2]

Now,
y[n] = zn}*hin] =z1[n - 2]« ha[n +2]

= i z1lk — 2o~ k+2]

k=—o00
By replacing k with m + 2 in the abovr summation, we obtain

e e]

y[n] = Z z1[m]hi[n — m] = z1[n] * hy[n]

m=—00

Using the results of Example 2.1 in the text book, we may write

yln] = 2 [1 - (-;)n“] uln]

12



2.1.3 Problem (2.8)

Using the convolution integral,

2(8) * h(t) = /

—00

” z(T)h(t — 7)dr = /00 h(r)z(t — )dr.

-0

Given that h(t) = §(t + 2) + 28(t + 1), the above integral reduces to
z(t) * y(t) = z(t + 2) + 2z(t + 1)

The signals z(t + 2) and 2z(t + 1) are plotted in Figure 52.8.

2 2
I/\\xcwz) /l\"d’c—t 0
1 t
-2 -1 o * -1 0 1
Figure S2.8
Using these plots, we can easily show that
t+ 3, -2<tL—1

=1t -1<t<0

BW=912-2t, o0<t<1

0, otherwise

13



2.1.4 Problem (2.21)

(a) The desired convolution is

yin] = aln] +Aln]

(o}

= Y alklh[n - k)

k=—o0

= "> (a/f)fforn20
ﬂ:-lz-;) _ Ot"’+1

= [ ﬁ....a

Juln] for a # B.

(b) From (a),
(c¢) For n < 6,
For n > 6,

Therefore, )
w={ QR ns 6

v 8/9(-1/2", ©  n>6

(d) The desired convolution is

(o0}

> zlklhin - K]

k=00
z[0)hfn] + z[1]h{n — 1] + z[2]h[n — 2] + z[3lh[n — 3] + z[4]h[n — 4]
hin] + h{n — 1] + hin — 2} + hln — 3} + hln - 4].

1l

yln]

o

This is as shown in Figure 52.21.

14






2.1.5 Problem (2.22)

(a) The desired convolution is

I

y() / ~ a(r)hlt - 7)dr

-0

i
= /e_“te_ﬁ(t_f)d'r, t>0
0

Then

B-a

y(t) = o) a#s .
te Ptu(t) a=p0

(b) The desired convolution is

y(t)

I

/oow('r)h(t —7)dT

2 5
/0 hit - 7)dr — fz h(t — 7)dr.

This may be written as

¢ 2 5
j eXt-T)dr — / eXt=7)dr, t<1
0, 2

5
2t-T) g — f e2(t-")dr, 1<t<3
y(t) = 4 ft—l 2

5

_ f At=")dr, 3<t<6
t—1

o, 6 <t

Therefore,

(1/2)[e* — 222 4. 2t-9)] <1
(1/2)[e? + At=5) — 2¢2(t-2)], 1<t<3
(1/2)[e2(t=9) — ¢?), 3<t<6
0, 6 <t

16



(¢) The desired convolution is

| y(t) /_ * s(r)h(t - r)dr

2
/ sin(w7)h(t — 7)dT.
0

This gives us

0: t<1
) = (2/m)[1 — cos{n(t - 1)}], 1<t<3
YO =13 (o/m)cos{n(t —3)} - 1], 3<t<5
0, h<t
(d) Let
(t) = ha(t) - 36 - 2)
where 43 -
ha(?) :{ 0, ’ otherwise
Now, 1
y(t) = h(t) * (1) = [ (t) * 2(8)] - 32(t - 2).
We have
hi(e) * o(t) = /t;%(m +b)dr = g[%a# - %a(t —1)2 4 bt — bt — 1)].
Therefore,
yit) = %[-;—atz ~La(t-1? + bt —b(t - 1)) - %[a(t —2) + 8 = at + b = (b).

(e) z(t) periodic implies y(t) periodic. .". determine 1 period only. We have

~1 t

/t:(t—'r—l)d-r-}-/_l(l—t+7')d'r=;11-+t-t2, -i<t<}

y(t) = 1 .2
(1—t+'r)d'r+ﬁ(t—1—-r)d1'=t2—3t+7/4,

t—1 1

=
A
-
A

R

2

The period of y(t) is 2.

2.1.6 Problem (2.25)

(a) We may write z[n] as

17



Now, the desired convolution is

yln] = hin] = z[n]
-1 oo
= 5 )7/ Fun - k+ 3]+ 3 (1/3)5(1/4)" Fuln — k + 3]
k=--00 k=0 ,
= (1/12)%(1 /3)F(1/4)" Fun + k + 4] + i(1/3)'€(1 14" *uln — k + 3]
k=0 k=0

By consider each summation in the above equation separately, we may show that

L a2, n < =4
y[n] ={ (1/11)4¢, ‘ n=-4.
(1/4)7(1/11) + ~3(1/4)" + 3(256)(1/3)",  n > -3

() Now consider the convolution
valn] = [(1/3)"uln]) » [(1/4)"ufn + 3]].
We may show that

{0, n < —3
nnl = { ~3(1/4)" +3(256)(1/3)"*,  n2-3 °

Also, consider the convolution
ya[n] = [(3)"u[-n — 1] = [(1/4)"u[n + 3]] .

We may show that
. ] = (124/11)3", n< -4
AN E L (/am@/11),  nz -3

Clearly, y1[n] + ya[n] = y[n] obtained in the previous part.

2.1.7 Problem (2.29)

\ o]
(a) Causal because h(t) = 0 for £ < 0. Stable because / [h(t)|dt = e 8/4 < co.
-0

o0
(b) Not causal because h(t) # 0 for ¢ < 0. Unstable because / |h(t)| = 0.

-0

o0
(¢) Not causal because h(t) # 0 for ¢ < 0. a Stable because / | (t)|dt = €19%/2 < oo.

-00

00
(d) Not causal because h(t) # 0 for ¢t < 0. Stable because / |h(t)|dt = e72/2 < o0.
(o]

o0
(e) Not causal because h(t) # 0 for ¢ < 0. Stable because / |h(t)|dt = 1/3 < 0.

—0o0

CO
(f) Causal because h(t) = 0 for ¢ < 0. Stable because / [p{t)|dt = 1 < o0.

—00

o0
(g) Causal because h(t) = 0 for ¢ < 0. Unstable because / Jh(t)|dt = oo.
—00

18



2.2 Advanced Problems
2.2.1 Problem (2.40)

(a) Note that s
t . !
y(t) = / e~ g(r — 2)dr = / e~(t=2-")g(r")d7'.
—00 —00

Therefore,
: h(t) = e~ Du(t — 2).

(b) We have
y(t) = /_ ® Wr)z(t — 7)dr

= /ooe_("'z)[u(t —7+1)—u(t—-7-2)
2

h(7) and z(t — 7) are as shown in the figure below.
Using this figure, we may write

0, t<1
41
/ e~ (T dr =1 — e~ (t-1), l1<t<4
y(t) = 2

e T Adr =~ (-1 -3, t>4
t-2

19



2.2.2 Problem (2.43)

{a) We first have
[z(t) * h(t)] * g(¢) k(o' ~ T)g(t — o')drdo’

z(7)h{o)g(t — o — T)drdo

i

It
\%\&«.\8
\\\8

E-?

Also,

2+ @) +9) = [ [ alt=ahir)ole’ ~ ryic'ar

I
\.,,,ﬁ\

[
/oo:c o)h{T)g(t — 7 — o)drdo
/ z{1T)Wo)g(t — o — T)drdo

The equality is proved.
{b) (i) We first have

win] = ufn] * hafn] = i (—-;-)k - % [1 _ (_%)n+l} uln].

k=0
Now,
yln] = win] « hofr] = (n + Dufn].
(ii) We first have

n k n—1 '
o) = afr] ¢ haln] = 3 (-;) IS D =)

k=0 k=0
Now,
yin] = ufn]  gln] = u[n] * uln] = (n + uln].
The same result was obtained in both parts (i) and (ii).
{c) Note that
zfn] * (heln] * hi[n]) = (z[n] * ha[n]) = hi[n].
Also note that '
z[n] ¥ ha[n] = a™uln] — o™uln — 1] = é[n].

Therefore,
z[n] = hy[n] * ha[n] = 8[n} * sin8n = sin8n.

20



2.3 Extension Problems

2.3.1 Problem (2.61)

() (i) From Kirchoff’s voltage law, we know that the input voltage must equal the sum
of the voltages across the inductor and capacitor. Therefore,

2(t) = Lcdgdigt) +y(0).

Using the values of L and C' we get
Py(t)
de?

(ii) Using the results of Problem 2.53, we know that the homogeneous solution of the
differential equation '

+y(t) = =(t).

2’(
ddjgt) aléz;i_t) + agy(t) = ba(2).

will have terms of the form K;e®® + Kze®'t where so and s are roots of the equation
32+a13+a2 = (.

(It is assumed here that so # 51.) In this problem, a1 =0 and ap = 1. Therefore,
the root of the equation are so = j and s = —j.. The homogeneous s lution is

'yh(t) = K]@ﬂ + Kzemjt.

And, vy =1 =ws.
(iii) If the voltage and current are restricted to be real, then K; = K, = K. Therefore,

yp(t) = 2K cos(t) = 2K sin(t + 7/2).

21



(&) (0

(ii)

() (i)

From Kirchoff’s voltage law, we know that the input voltage must equal the sum
of the voltages across the resistor and capacitor. Therefore,

dy(t
o) = ROHD 400,
Using the values of R, L, and C we get
dy(t) _
W+ y(0) = o(0).

The natural response of the system is the homogeneous solution of the above differ-
ential equation. Using the results of Problem 2.53, we know that the homogeneous
solution of the differential equation

-9+ﬂ1=0.

In this problem, a; = 1. Therefore, the 1001; of the equation are sg = —1. The
homogeneous solution is
yu(t) = Ke™

And,a=1.

From Kirchoff’s voltage law, we know that the input voltage must equal the sum
of the voltages across the resistor, inductor, and capacitor. Therefore,

dy(t) ( )

a(t) = LO—5"

+ RC——= +y(3).

Using the values of R, L, and C we get

d?y(t) +ody®
a2 T Tdt

Using the results of Problem 2.53, we know that the homogeneous solution of the
differential equation

+ by(t) = 5x(t).

d2y(t) + o B

L+ B+ aay(t) = ba).

will have terms of the form K;e®0t+ Koe®tf where sg and s are roots of the equation
52+G«13+a2=0.

(It is assumed here that sp # 51.) In this problem, a; = 2 and ap = 5. Therefore,
the root of the equation are sg = —1 + 2j and s; = —1 — 2j. The homogeneous
solution is

yp(t) = Kle—tezjt + Kze_te_2jt.

And, a = 1.

(iii) If the voltage and current are restricted to be real, then K;, = Ky = K. Therefore,

ya(t) = 2Ke ™t cos(2t) = 2Ke ™' sin(2t + 7/2).

22



2.3.2 Problem (2.66)

(a) The plot of z1(t) is as shown in Figure S2.66.
(b) The plots of z2(t) and z2(t) are as shown in Figuzre 52.66.

1)
4
5 { 2 3 et
-4
2o () G (%)
le. l i
5 i 2 2 4 ) ] 2 3
-1 @& Y

Figure 52.88

(e) z,(t) * ho(t) = ma(t) * ha(t) = x1(2) * ha(t) =0 for t = 4.
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Chapter 3

Fourier Series
Representation of Periodic
Signals

3.1 Basic Problems
3.1.1 Problem (3.1)

Using the Fourier series synthesis eq. (3.38),
D oz(t) = a @Ry a_1e~ 3@/t | g, 33(2m/TIt | a_ge~ 3@/t
Zej(21r/8)t + ze-—j(Z‘lr/s)t +4jej3(21r/8)t _ 4je—j3(27r/8)t
s o . BT
= 4cos(Zt) - SSln(?t)

= 4cos(g-t) + 8005(%75#{— g)

3.1.2 Problem (3.3)

The given signal is
z(t)

24 %ej(ivr/ﬂ)t + %e—j(ZW/S)t — 2jei6m/3t | 2je_j(5,,/3)¢

94 % eI22n /60 | %e~j2(27r/6)t — 9jeISCn/0) | g oi5(zn/)

From this, we may conclude that the fundamental frequency of z(t) is 27/6 = n/3. The
non-zero Fourier series coeffcients of z(t) are:

1 .
@w=2 m=ap=; as=aly=-2

24



3.1.3 Problem (3.4)

Since wy = 7, T = 27 /wy = 2. Therefore,

1 2 ,
ap = -2—/ :c(t)e_Jk’”dt
0

—-1 115 ——1 2 =
a0 =
0 2/0 .5dt 2/1 1.5dt =0

1 1 . 1 2
ap = —/ 1.5e‘1k”tdt—-/ 1.5e= k7t gy
2Jo 2/;

Now,

and for £ # 0

3
= Tt ek
3 km
= = Ik(m/2) g (2T
kr® sin 2 )

3.1.4 Problem (3.5)

Both z1(1 — t) and z;(t — 1) are periodic with fundemental period T} = 3—)"1- Since y(t) is
a linear combination of z1(1 — t) and z1(t — 1), it is also periodic with fundemental period

Ty = Z—’: Therefore, wp = w.
Since z1(t) 45'3 ay, using the results in Table 3.1 we have
z1(t+1) &3,y gt/
z1(t - 1) &5y qpeF@TIT) o gy (~t + 1) &Sy g_ e ik@n/Th)
Therefbre,

wr(t+1) + o1 — 1) £ ape T 4 g_e T = 71K (0 + ay)
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3.1.5 Problem (3.20)

;. . _ eyt
{a) Current through the capacitor = C—dit—l.
Voltage across resistor = RC244.

2
Voltage across inductor = Lot -+ U
Input voltage = Voltage across resistor + Voltage across inductor + Voltage across

capacitor.
Therefore, 2
_ y(t) dy(t)
z(t) = LC pre + RC'———dt + y(t)
Substituting for R, L and C, we have
d?y(t) | dy(t)
pTe) + 3 + y(t) = z(t) ‘ :

{(b) We will now use an approach similar to the one used in part (b) of the previous problem.
If we assume that the input is of the form e’t, then the output will be of the form
H(jw)e“t. Substituting in the above differential equation and simplifying, we obtain

1

HGw) = =701

{c) The signal 2(t) is periodic with period 2r. Since z(t) can be expressed in the form

1 1
. eJ(21r/27r)t —j(2m f2m)t
=) 23 23 ¢ ’

the non-zero Fourier series coefficients of z(t) are

Using the results derived in Section 3.8 (see eq.(3.124)), we have

y(t) = aH@)e" —a H(-j)e™
Nt L it

(1/23)(je’ = )

(~1/2) (" + &)

—cos(t)

1l

3.1.6 Problem (3.21)

Using the Fourier series synthesis eq.
'E(t) — alej(Z-n'/T)t +a_le—j(27r/T)t +asej5(21r/T)t +a_56—j5(21r/T)t

jej(21r/8)t _ je—j(21r/8)0 + 2ej5(21r/8)t + 2e—j5(27r/8)t

= —2sin(fe)+ 4cos(§41t)

= -2 cos(%t —-mw/2) + 4cos(§£t).
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3.1.7 Problem (3.22)

() (i) T=1,a0=0,a =3 k0.

(ii) Here,

t42, —2<t<-—1

! z(t)=4¢ 1, -1<t<1
2 -1, 1<t<2
T =6, ap = 1/2, and
0, k even
%=\ Eysin(%)sin(E), kodd
(iii) T'= 3, ap = 1, and
3j

% = om2g?

(V)T =2,a0=-1/2,ap =5 — (-1)k, k #0.
(v) T =6, wp =7/3, and
cos(2km/3) — cos(kn/3)
ap = T .
jkn/3
Note that ag = 0 and @i eyen = 0.
(vi) T = 4, wp = 7/2, ap = 3/4 and

e=*7/2 gin(km [2) + e~ k[ gin(km /4)

Qg = kT )
_1k -
)T =2a= mﬁm{e—e 1 for all k.
() T=3,w=2n/3,a=1and
Ze—j‘rrk/3 . e—jﬂk .
a = —— sin(27k/3) + = sin(nk).

27

—J_ e /3 sin(k2r/3) + 2¢7*7/* sin(kn/3)),

k#0.

Yk.



3.2 Advanced Problems
3.2.1 Problem (3.40)

(a) z(t — o) is also periodic with period 7'. The Fourier series coefficients by, of z(t — to)
are

by

i

1 f a(t — to)e TR/ TItdy
TJr
—jk(2m/T)to
_ e / a(r)eH@r/T) gy
T T
= eikCn/Tiog,
Similarly, the Fourier series coefficients of z(t + to) are
o, = IF2T/Thtog,.
Tinally, the Fourier series coefficients of z(t — ta) + z(t + tp) are
dp=br+cx= e~ Ik@n/Tiog, 4 IR [Tho g — 2 cos(k2mto/T)ay.
(b) Note that Ev{z(t)} = [z(t) + z(~t)]/2. The FS coefficients of z(—t) are
b = = f z(~t)e~ kT gy
TJr

= —l-fm(T)ejk(z"/T)TdT
TJjr
= a—g
Therefore, the FS coefficients of £v{z(t)} are

ap+by eptag
=g =g

(c) Note that Re{z(t)} = [z(t) + =*(t)]/2. The FS coefficients of z*(t) are

b= f o (¢)e=TkCn T gy,
Tz
Conjugating both sides, we get
b= 1 / z(t)e* Mgt = a_y.
Tr

" Therefore, the F'S coefficients of Re{z(t)} are

o = ap + by _ ap +at;
kT T T2
(d) The Fourier series synthesis equation gives

00
z(t) = E ayed@m/TIkt,

k=—o00
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Differentiating both sides wrt ¢ twice, we get

d*z(t) = 247%  ian Tkt
; = > —k e IO,

k=~00

By inspection, we know that the Fourier series coefficients of d2z(t) /dt’ are -k%’:r;—ak.

(€) The period of z(3t) is a third of the period of z(t). Therefore, the signal z(3t — 1)
is periodic with period T/3. The Fourier series coefficents of z(3t) are still a;. Using

the analysis of part (a), we know that the Fourier series coefficients of z(3t — 1) is
e—IK67/T)g,

3.2.2 Problem (3.46)

(2) The Fourier series coefficients of z(t) are

_ 1 j(n+dwot ,—jkwot
¢, = T‘/T;Zanblej(nd}‘ Jwot g =i ‘“0 dt
1
= ng:anb,a(k—(nﬂ))
= zanbk—n
n
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(b) (i) Here, Ty = 3 and wg = 21/3. Therefore,

2sin(k2r/3)

1 1
Cp = [Ed(k—30)+§<5(k+30)]* 3k27r/3

S‘ lifyi 1)
implifyig sin{(k — 30)27/3}  sin{(k +30)2/3}

% = T3k - 30)27/3 3(k + 30)27/3

and .ci39 =1/3.
(ii) We may express x(t) as

x9(t) = sum of two shifted square waves X cos(20wt).
Here, Ty = 3, wo = 27/3. Therefore,
! —i(k-30)(2n/3) sin{(k —30)27/3} | 1 _jekts0)n/3) ysin{(k + 30)27/3}

% = F* (k—30)21/3 ' 3° (k + 30)2/3
4+ Lot ~30)(w/3) sin{(k —30)r/3} 1, 1 _iteraoy(ny3) Sin{(k + 30)/3}
3¢ k—30)22/3 ' 3 Tkt 30)24/3

(iii) Here, Ty = 4, wy = 7/2. Therefore,

Flkwo + e~ {sin kwp — cos kwg}]
2[1 + (kwo)?]

o= Ea(k — 40) + -;—J(k + 40)]

Simplifying,
_ jl(k — 40)wo + e~ sin(k — 40)wq — cos(k — 40)wp}]
= 41+ {(k = 00 }]
[(k + 40)wo + e~ {sin(k + 40)wo — cos(k -+ 40 wo}]
[1 + {(k + 40 LJ()}Z}

(¢) From Problem 3.42, we know that by = aZ,. From part (a), we know that the FS
coefficients of z(t) = z(t)y(t) = z(t)z*(t) = |=(t)|* will be

fee)

Cr = z anby g = Z Qpnlnik-

n=—co n=-—og
From the Fourier series analysis equation, we have

1

Cx ~ 7=
To Jo

To X el
lx(t)|26—1(21r/'1'0)ktdt= Z aﬂa;_“k.

n=-—00

Putting & = 0 in this equation, we get

LY / |(t)|2dt = ‘z lanl?.

n=—00

3.2.3 Problem (3.47)

Considering z(t) to be periodic with period 1, the nonzero FS coefficients of z(t) are a; =

a_j = 1/2. If we now consider z(t) to be periodic with period 3, then the the nonzero FS
coefficients of z(t) are by = b_3 = 1/2.
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3.3 Extension Problems

3.3.1 Problem (3.65)

(a) Pairs (a) and (b) are orthogonal. Pairs (c) and (d) are not orthogonal.
{b) Orthogonal, but not orthonormal. A, = 1/wq.
(¢) Orthonormal.

{d) We have )
/m+Tejmone—jnwde — gl(m=n)uato [eJ(m—n)Zvr — 4]
to (m - n)wo
This evaluates to 0 when m # n and to jT when m = n. Therefore, the functions are
orthogonal but not orthonormal.

{e) We have

I

T 1 T
[ sttt = / {o(0) +a(=)lz(t) = a(-0)s

-T
= l/Tzz(t)d.'t—l T:z:z(~t)df
T4y 4 1 ’
= 0.

(f) Consider

b 1 . 1 by .
g ﬁ@c(t)ﬁ(ﬁz (t)ydt = ﬁj{ ji P ()¢ (#)dt.

This valuates to zero for k # . For k = I, it evaluates to Ag/Ag = 1. Therefore, the
functions are orthonormal.

(g) We have !

]

b
b .
/ Zai¢i(t)Zaj¢;(t)dt
(2 b-’
DI f $:(t)8 (D)t
i J a
Zlad?-

b
/ | (t)Pdt

i

() We have
y(T) = / " BT — 7)y(r)dr

{oe]
- j $i(r) by (r)dr
—CO
— §;=1fori=jand0fori#j
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Chapter 4

The Continuous-Time
Fourier Transform

4.1 Basic Problems
4.1.1 Problem (4.1)

(a) Let (t) = e~2-Dy(t — 1). Then the Fourier transform X (jw) of (2) is:

co »
X(w) = / 2=V y (¢ _ 1)e-Tutgy

-0

o0 =
/ e—2(t—1}e—]wtdt
1

e /(2 + jw)

| X (jw)| is as shown in Figure S4.1.
(b) Let z{t) = e~ 21, Then the Fourier transform X (jw) of z(t) is:

co .
X(jw) = / g™ At-Ugmiwtgy
—00

co 1
jf e~ 2t=) gt gy o ][ Q2t-1) iust gy
1 —00

e )(2 + jw) + e7/(2 - jw)
= de7 /(4 4+ w7)

i

| X (jw)] is as shown in Figure 54.1.

Fia) .
ot G
Z
//}?-i\
o P ol
(2 (&

Figure S4.1
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4.1.2 Problem (4.3)

{2) The signal z(t) = sin(2nt + x/4) is periodic with a fundamental period of T = 1.
This translates to a fundamental frequency of wy = 2w, The nonzero Fourier series
coefficients of this signal may be found by writing it in the form

1 . .
:L‘l(f.) — 2]' (e](Zﬂt+1r/4) _ e—;(Zer—w/tl))
1 . ) 1. .
— ej1r/4eﬂ1rt _ —jn /4 —j2nt
% 5 ¢

Therefore, the nonzero Fourier series coefficients of 1(t) are
a = __l__ej'rr/tlej‘lvrl ay = _ie—jw/4e-—j2m
23 ’ 23

From Section 4.2, we know that for periodic signals, the Fourier transform consists of
a train of impulses occurring at kwg. Furthermore, the area under each impulse is 27
times the Fourier series coefficient ax. Therefore, for z(t), the corresponding Fourier
transform X, (jw) is given by

X (jw) = 2ma1d(w — wo) + 2ma_18(w + wo)
o (/D)5 — 2m) — (1) eI 6w + 2)

(b} The signal zo(t) = 1+ cos(6nt+x/8) is periodic with a fundamental period of T' = 1/3.
This translates to a fundamental frequency of wy = 6m. The nonzero Fourier series
coefficients of this signal may be found by writing it in the form

z2(t)

i

1/ . .
el (6mit+n/8) _ ,—j(bmt+7/8)
1+ 5 (eJ € )

Il

1. . 1 . -
14+ __ej1r/88167r£ + _e——]w/Be—J(nrt
2 2

Therefore, the nonzero Fourier series coefficients of za(t) are
1. ) ) )
ag =1, a; = é_ejvr/Be]G*trt’ aq = %E—J”/BE‘JGM

F‘rom_ Sect%on 4.2, we know that for periodic signals, the Fourier transform consists of
a train of impulses occurring at kwp. Furthermore, the area under each impulse is Zr

times the Fourier series coefficient ay. Therefore, for z4(t), the corresponding Fourier
transform Xs(jw) is given by

i

X (jw) 2magd(w) + 2ma1d(w — wp) + 271 8(w + wp)

218(w) + eI/ E§(w — 67) + e~ I"/85(w + 6m)
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4.1.3 Problem (4.5)

From the given information,

1l

z(t) (1/27) /_ * X (jw)e!™ dw

(1/27) / | X (jw)|e? X G} givt g,

3
(1/2#)/ 2e™ BwHTeiwt g,
-3

vr(t_:%ﬁ_) sin[3(t — 3/2)]

The signal z(t) is zero when 3(¢ — 3/2) is a nonzero integer multiple of 7. This gives

3
t:;—g—r+§, for k€T, and k #0.
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4.1.4 Problem (4.8)

(2) The signal =(t) is as shown in the Figure $4.8.
AEF

A ]

™l

Figure 4.8
We may express this signal as

¢
aft) = / y(t)dt,

where y(t) is the rectangular pulse shown in Figure $4.8. Using the integration property
of the Fourier transform, we have

2(t) &5 X (juw) = jiwv(m + 7Y (70)3(w)

We know from Table 4.2 that

¥ (jw) = Zsinlf}w/Z)

Therefore,

X(jw) = 351%“2-’/—21 + m6(w)

{b) If ¢(¢) = =(t) — 1/2, then the Fourier transform G(jw) of g(t) is given by
_ 2sin(w/2)

Gjw) = X (jw) — (1/2)2rd(w) = R
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4.1.5 Problem (4.12)

(a) From Example 4.2 we know that

2
1+ w?

_1 FT
et £

Using the differentiation in frequency property, we have

. d 2 44w
el £5 2y 2 b T
¢ Tdw 1+ u? (1 +w?)?
(b) The duality property states that if
g(t) €5 G(jw)
then o
G(t) «— 2nmg(jw).
Now, since _
- FT _ 4Jw
te — ——————-——( T3 W)
we may use duality to write
47t FT _
_m = 2rwe |w|

Multiplying both sides by j, we obtain

4t
(1+12)2

&L j27rwe‘l“’{.

37



4.1.6 Problem (4.13)

{(a) Taking the inverse Fourier transform of X (jw), we obtain

1 1 1
t) = — o ogwt — 8351

W =gt me + o
The signal x(¢) is therefore a constant summed with two complex exponentials whose
fundamental frequencies are 27 /5 rad/sec and 2 rad/sec. These two complex expo-
nentials are not harmonically related. That is, the fundamental frequencies of these
complex complex exponentials can never be integral multiples of 4 common fundamen-

tal frequency. Therefore, the signal is not periodie.
(b) Consider the signal y(¢) = z(t) * A(f). From the convolution property, we know that

Y (jw) = X (jw)H (jw). Also, from h(t), we know that

H(jw) = ¢~i0280@.
w

The function H(jw) is zero when w = kw, where k is a nonzero integer. Therefore,
Y(jw) = X(jw)H (jw) = §(w) + §(w - 5)
This gives
1 1 .
)= — + —e%

y(t) o ' Ine
Therefore, y(t) is a complex exponential summed with a constant. We know that a
complex exponential is periodic. Adding a constant to a complex exponential does not

affect its periodicity. Therefore, y(t) will be a signal with a fundamental frequency of
2 /5.

(c) TFrom the results of parts (a) and (b), we see that the answer is yes.

4.1.7 Problem (4.21)

{a) The given signal is

Lot | —————"y
e~ % cos{wot)u(t) = 3¢ otgiwoty (1) + 3¢ bemIw0by(t).

Therefore, 1 1

X(JUJ) = ‘2(0( — julo —I—ju)) - 2(a — Jwp +jw)'

{b) The given signal is
z(t) = e 3 sin(2t)u(t) + 3t sin(2t)u(—1).
We have

1/2j 1/2j
T FT, o - .
xl(t) = ¢ 3t sm(2t)‘u(t) XI{JW) = 3 jz + jw 34+ ]2 + jw

Also, 12
: 1/25 1/25

FT ) S _ .

zo(t) = e sin(2)u(—t) = ~z1(~t) &= X(jw) = - X1 (—jw) = 3-72 - jw 3442 jw

Therefore,
. . . 5 3
X(]w)=X1(JW+X2(JW)=9+(N+2)2 9+ (w—27
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(¢) Using the Fourier transform analysis equation (4.9) we have

2sinw  sinw sinw
X{jw) = - .
(J ) w * T—w T4w

{d) Using the Fourier transform analysis equation (4.9) we have

. 1
X(w) = 7o

(e} We have
a(t) = (1/25)te~ e/ u(t) — (1/25)te 2 e T u(t).

Therefore, / /
L 1/25 1/2j
Xw) = G ja v g~ BriA— g
(£) We have
g sinwt T N i 8 lw| < 7
z(t) = & Xy jw) = { 0, otherwise
Also
_ sin2n(t—1) FT e, lw] < 27
z(?) w(t—1) = Xajw) = { 0, otherwise
FT < 1 . .
z(t) = z1(t)z2(t) ¥— X(jw) = %{Xl (jw) * Xa(jw)}-
Therefore, .
e v, jw] < w
o) /2m) (8 + w)e v, —r<w< —7
X{jw) = (1/2m) (37 — w)e™3¥, T <w< In
0, otherwise

(g) Using the Fourier transform analysis eq. (4.9) we obtain

X{(jw) = Y [cos 2w — smw] .
W w
(h) If
o]
n(t) = Y 8t -2k),
k=—o00
then
z(t) = 2z, (1) + .1 (t — 1).
Therefore,

X(jw) = X1 (jw)2 +e ] =7 Y 8w~ km)2+ (-1)F].

k=-co
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(i) Using the Fourier transform analysis eq. (4.9) we obtain

1 279 2e7iw 2
] o — —_—
XGw) =25+ 3 P

(§) z(t) is periodic with period 2. Therefore,

X(jw) == Z X (jkm)o(w — k),

k=—00

where X (jw) is the Fourier transform of one period of z(t). That is,

N —e—21Hjw) =211 _ o=2(1+jw)
F(jw) = 1 l-e e?*[l—e 7 ]}

1-e2 1+ jw 1— jw

4.1.8 Problem (4.24)

(a) (i) For Re{X(jw)} to be 0, the signal z(t) must be real and odd. Therefore, signals
in figures (a) and {c) have this property.
(ii) For Zm{X (jw)} to be 0, the signal z(¢) must be real and even. Therefore, signals
in figures (e) and (f) have this property.
(iii) For there to exist a real o such that e/ X (jw) is real, we require that z(t + a) be
a real and even signal. Therefore, signals in figures (a), (b), (&), and (f) have this
property.
{iv) For this condition to be true, (0) = 0. Therefore, signals in figures (a), (b), (c),
(d), and (f) have this property. '
(v) For this condition to be true the derivative of z(t) has to be zero at t = 0. Therefore,
signals in figures (b), (c), (e), and (f) have this property.
(vi) For this to be true, the signal z(t) has to be periodic. Only the signal in figure (a)
has this property. '
(b) For a signal to satisfy only properties (i}, (iv), and (v}, it must be real and odd, and

z(t) =0, 2'(0) =0.

The signal shown below is ap example of that.
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Figure 84.24

4.1.9 Problem (4.26)

{a) (i) We have

Y (jw)

Il

X(jw)H (jw) = [(2 +1jw)2] {4 +1jw]

(/49 (/9 (1/2)
44+ jw 24+ jw (24 jw)?
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Taking the inverse Fourier transform we obtain
1 1 1. .
y(t) = ;1'3_4‘“(75) - zewmu(t) + Ete_“u(t),

(ii) We have

Y(jw) = X(jw)H(jw) = [(2 +1jw)2] [(4 +1jw)2}

/4 44 @4 1/
24jw  (24jw)?  4+jw (4 + jw)?

Taking the inverse Fourier transform we obtain

y(t) = -;fe"mu(t) + %te‘mu(t) - %e"”“u(t) + zll?te_“u(t)‘
(ii1) We have
Y(jw) = X(jw)H(jw)
_ 1 i1
B [1 +jw] [1 -jw]
12 1/2

l1+jw  1-jw

Taking the inverse Fourier transform, we obtain

: 1
y(t) = 56““'.
(b) By direct convolution of z(¢) with A(f) we obtain
o, t<1
ylt) = { 1—e 1) 1<t<s .
e84, 455
Taking the Fourier transform of y(t),

2e7 73 5in(2w)

YO = i )
_ [ eI ] e 25in(2w)
1+ jw w
= X(jw)H (jw)
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4.1.10 Problem (4.34)

(a) We have
Y(jw = jw+4

X(jw) ~ 6 —w?+5jw’
Cross-multiplying and taking the inverse Fourier transform, we obtain

dztzgt) + S%Q +6y(t) = did(tﬂ + 4xz(t).

b) We have
(b) ) X

HUe) = 3550 3550
Taking the inverse Fourier transform we obtain,

h(t) = 2e™2bu(t) — e Fu(t).

{c) We have
1

X0 = 55w

Therefore,

1
Y(w) = X(jwH(Hw) = ——e—
(jw) = X (jw)H (jw) AT7C 19
Finding the partial fraction expansion of ¥ (jw) and taking the inverse Fourier trans-

form, . .
_ Lo )
y(t) = 5¢ u(t) 3¢ u(t).
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4.2 Advanced Problems
4.2.1 Problem (4.38)

(a) Applying a frequency shift to the analysis equation, we have

X(jw — wp)) = / a(t)e~Ilwmwoltgy = / z(t)e?ote™ bt = FT {z(t)el“ot}.

{b) We have
w(t) = et &L W (jw) = 218(w — w).
Also,
sOu) &5 [X(w) ¢ W ()]

= X(jw)*§{w — wp)
= X(j(w—w))

4.2.2 Problem (4.44)

(a) Taking the Fourier transform of both sides of the given differential equation, we have
Y(§w)[10 + jw] = X (jw)[Z (jw) — 1].

Since, Z(jw) = ﬁ + 3, we obtain from the above equation

o Y(w) 3+ Zjw
HOW) = 3G0) = T 000 +50)

(b) Finding the partial fraction expansion of H(jw) and then taking its inverse Fourier
transform we obtain

h(t) = ~e~tu(t) + %Ze"mtu(t).

1
9
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