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A Student’s Guide to Matlab for Physical Modeling

Philip Nelson with Tom Dodson

Version 1.3, Updated on May 28, 2015

This tutorial aims to help you teach yourself enough of the Matlabr programming language
to get started on physical modeling, and particularly the problems appearing in Physical Models
of Living Systems (Nelson, 2015). This is not an official publication of The MathWorks, Inc. We
attempt to maintain it, but no claim is made that every suggestion made here will work properly
with future versions of Matlab.

This is a free online document. If you’d prefer a nice hard copy, you can get one from
lulu.com . Code listings that appear in this document, errata, and more can be found online via
http://www.physics.upenn.edu/biophys/PMLS/Student ; code can also be accessed by following
the links that appear in the far left margins of this document.

A companion to this tutorial covers similar techniques, but with the Python programming
language (Kinder & Nelson, 2015).
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C H A P T E R 1

Getting Started with Matlab

The Analytical Engine weaves algebraical patterns, just as the Jacquard loom weaves
flowers and leaves.

— Ada, Countess of Lovelace, 1815–1853

The goal of this tutorial is to get you started with the computer math package Matlab. Many excellent
introductions exist, and more are written every year. This one is distinguished mainly by the fact that it
tries to stick with skills specifically useful to solving problems arising in physical modeling, and specifically
those that appear in the book Physical Models of Living Systems (Nelson, 2015).

A few sections are flagged with this “Track 2” symbol: T2 . These are more advanced and can be skipped
if you don’t need that topic.

1.1 ALGORITHMS AND ALGORITHMIC THINKING

1.1.1 Algorithmic thinking

Suppose that you need to instruct a friend how to back your car out of your driveway. Your friend has never
driven a car, but it’s an emergency, and your only communication channel is a phone conversation before the
operation begins.

You need to break the required task down into small, explicit steps that your friend understands and can
execute in sequence. For example, you might say

1 Put the key in the ignition.
2 Turn the key until the car starts, then let go.
3 Push the button on the shift lever and move it to "Reverse."
4 ...

Unfortunately, for many cars this “code” won’t work, even if your friend understands each instruction: It
contains a bug. Before step 2, many cars require that the driver
Place right foot on left pedal and push down.

Also, the shift is usually marked R, not Reverse, and so on. It is difficult at first to get used to the very high
degree of explicitness needed when composing instructions like these.

Also, since you are giving the instructions in advance (your friend has no mobile phone), it’s wise to
allow for contingencies:
If a crunching sound is heard, immediately place right food on left pedal and push down...

Breaking the steps of a long operation down into small, ultra-explicit substeps, and anticipating contin-
gencies, are the beginning of learning algorithmic thinking.

If your friend has had a lot of experience watching people drive cars, then the instructions above may be
sufficient. But a friend from Mars, say, or a robot, would need much more detail. For example, the first two
steps may need to be expanded to something like

8



1.1 Algorithms and Algorithmic Thinking 9

1 Insert the pointed end of the key into the slot on lower right side of the
2 steering column.
3 Rotate the key about its long axis in the clockwise direction (when
4 viewed from the wide end toward the pointed end)...

A “low-level” computer programming system requires instructions analogous to these last ones.1 A “high-level”
system comes preprogrammed to understand many everyday operations, and therefore can be instructed in a
more condensed style, as in the first example. Matlab is a high-level language, because it knows about many
operations commonly needed when performing mathematical calculations, processing text, manipulating files,
making graphs, and image processing.

1.1.2 States

You may be familiar with multistep mathematical proofs. The goal of such a narrative is to establish the
truth of a desired, unobvious conclusion by sequentially appealing to given information and a formal system.
Thus, each statement’s truth, although not evident in isolation, is supposed to be straightforward in light of
the preceding statements. The reader’s “state” (list of propositions known to be true) grows while reading
through the proof.

An algorithm has a very different goal. A chain of instructions is to be followed, each of which performs an
easily specified operation, with the goal of accomplishing a not-easily performed task. The chain may involve
a lot of repetition, so you don’t want to supervise the execution of every step. Instead, you wish to specify all
the steps in advance, then stand back while your electronic assistant performs them rapidly. There may also
be contingencies that cannot be precisely known in advance (If a crunching sound is heard, ...).

In an algorithm, the computer has a state that is constantly being modified. For example, it has many
memory cells, whose contents change during the course of any operation. Your goal may be to arrange for one
or more of them to contain the result of some complex calculation, once the algorithm has finished running.
(You may also want a particular graphical image to appear.)

1.1.3 What does a = a + 1 mean?

To put the preceding distinction into sharp relief, note that most computer math systems, including Matlab,
accept lines of input such as these:

1 a = 1
2 a = a + 1

In mathematics, this makes no sense. More precisely, the second line is an assertion that is always false;
equivalently, it is an equation with no solution. To Matlab, however, these lines have the following meaning:

1. Determine whether any memory cell is currently assigned the name a. If not, assign this name to a
currently unused memory cell. Either way, discard whatever value was previously stored in that cell, and
store the value 1 in it.

2. Extract the value stored in the memory call named a. Calculate the sum of that value plus 1. Store the
resulting value in the memory cell named a, discarding its previous value.

In other words, the equals sign is a verb instructing Matlab to change its state. In contrast, mathematical
notation uses the equals sign to create a proposition, which may be true or false. Note, too, that Matlab
treats the left and right sides of the command x = y very differently, whereas in math the equals sign is
symmetric. For example, Matlab will give an error message if you say something like b + 1 = a; the object
on the left side of an assignment must be the name of a memory cell, able to accept a value.

Actually, we often do wish to evaluate whether a named memory cell (or “variable”) has a particular
value or not. To avoid ambiguity, Matlab uses a different symbol for this operation, the double equals sign:

1“Assembly language” is an example of a low-level system. “Firmware” is lower still.
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1.2 Launch Matlab 10

1 a = 1;
2 b = (a==1);

The above code again sets up a variable a and assigns it a numerical value. Then it sets up a second variable
b, and assigns it a logical value: When the code has completed, the value of b is also 1, which is Matlab’s
representation of true. That value can be used in contingent code, as we’ll see later.

Mistakenly using = when == is desired is one of the top coding errors!

You can get very mysterious results if you make this error, because both = and == are legitimate Matlab
syntax. In any particular situation, however, one of them is not what you want.

1.1.4 Symbolic versus numerical

In math, it’s perfectly reasonable to start a derivation by saying “Let b = a2 − a,” even if the reader doesn’t
yet know the value of a. It’s understood that this is a generic statement of a relation defining b in terms of a,
whatever the value of a turns out to be.

If we launch Matlab and immediately give the same statement, b = aˆ2 - a, however, the result is
an error message. Every time you hit <Return/Enter> (or later, the

�� ��Run button), Matlab tries to
calculate values for everything in every assignment. Because the variable a has not been assigned a value yet,
evaluation fails and Matlab complains. Other computer math packages can accept such input, remember it
in the symbolic form given, and manipulate it later, but basic Matlab does not.2

In math, it’s also understood that a definition like “Let b = a2 − a” will persist unchanged throughout
the discussion. If we then say “In the case a = 1, . . . ” then the reader knows that b equals zero; if later we
say “In the case a = 2, . . . ” then we need not reiterate the definition of b for the reader to know that this
symbol now represents the value 22 − 2 = 2.

In contrast, a numerical system like Matlab forgets the relation between b and a immediately after
executing the assignment b = aˆ2 - a. All that it remembers is the value now stored in b. If we later change
the value of a, the value of b will not change.

Similarly, if a has a value and we say b = aˆ2 - a, then nothing stops us from later saying b = exp(a).
The second assignment updates Matlab’s state by discarding the value calculated in the first one and
substituting the newly computed value.

1.2 LAUNCH MATLAB

1.2.1 Command Window

From now on, you must actually have Matlab running as you read, try every snippet of code given here,
and observe what Matlab does in response.

Reading this tutorial won’t teach you Matlab. You can teach yourself
Matlab by working through all the examples and exercises here, and
then using what you’ve learned on your own problems.

Set yourself little challenges (“What would happen if?” “How could I accomplish that?”) and try them out.
Matlab is not some expensive piece of lab apparatus that could break or explode if you type something
wrong! Just try things. This active-learning strategy is not only more fun than passively accumulating
facts—it is also far more effective.

2Matlab does have a symbolic manipulation subsystem, but we won’t be using it.

Jump to Contents Jump to Index



1.2 Launch Matlab 11

If you are reading an electronic version of this tutorial, you may be tempted to just cut and paste the
code into Matlab. But then you may find that extraneous blank spaces, bad characters, and other such
things appear. It’s safer to retype the examples yourself, and anyway, you’ll learn faster that way. Or you
can follow the links in the left-hand margin to find code snippets that can be successfully cut and pasted.

This tutorial also won’t show you any graphics. You will create them yourself as you work through the
examples.

Consult your instructor about ways to obtain Matlab at your institution, and how to install and launch
it.3 Matlab has many extensions called “toolboxes”; none of these will be needed while working through
this tutorial, nor when solving problems that appear in Physical Models.

Upon launch, Matlab opens a complicated, multipanel display. Things you type will show up in
the main panel (“Command Window”) after the >> symbol (the “Command Window promptCommand
Window!prompt”). Try typing the lines of code given above, hitting <Return/Enter> after each line.
Matlab responds immediately after each <Return/Enter>, attempting to perform whatever command
you entered.4

Matlab code consists entirely of unformatted (“plain”) text.

Any formatting shown in this tutorial, including fonts and coloring, was added for readability, and is not
something you need to worry about while entering code. Similarly, the tiny line numbers shown on the left
are just there to let us refer to particular lines; you don’t type them. Matlab will assign and show line
numbers for you when you work in the Editor Window, and will use them to tell you where it thinks you
have made errors, but they are not part of the code itself.

In particular, this tutorial will show predefined names in bold type, to distinguish them from user-defined
variables and functions, but you don’t need to type that.

Now notice the window on the upper right (the “Workspace Window”). Each time you enter a command
and hit <Return/Enter>, this window may change, reflecting any changes in Matlab’s state: Initially
empty, it later shows a list of all named memory cells (variables), and a summary of their values. Later, when
we study variables with many values (arrays), you’ll see that you can double-click any entry in this list; a
spreadsheet opens that lets you inspect all the values. You can even copy from this spreadsheet and paste
into other applications.

At any time, you can reset Matlab’s state by quitting and relaunching it, or more conveniently by
issuing the command

clear all

Example: Try that. Then try the following commands at the prompt, and explain everything you see
happen:
q

q == 2

q = 2

q == 2

q == 3

Solution: Matlab complains about the first two lines, because even though it automatically creates a symbol
named q for you, and assigns it a memory cell, still that cell contains no value, and so expressions involving
it cannot yet be evaluated. Changing Matlab’s state in the third line above changes this situation, so the
next two lines do not generate errors.

3Matlab is a registered trademark of The MathWorks, Inc. You can also obtain it, or the Student version, directly from

http://www.mathworks.com.
4This tutorial uses the word “command” in a generic sense, to mean any lump of code that could stand on its own. Assignments

like a = 1, isolated function calls like plot(x,y), and directives like clear all are all examples of commands.
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1.2 Launch Matlab 12

Example: Now clear Matlab’s state again:
clear all
Try the following at the prompt, and explain everything you see happen (it may be useful to refer to
Section 1.1.4):
a = 1

b = aˆ2 - a

a = 2

b

b = aˆ2 - a

Solution: The results from the first two lines should be clear: We assign values to the variables a and b. In
the third line, we change the value of a, but recall that because Matlab only remembers the value of b,
that value is unchanged in the fourth line until we update it with the last command.

These examples illustrate another important element of Matlab syntax: When Matlab encounters a
command that consists of just an expression, and that ends with no punctuation (or with a comma), it will
print out the expression’s value to the Command Window. When the command is an assignment and ends
with no punctuation (or with a comma), Matlab makes the assignment and also prints out the assigned
value. When either of these commands ends with a semicolon, however, Matlab suppresses automatic
printout.

Often you will forget a semicolon somewhere in the middle of a long code,
sometimes resulting in an enormous amount of text appearing on your
screen.

You can end a command just by starting a new line, if you want the automatic printout feature. If not,
you can end it with a semicolon and then start a new line. Or, if you wish you can end a command with a
semicolon or comma and no new line, cramming another command on the same line. It’s best not to make
too much use of that ability, however: Your code may take up fewer lines, and Matlab won’t care, but
human readability will suffer.

The opposite situation can be important: You may wish to use a very long command that doesn’t fit on
one line. For such cases, you can end a line with an ellipsis (type three periods just prior to starting a new
line). Matlab will then continue reading the next line as part of the same command. Try this:

q = 1 + ...
2

There are some restrictions on where you may break a command, so you may need to experiment a bit with
this.

1.2.2 Error messages

You should already have encountered an error message by now. They appear in red in the Command Window,
accompanied by a beep. See Section B.1 for some hints about interpreting such messages, and some examples
often encountered by beginners.

1.2.3 Sources of help

Suppose that you wish to evaluate the natural logarithm of the number 2. You think there’s probably a
function called log in Matlab, but is it the natural or common log? Get Help>Documentation from the
Matlab menu, and type log into the search box.5 The first entry states that log is the one you want, so
typing

5Equivalently, you can type doc log at the Command Window prompt.
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1.3 Matlab Expressions 13

log(2)

at the command prompt gives your desired result. To learn more, you could also have clicked the entry log

in the Help; try it.
Unfortunately, Matlab is not as friendly if you don’t know the name of the command you need. Suppose

you really did want the common logarithm. It’s not obvious in the Help listing for log how to get this. So
it’s useful to know that you can also type

help log

(or the name of any other command) in the Command Window and this will give you a different, briefer,
and sometimes more helpful entry. At the bottom of the resulting text, Matlab says "See also log1p,

log2, log10..."; that third entry looks promising, and clicking shows it’s what you want. Much, much
more help is available online; from any search engine, searching matlab common logarithm quickly gives
you the command even if you don’t know its name in advance.

At least in the beginning, a lot of your coding time will be spent using a
search engine to get help.

In addition to searching the whole Web, a more targeted approach is to visit Matlab Central (on the
MathWorks website).

1.2.4 Good practice: Keep a diary

As you work through this tutorial, you will hit many little and big roadblocks. How do you label graph axes?
What if you want a subscript in a graph axis label? The list is endless. Every time you resolve such a puzzle
(or a friend helps you), make a note of how you did it in a diary file somewhere on your computer. Later,
looking through that diary will be much easier than scanning through all the code you wrote months ago
(and less irritating than asking your friend over and over).

1.3 MATLAB EXPRESSIONS

1.3.1 Numbers

You can enter explicit numerical values in various ways:

• 123 and 1.23 mean what you might expect. When entering a very big number, however, don’t separate
groups of digits by commas (don’t say 1,000,000 if you mean a million).

• 2.3e5 is convenient shorthand for 2.3 · 105.

• 2+3i refers to the complex number 2 + 3i.

Matlab stores numbers internally in several different formats. However, it knows when it needs to convert
from one type to another; beginners generally don’t need to think about this. Just notice that for some uses,
a number must be an integer (whole number), for example, when indicating which entry in a list you want.
(If you need to force a number to be an integer, you can use the functions round or floor.)

1.3.2 Arithmetic and predefined functions

Matlab has all the basic arithmetic operators you might expect, for example, +, -, * (multiplication), /,
and ˆ (exponentiation). Note that, unlike standard mathematics notation, you may not omit multiplication
signs. Try typing
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1.3 Matlab Expressions 14

(2)(3)
a = 2; a(3)

3 3a
3 a

Each of these produces a different error message. None, however, generate a message like You forgot a *.
Matlab used its evaluation rules, and these expressions didn’t make sense, but it doesn’t know what you
were trying to express, so it can’t tell you what exactly is wrong. Study these four error messages; you’ll
probably see them again.

Arithmetic operations have the usual precedence (ordering), which can be overridden by using parentheses.
For example, you may want to express the number 1

2π , so you may type 1.0 / 2.0 * pi. Try it. What
goes wrong, and why? Later we’ll meet other kinds of operators, for example relations like < and logical
operations. They, too, have a precedence ordering, which you may not wish to memorize. So use parentheses
liberally to avoid unintended meanings.

To get used to Matlab arithmetic operations, figure out what problem these lines solve, and check that
Matlab got it right:�� ��MLG1-3-2a.m

a = 1; b = 2; c = 3;
(-b + sqrt(bˆ2 - 4*a*c))/(2*a)

Notice that sqrt is the name of a function that Matlab already knows when it launches.6 When Matlab
encounters this name in the expression above, it

1. Evaluates the “argument,” that is, everything inside the following pair of round parentheses (which may
itself contain functions);

2. Interrupts handling your evaluation and begins a piece of internal code named sqrt, handing that code
the value found in 1;

3. Substitutes the value returned by sqrt(...) into your expression; and

4. Finishes evaluating your expression as usual.

How do you know what functions are available predefined for you? See Section 1.2.3 above, get the menu
item Help>MATLAB>Mathematics, or type help elfun at the Command Window prompt.

A few symbols in Matlab are predefined but do not require any argument in parentheses. Try pi (the
constant π) and i (the constant

√
−1).

Matlab also provides standard trigonometric functions, but notice:

The trig functions sin, cos, and so on, all expect their arguments to be
angles expressed in radians.

1.3.3 Good practice: Variable names

Note that Matlab offers you no protection against accidentally changing the value of a symbol like pi (or
indeed, of any variable that you set up): If you say pi = 22/7, then until you change it or reset Matlab,
pi will have that value.7

It’s especially easy to redefine i, because we so often use it as an index. If
you need the built-in constant equal to

√
−1, use the syntax 1i instead of

i, because 1i cannot be redefined.

When your code gets long, it also becomes very likely that, if you assign a variable with a generic name
like a in the beginning, you’ll later choose the same name for some completely different purpose. Later still,

6We have already met log and log10.
7It is even possible to create a variable whose name overshadows a built-in function, for example, hist = 1.
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1.3 Matlab Expressions 15

you may want the original a, having forgotten about the new one. But Matlab has overwritten the value
you wanted. Puzzling behavior may ensue. You have a “name collision.”

It’s good practice to use longer, more meaningful names for variables. They take longer to type, but they
can also improve your code’s readability. Perhaps the variable you were planning to call a could instead be
called whichItem, because it indexes a list. Later, the other variable that caused the name collision could
logically be called partialSum or something such. Later still, when you ask for whichItem, there will be no
problem.8

Blank spaces and periods are not allowed in variable names. Some coders use capitalization in the middle
of a variable name to denote word boundaries. Others prefer to use the underscore (which_item). Variable
names may contain digits (myCount2), but they must start with a letter.

1.3.4 Good practice: Units

Most physical quantities carry units, for example, 3 cm. Matlab doesn’t know about units; all its values are
pure numbers. If you are trying to code a problem involving a quantity L with dimensions of length, you’ll
need to represent it by a variable length whose value equals L divided by some unit. That’s fine, as long as
you are consistent everywhere about what unit to use.

You can make things easier on yourself if you include a block of comments at the head of each code
declaring (to yourself and other human readers) the variables you’ll use, and the units chosen to make them
pure numbers:9

%% Variables:
% length = length of the microtubule [um]

3 % vel = velocity of motor [um/s]
% rcon = rate constant [1/days]
...

As you work on the code, you can refer back to this section to keep yourself consistent. (The notation um is a
standard, easy-to-type version of µm.) Such fussy hygiene will save you a lot of confusion someday.

Later on, when you start to get data files, you need to learn from whoever gave a file to you what
units are being used to express quantities. Ideally this will be spelled out in a text file (perhaps called
README.txt) accompanying the data file, or in the opening lines of a spreadsheet.

1.3.5 More about functions

You are accustomed from math to thinking of a function as a machine that eats exactly one number (its
“argument”) and spits out exactly one number (its result). Some Matlab functions, like sqrt, have this
character.10 But Matlab has a much broader notion of function. Here are some illustrations (some involve
functions that we have not formally met yet):

• A function may change Matlab’s state in other ways than by returning a result. For example, plot opens
a window and creates a plot. Other possible “side effects” include writing text into the Command Window,
for example, via disp('hello').

• A function may instead have two (or more) arguments, separated by commas. Or it may have none; try
just typing rand() at the command prompt.

8Variable names are case-sensitive, and Matlab’s predefined names are all lower-case. So you can avoid name collisions with

predefined things simply by including one or more capital letters in any user-defined variable or function name.
9Section 2.4.3 will give more details about commenting.
10Instead of a single number, the argument of sqrt can be a list, but Matlab still regards that as a single argument. See

Section 2.1.
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1.3 Matlab Expressions 16

• A function may allow a variable number of arguments, and behave differently depending on how many you
supply. For example, we will see examples of functions that allow you to specify any number of options as
arguments. Each function’s Help text will list each allowed way of using it.

• A function may also return more than one value. You can capture the returned values by using a special
kind of assignment (see Section 5.3). Their number can even be variable; the function may behave differently
depending on how many results you requested.

If a function accepts two or more arguments, how does it know which is which? In mathematics notation,
the order of arguments conveys this information. For example, if we define f(x, y) = xe−y, then later f(2, 6)
means 2e−6: The first given value (2) gets substituted for the first named variable in the definition (x), and
so on. Matlab uses the same scheme.
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C H A P T E R 2

Structure and Control

Much of the power of computation comes from the machine’s ability to do repetitive, or nearly repetitive
tasks. You need to understand how to formulate instructions for this sort of task, so that your electronic
assistant can do all the steps without your supervision. This chapter describes two key elements:
• Grouping of data into “data structures,” such as lists and arrays, and
• Grouping of code into repeated blocks (loops) and contingent blocks (conditional code).

2.1 LISTS AND ARRAYS

2.1.1 Setting up a list

Much of the power of computer programming comes when we handle numbers in batches. A batch of numbers
can be a single mathematical object, like the components of a force vector, or a list representing many
objects of the same type, like the values at which you wish to evaluate some function. Matlab doesn’t care
about such distinctions. It regards every such object as a rectangular grid (an “array”), like the cells of a
spreadsheet.1 You can create one by using the command

a = zeros(3,5)

The function zeros accepts two arguments and creates an array with, in this case, three rows and five
columns. Then it gives all 15 entries the same value (zero). Find a in the Workspace Window and see how it
appears. Double-click it to look inside it. Repeat with the function ones in place of zeros and see what you
get. Finally, try eye(3).

A list, or “row vector,” is the special case of an array with just one row: zeros(1,5). Similarly, a
“column vector” is an array with just one column: zeros(3,1).

Another common hang-up: If you want a row of N zeros, you need
zeros(1,N), not zeros(N). Try the second of these to see what it does
give. Some other array-valued functions, such as ones and rand, have
similar behavior.

Matlab can report how big an array is: After setting up a, use the command size(a) and see what you get.
Also try size(a,1) and size(a,2) to find out separately the number of rows and columns, respectively, in
a. This information is also displayed in the Workspace Window.

Perhaps you’d like to set up an array with more interesting values. The syntax a = [2.71, 3.14, 3000]

creates an array with one row and three columns. Changing commas to semicolons gives an array with three
rows and one column.

Your
Turn
2A

Try
a = [2, 3, 5; 7, 11, 13]

and explain the result.

1Matlab also uses the word “matrix” to mean an array whose entries are numbers.

17
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Sometimes you’d rather not specify each entry explicitly. The notation (N:M) creates a row vector with the
value of N as its first entry, N + 1 as the second, and so on, until it reaches a value that exceeds M. Try
a = (2.1:5.4) and explain what you get. The notation a = (2.1:0.1:5.4) also creates a series, but in
this case each entry is incremented by 0.1, not the default 1, from its predecessor.

The colon construction’s syntax is startvalue:increment:endvalue .
The middle entry can be omitted if it equals 1.

Type help colon at the prompt to learn more.
The colon construction has a behavior that may surprise you: Type 1:3 + 20 and see what you get. If

you’re surprised, add some parentheses until you get what you expect, and remember:

Extra parentheses do no harm, so when in doubt, either check or just put
them in to force the operator ordering you want.

The function linspace(A, B, C) does a similar job, but slightly differently. It always creates a row
vector with exactly C entries, evenly spaced. The first entry equals A. Unlike the colon notation, however,
the last entry exactly equals C. But you don’t get to specify the exact spacing; Matlab chooses that to be
whatever is needed to get the required starting and ending values.

Your
Turn
2B

Try
a = 0:2:10

b = linspace(0,10,6)
and explain the results. You should see that a and b are equivalent. Now
try
a = 0:(1.5):10

b = linspace(0,10,7)
and note that a and b are not equivalent. Explain why not, and decide
which form you should use if you want to evaluate a function over the
range 0 to 10.

When creating a series to compute the values of a function over a range, linspace is the most appropriate
function, as it allows you to explicitly choose the number of points in the series and the start and end of the
range. However, when the exact spacing between points is important, the colon operator is more appropriate
(see, for example, Section 3.2.3).

2.1.1.1 Concatenation
The square bracket construction can also build up an array from smaller arrays. Try these examples:

a = [1, 10:15]
b = [a; 100:106]

2.1.2 Slicing

Once you have set up an array, each of its entries can be accessed individually. Try

a = [2, 3, 5; 7, 11, 13];
a(2,3) = 1000
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2.1 Lists and Arrays 19

The second command changes just one entry in the array. That entry is specified in the same convention
as the one mathematicians use for matrices:2 a(k, j) is the entry at the intersection of row k and column
j. (A mathematics text would call it akj .) If a has only one row, you can say a(k) as an abbreviation for
a(1, k). If a has only one column, you can say a(j) as an abbreviation for a(j, 1).

It can get confusing that Matlab uses the same notation (round parentheses) for two very different
purposes:

• When following a function name, they enclose the arguments(s).

• When following an array name, they enclose the index (or multiple indices) that specify an individual
element.

This double meaning doesn’t confuse Matlab, because it knows from context what to do.
Often you will wish to extract more than one element from an array. Suppose that you have been given

experimental data in an array a with two columns and 20 rows. In order to make a graph, you need an array
with just the first column of a, and another one with just the second:

b = a(1:20, 1);
c = a(1:20, 2);

The colon construction sets up a list; using a list in place of an array index forms a new array by running
through the members of that list. If you don’t know the number of entries in a, you could start out by finding
it:

len = size(a, 1)
b = a(1:len, 1);

3 c = a(1:len, 2);

But Matlab has a shortcut for this very common operation: A colon all by itself represents every allowed
value of an index, for example, b = a(:, 1). You can also say b = a(2:end, 1) to extract the entire first
column except for the first entry; the keyword end refers to the last allowed value.

Your
Turn
2C

Try
a = [1:20; 101:120]'

b = a(1:(end-1), 2)

and explain the output you get from each line. In this code, the apostrophe
operator (transpose) appended to an array generates its matrix transpose
(it exchanges rows and columns).3

2.1.2.1 T2 Lists as indices
As mentioned earlier, you can use a list where an index is expected, to address a set of array entries given by
the elements of that list. Try

a = -10:10;
b = [2, 4, 5];

3 a(b)

2If this seems like the obvious convention, be aware that in some other computer languages the first entry of an array has index

zero.
3More precisely, a' requests the Hermitian conjugate of a, which equals the transpose if the entries of a are all real numbers. If

a is complex, and you really want the ordinary transpose, use the function transpose(a).
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2.2 Strings 20

This method can be extremely useful if the list b was itself generated automatically. For example, you could
use the find function to get the locations of all the nonnegative entries in a list a, then use those locations
as an index to generate a new list, with the negative entries deleted (see help find):

aNonNeg = a(find(a >= 0))

An alternative approach is even more concise: You can also use an array of true/false entries as an index for
an array, to generate a new array with just the entries corresponding to true entries in the index. (The list
must be the same size and shape as the matrix being indexed.) With this addressing, the preceding example
becomes:

aNonNeg = a(a >= 0)

2.1.3 Flattening an array

An array is a list with more than one dimension. You may wish to repackage all its values as an ordinary list.
Try the following syntax, and note how it accomplishes that goal (“flattening”):

A = [1, 2; 3, 4]; B = A(:)

For example, you can find the average of all the elements of A with the command mean(A(:)) .

2.2 STRINGS

Matlab can manipulate other types of information besides numbers. The second most important type is the
“string.” A string variable contains any number of keyboard characters. You can create one with

a = 'Hello world.'

Notice how a looks in the Workspace Window. The expression on the right side of the equals sign above is
an explicit string value (that is, a string literal). The equals sign assigns this short sentence (without the
single quotes) as the value of a.

A string literal starts and ends with a single right quote.

Note that “single right quote” is the same key on your keyboard as “apostrophe.”4 If you actually need a
single right quote (or apostrophe) inside the string, type it twice: 'It''s about time'.

A string may contain a collection of digits that looks to us like a number, for example, a = '123'. It’s
important to note that Matlab still considers such a value to be a string, and therefore quite different from
the number 123. Try typing

a = '123'
b = a + 1

Matlab offers you no protection against this sort of error, because the operation of adding a string to a
number is defined; it’s just not very likely to be what you actually want.

One useful operation that you can do with strings is to join (“concatenate”) them:

a = 'Hello world.'
b = 'I am MATLAB.'

3 c = [a, b]

4Elsewhere on your keyboard there’s a different key, the “single left quote” (or “grave accent”). You may be tempted to use it,

for example, writing `string' . Matlab won’t understand that.

Jump to Contents Jump to Index
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The last line above shows that Matlab regards a string similarly to an array: Applying this same syntax to
two row vectors creates a new row vector by appending the second to the end of the first, and similarly with
strings as above.

Your
Turn
2D

Something isn’t completely nice about the result. Replace the last line
with c = [a, ' ', b] and explain the point.

Some Matlab functions require arguments that are strings, for example, graph titles (see Section 3.2).
But you may wish to include the current value of some numerical variable in a graph title. To accomplish
this, you need to convert a numeric value to its corresponding string, as if you were printing it out. The
handy function num2str (“number to string”) accomplishes this:

title(['Poisson distribution for \mu = ', num2str(a)])

• The command title takes a single string argument and places it as the title of the current graph (see
Section 3.2.4).

• The brackets join two strings as above.
• The first of these is a literal. It contains a special character, the Greek letter µ, expressed as \mu. The
title function knows how to interpret such codes.5

• The second string is obtained from the current value of a variable that we suppose you have called a.

You can give num2str an optional second argument, the number of significant digits you wish to show, if you
don’t like the default choice: num2str(a,2) will look nicer in a graph title than num2str(a).

2.3 LOOPS

2.3.1 for and while

So far, we have described Matlab as a glorified calculator. Yes, it can evaluate the solutions to a quadratic
equation. But what if you want to graph the solution, say as a function of a for fixed b and c? The first step
is to calculate a lot of solutions. One way is with a loop. Try typing�� ��MLG2-3-1a.m

b = 2; c = 3;
for a = -1:0.5:2, (-b + sqrt(bˆ2 - 4*a*c))/(2*a), end;

The keyword for instructs Matlab to perform a block of code repeatedly:

1. The notation -1:0.5:2 indicates a series of values, starting with the first entry (here −1), increasing
by steps equal to the second entry (−1, −0.5, 0, 0.5. . . ), and not to exceed the last value (here 2) (see
Section 2.1.1).

2. Thus, Matlab initially assigns a the value −1. Then it evaluates the following expression and prints the
result (because the expression is terminated without a semicolon).

3. The keyword end tells Matlab to move back to the nearest incomplete for command, update the value
of a, and determine whether it exceeds the upper limit (here, 2). If not, then the body of the loop is
evaluated again, and so on. Eventually, however, a exceeds 2; then Matlab jumps to whatever comes
after the end (in this case, nothing). We say it “exits the loop.”

Note that the counter a is an ordinary variable, whose value can be accessed in calculations. However, it’s
not a good idea to modify its value inside the loop; leave that to the for command.

Unfortunately, Matlab won’t complain at all if you type something like

5 T2 For more complex math notation in a label, Matlab can recognize a subset of the LATEX typesetting language.
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for x = -1, 2
xˆ2, end;

It will just do something that is probably not what you intended!

Forgetting to use the colon syntax in a for loop is another top coding
error.

A more general form of loop is often useful. You may wish to repeat a block of code as long as some
general condition holds, but terminate it the first time that condition fails to be true. For example, you may
only want solutions to the quadratic equation when they are real. Try�� ��MLG2-3-1b.m

b = 2; c = 3; a = -1
while (bˆ2-4*a*c >= 0), (-b + sqrt(bˆ2-4*a*c))/(2*a), a = a + 0.5, end; disp('done!')

Notice that this time, we instructed our code to tell us the value of a for each solution, because we don’t
know in advance which values will be used. Note, too, that we now need to increment a explicitly before
ending the loop, because while doesn’t do that for us.

Each for or while keyword must be terminated by an end. The end tells Matlab when to go back;
it also tells Matlab at what point to pick up again after the loop has completed. For example, the last
code fragment above prints out a little message after finishing the loop. (The disp command takes a string
argument and prints, or “displays,” it in the Command Window.)

2.3.2 Vectorizing math

One reason to use arrays is that Matlab has a very concise syntax for handling repetitive operations on
them. For example, the preceding code can be replaced by

b = 2; c = 3;
a = (-1:0.5:2);

3 (-b + sqrt(bˆ2 - 4*a*c))./(2*a)

The second line creates an array a and fills it with values at which we’d like to evaluate the expression. In
the third line, Matlab carries out the following steps:

1. It starts with the innermost subexpression, first calculating b2 and saving the result. In the second term,
it notices that the array a is to be multiplied by 4. Matlab interprets this request as meaning that you
want to multiply each element separately by 4. This is the standard interpretation in math: When you
multiply a force vector, say, by 4, each of its components gets that operation done separately.

2. It finishes evaluating 4*a*c. Now it sees that you’ve asked it to combine this result with the single
quantity bˆ2. Unlike standard math notation, Matlab interprets this as a request to set up a new vector,
whose kth entry equals bˆ2 - 4*a(k)*c. That is, subtraction of an array from a single value is done
item-by-item, as in step 1.

3. It then feeds the array generated in step 2 to the sqrt function as an argument. sqrt normally accepts a
single number, but like many Matlab functions (sin, cos, exp, . . . ), it has a standard behavior when
you instead feed it an array: It again acts item-by-item (that is, performs its usual behavior with each
entry individually), and creates a new list with the results.6

4. Subtracting b follows the rule already given in 2.

5. The final division by 2*a will be discussed in a moment.

We say that the code just given is a “vectorized” form of the earlier one. One advantage of using vectorized
code is that it often runs much faster than equivalent code written with explicit loops. This is because

6If you ever actually want to find the square root of a matrix, in the sense of linear algebra, that’s not Matlab’s default

behavior. Look in the Help.
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Matlab knows how to perform multiple operations in parallel on your computer’s multiple processors, if
you express your calculation in vectorized form.

Another reason to use vectorized code is that, because it is so concise, it can help you to write better
code. Long, rambling code can be hard to read, making it hard to spot bugs. Of course, inscrutably dense
code is also hard to read. Your coding style will evolve as you get more experienced. Certainly if a code runs
fast enough with explicit loops, then there’s no need to go back and vectorize it.

Not every math operation behaves item-by-item. Suppose that you wanted to graph the function y = x2.
You could set up an array of x values by x = (1:20). But when you try y = xˆ2, you get an error (and
y = x*x doesn’t work either). By default, Matlab’s multiplication, division, and power operators operate
on arrays using the rules of matrix math, which isn’t defined for the operation you (unwittingly) requested.
But you can override this default behavior by prefixing these operations with a period, for example, x.*y ,
x./y , or x.ˆy . Thus, to square each element in x you could write y = x.ˆ2 , or equivalently y = x.*x .

Forgetting the period prefix is another common Matlab coding error,
made by amateurs and experts alike.

A particularly puzzling gotcha arises when you forget the dot in an expression of the form list1/list2.
Matlab will not complain about this expression; instead, it will compute something that probably isn’t
what you wanted.

We can now finish explaining the example at the start of this section. The variable a is a list; therefore
-b + sqrt(bˆ2 - 4*a*c) and 2*a are lists too, as explained earlier. To divide each item in the first of these
lists by the corresponding item in the second one, we need the operation ./ , as shown in the code at the
start of this section.

Your
Turn
2E

a. We often wish to evaluate the function y = e−(x
2) over a range of x

values. Figure out how to code this in vectorized notation.
b. We often wish to evaluate the function e−µµj/(j!) over the integer
values j = 0, 1, . . . , N . Here the exclamation point denotes the factorial
function. Figure out how to code this in vectorized notation.

The item-by-item operations work equally well with two-dimensional arrays. In every case, however,
the arrays to be combined must have exactly the same size: For example, the expressions a + b and a.*b

generate error messages unless size(a) matches size(b). (An exception has already been noted: If a is a
single number, then operations like a + b are allowed regardless of the size of b. Matlab also understands
a.ˆb and b.ˆa, if a is a single number.)

Most often, you’ll want item-by-item operations. Here is one useful exception: The “dot product” of two
column vectors can be coded concisely as follows:

a = [1, 2, 3]; b = [1; 0.1; 0.01];
a*b

The number of columns in a equals the number of rows in b, so the matrix product is defined; in this case
it is a 1 × 1 array (the single number a · b = a1b1 + a2b2 + a3b3). More general matrix products are also
handled by the * operator (not .*).

2.3.3 More vector operations

In addition to ordinary functions like sin, which act item-by-item when given an array, some functions are
specifically about arrays. Try�� ��MLG2-3-3a.m
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a = [1:20; 101:120]
c = sum(a, 1)

3 d = sum(a, 2)
b = sum(a)

The function sum(a,b) takes an array a and an integer b and creates a new array. Each entry in the new
array is the sum of the values in a with all allowed values of the bth index, holding fixed the other index (or
indices). The notation sum(a) is a convenient notation for sum(a,1) : It sums the columns of a, creating a
vector with a single row, that is, with an entry for each column of a.

You can explore the Help for the useful related functions mean, std, min, and max.

2.3.4 Higher dimensions

Matlab can also handle arrays with more than two dimensions. Try

zeros(2,3,4)

and see what happens.

2.4 SCRIPTS

2.4.1 The Editor Window

Matlab can do some useful things from the Command Window prompt, which is how we have been using it
so far. But most tasks require code more complex than the examples above. Your code will go through many
versions as you get it right, and it’s tiresome to keep retyping things (making new errors each time). You’ll
want to work on it, take a break, then return to it, perhaps closing Matlab or even moving to a different
computer in the meantime. And you will wish to share code with other people in a “pure” form, free from all
the typos, missteps, and output made along the way. For all these reasons, you will want to do most of your
coding in the form of scripts (sometimes called “M-files”).

A script is simply a chain of commands that you edit in a separate window, then execute with a single
mouse click. To create a script, switch to Matlab’s “Editor Window” and create a new document from the
New menu.7 (If there’s no such window open, type edit at the Command Window prompt.) Type in any of
the codes discussed above. This time, when you hit <Return/Enter>, Matlab does nothing. Instead, it
lets you finish entering your code. When you click the

�� ��Run button, Matlab executes all the code in the
Editor Window, placing typed output in the Command Window. Before it does that, however, it always
saves the code to a file, prompting you if needed for where to save it. It’s customary to end Matlab code
file names with the extension .m .

It’s good practice to start any script with clear all, so that you know
exactly what state you’re in when it begins.

2.4.2 First steps to debugging

If you make an error in your code, in some cases Matlab will catch it before you even click Run: A discreet
little red bar appears in the far right of the Editor Window at the offending line. Try typing an expression
with unbalanced parentheses to see this. Hover the mouse cursor over the red bar to get a tooltip with a brief

7If your heart is already pledged to another plain text editor, Matlab understands. Just type a file name at the Command

Window prompt and, if the current folder contains a plain text file with that name and extension .m, Matlab will run it as a

script. However, formatted text files, such as .rtf, .doc, or .docx files, won’t work.
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explanation. If you attempt to run the code without fixing the error, a more detailed message will appear in
the Command Window, citing the line number where Matlab first noticed something wrong. There may be
other errors as well, but Matlab quits scanning when it finds the first one. Fix it and try again.

If no such syntactic errors are found, there may nevertheless be other errors, such as attempting to
evaluate an expression containing undefined variables.

The most common origin for undefined-variable errors is misspelling. Scan-
ning the Workspace Window can help you find such errors. Variable names
are case-sensitive, so inconsistent case is a form of spelling mistake.

For example, if you define myVelocity = 1 and later attempt to use myvelocity, Matlab treats the second
instance as a totally new, and undefined, variable.

Runtime errors also generate messages in the Command Window when you run the code. Most cause
Matlab to halt immediately. A few, however, are “nonfatal”: For example, try8

myRange = -1:8; plot(myRange, log(myRange))

Matlab finds nothing mathematically wrong here. But plot doesn’t know how to handle the first two
entries in the list of values you’ve given it, so it omits them and issues a warning message.

Still other situations generate no message at all—you just get puzzling results. For example, if you change
the example just given to say myRange = 0:8, then there’s no warning. The first point of your plot is just
missing. It seems trivial, but you will encounter many situations of this sort that are too complicated to
understand at once. Then you’ll need to “debug” your code.

Whole books are written about the art of debugging. When a code generates a message that you don’t
understand, or no message but output that you don’t understand, you need to look for clues. Here are some
ideas:

• Read your code carefully. It’s tedious; it requires intense concentration; but it’s often the quickest route to
insight.

• Build your code gradually. Most scripts are designed to execute a complicated task by breaking it into a
series of simple tasks. Make sure each step does exactly what you expect.

• Start with an easier case. You’re using a computer because you can’t do the problem by hand, but maybe
there’s another case that you can do by hand. Adapt your code for that case (perhaps just a matter of
changing the parameters) and compare to the output to the answer you know to be correct.

• Probe your variables. After a code finishes (or terminates with an error), all of its variables retain their
most recent values; check them to see if anything seems amiss. In the example above, you can look in the
Workspace Window and discover that myRange contains a negative value.

• Insert diagnostics. Somewhere prior to where you suspect there’s an error, you can add a line or two that
cause Matlab to print out the value of some variables at that moment in the code’s execution. Then rerun
and check whether they’re what you expect. Sometimes just removing a semicolon is enough.

• Be proactive as you write. If you think there’s some possibility that myRange (defined somewhere else in
your code) could be bad, you could insert a line that issues your own diagnostic:9

if sum(myRange <= 0), disp('bad myRange!'); end

Of course, you can’t foresee every possible exceptional case. But you will develop a sense of what are the
likely bugs in any situation.

• Learn about “breakpoints.” This topic goes beyond the scope of this tutorial, and probably isn’t helpful for
most exercises in Physical models, but there may come a day when your code is complex enough to need it.

8The plot command will be discussed in Section 3.2.
9See Section 2.4.5 for the if command.
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• Explain the code line-by-line out loud to another person or inanimate object. The later practice is
often called “Rubber Duck Debugging.” Professional developers commonly force themselves to explain
malfunctioning code to a rubber duck or similar totem to avoid having to involve another developer. The
act of describing what the code is supposed to do while examining what it actually does quickly reveals
discrepancies.

• Ask a more experienced friend. This may be embarrassing, because almost all coding errors appear “stupid”
once you’ve found them. But it’s not as embarrassing as asking your instructor! And either one is better
than endlessly banging your head on the temple wall. You need to become self-reliant, eventually, but it
doesn’t happen all at once.

• Ask an online forum. An amazing, unexpected development in human civilization was the spontaneous
appearance of sites like http://stackoverflow.com (and others), where people pose queries at every
level, and total strangers freely help them. The turnaround time can be rather slow; however, your question
may already be asked, answered, archived, and available.

Maybe the single most important point to appreciate about debugging is that it always takes longer than
you expected. The inevitable corollary is

Don’t wait till the day before an assignment is due.

Some puzzles don’t resolve until your subconscious has had time to unravel them. If you need help from
a friend, lab partner, or instructor, that takes time too. Respect the subtlety of coding, and give yourself
enough time.

2.4.3 Good practice: Commenting

Another key advantage of writing scripts is that you are free to include as many remarks to your reader as
you like. Here is an example, starting with the code in Section 2.3.1:

% N Charles, 6/2014 quadsolutions.m MATLAB R2014a: Tabulate some
% quadratic function solutions

3 clear all
%% parameters:
coef_b = 2; coef_c = 3; % parameter values for b, c

6 step_a = 0.5;% stepping value for a
%% initialize
coef_a = -1;

9 %% find solutions
while (coef_bˆ2 - 4*coef_a*coef_c > 0), % check whether solution will be real

(-coef_b + sqrt(coef_bˆ2 - 4*coef_a*coef_c))/(2*coef_a),
12 coef_a = coef_a + 0.5,

end;
disp('done!')

Compare this code to what was written in Section 2.3.1:

• The opening line now tells us who wrote the code, when, why, and in what version of the software.

• Variable names are more meaningful.

• Line 2 places Matlab in a known initial state.

• Line 3 introduces a block of code, where parameter values are set up (with meaningful names). A “parameter”
is simply a variable whose value is not going to change throughout the execution of the code.

• The first part of line 4 is code, but everything after the percent sign is commentary, here explaining the
meaning of the first part to human readers.
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• Lines 6 and 8 introduce other code blocks.

The script is certainly longer than the bare code introduced in Section 2.3.1, but which would your grader
rather read? Which would you rather read, if you wanted to reuse this code after a month or two of not
working on it?

Every coder eventually learns that documenting your steps saves time
in the long run. . . as long as the documentation is accurately updated to
reflect any changes made to the code.

Notice that some lines begin with double percent signs. These mean nothing at all to Matlab, but they
help your reader by dividing the code into logical blocks. Besides looking good on the screen (try it), this
structuring allows you to run individual blocks separately. To see how this works, click anywhere inside a
block, then click Run and advance (also try the alternatives Run section and plain Advance).

Another key aspect of the code above is indentation: All of the steps to be repeated in the loop are
indented relative to the main code. Matlab doesn’t require indentation, but it can be incredibly helpful in
making your code more readable. You can select all your code and click Indent>Smart to see how Matlab
thinks its structure works. Often you can tell at a glance that an end is missing or misplaced, just by taking
this step and scanning the resulting indentation.

2.4.4 Good practice: Use named parameters

Why did we clutter the code above with the variables named coef_b, coef_c, and step_a? We could have
everywhere “hardcoded” them, replacing their cumbersome names by 2, 3, and 0.5, respectively. There are at
least three reasons:

• We may later wish to use our code for some other purpose. That purpose may involve different values for
fixed parameters. We may even wish to embed a snippet of our code into a loop that tries many values of
a parameter. Keeping them symbolic helps.

• Using meaningful names for quantities improves your code’s readability, even if those quantities stay fixed.
What if there are two parameters, with different physical meanings, that just happen both to be equal to
5? If you give them different, meaningful names, then you won’t get confused by this coincidence.

• Using named parameters to control the size of a calculation is extremely useful. You may intend to set
up an array with, say, five million entries, and perform, say, a thousand calculations on each one. Such
a code will take some time to execute. It would waste a lot of your time to wait for it every time you
fix some small bug, add a feature, and so on. It’s better to set up some parameters controlling how big
the calculation is going to be at the top of the code, than to hardcode them. That way, you can choose
small values for the development phase, and switch to the larger desired values only when you near the
final version. Moreover, this way you can be certain that every array in the calculation will have the same
number of elements.

These points are part of a bigger theme of coding practice:

Don’t duplicate: define things once and then reuse the definitions.

That is, if a parameter appears twice, invent a symbol for it and set its value once. If you don’t implement
this principle, then when you wish to change a value, inevitably you’ll find and change all but one instance.10

The one you missed will cause problems, and it will be hard to find.
Later we’ll see how “don’t duplicate” can be applied not just to parameters but also to code itself

(Section 5.1).

10Or you may accidentally change something else!
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2.4.5 Contingent behavior: Branching

The while loop above modified its behavior on the fly, depending on the result of an intermediate calculation.
Matlab has a much more general mechanism for specifying contingent behavior, called “branching.” Try
entering this code in the Editor Window and running it:�� ��MLG-branchexample.m

% S Spade, 6/2014: branchExample.m MATLAB R2014a: Illustrate branching
for trial = 1:5,

3 userNumber = input('Pick a number: ');
if userNumber < 0,

disp('Square root is not real')
6 else

sqrt(userNumber)
end

9 userAgain = input('Another [y/n]?','s');
if userAgain ˜= 'y',

break;
12 end

end
if trial == 5,

15 disp('Sorry, only 5 per customer')
elseif userAgain == 'n'

disp('Bye!')
18 else

disp('Sorry, I did not understand that.')
end

The code illustrates several new ideas:

• The input function causes Matlab to type a prompt in the Command Window, then wait for the user to
type something followed by <Return/Enter>.

• By default, input interprets the response as a number, and returns that value to the expression containing
it.

• The keyword if is followed by a logical expression. If Matlab evaluates the expression and finds it’s true,
then it executes the next block of code, up to the next end, else, or elseif (in this case, line 5). If the
expression is false, Matlab skips the block of code.

• In the example above, the first conditional block ends with an else in line 6. If the condition was true,
then Matlab skips the following block (lines 7–8). If it was false, then Matlab executes the second
block, up to the end.

• An alternative form of input appears in line 9: If an optional second argument is present, and it equals
the string literal 's', then input treats user input as a string. The notation ˜= in line 10 means “is not
equal to.”

• Sometimes a loop should terminate prematurely (before the condition in its for or while is satisfied). In
line 11, the keyword break instructs Matlab to go directly to the line following the end of the current
loop (in this case line 14), and proceed. Line 14 then decides whether the loop terminated normally, and
issues the appropriate message.

• Lines 14–20 set up a three-way branch: Only one of lines 15, 17, or 19 will be executed.

In short,

A branch construction starts with if and ends with a corresponding end.
In between, there can be a single block of code, or multiple blocks separated
by else or elseif.
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As with loops, indentation can be very useful to clarify the scope of a branching construction. You can see
the conventional form by asking Matlab to indent your code automatically (Indent > Smart).

The code listed above used the relation operators <, ==, and ˜= to generate true/false values. Other
such operators include >, <=, and >=. You can also generate more complex conditionals with the Boolean
operators & (and) and | (or).

2.4.6 Nesting

When dealing with probability, we sometimes wish to create an array a whose k,j entry is a specified function
of k and j. We can do this with a code like the following:

Nrows = 3; Ncols = 4;
a = zeros(Nrows, Ncols);

3 for theRow = 1:Nrows,
for theCol = 1:Ncols,

a(theRow, theCol) = theRowˆ2 + theColˆ3;
6 end % terminate for theCol

end % terminate for theRow

Notice that

• Line 5 gets executed 3× 4 = 12 times, because it sits inside two “nested loops.”11

• Also for this reason, it is indented twice as much as the surrounding lines.

• It can be useful to add comments to each end indicating what it ends, even though indentation may make
that unnecessary.

• Why did we start by calling zeros? Strictly speaking, it’s not necessary; when you attempt to assign
a value to a nonexistent element of an array, Matlab quietly enlarges the array to accommodate your
request. But if you know in advance how big an array will be, then it’s good practice to declare its size in
this way up front. Codes that perform this “preallocation” sometimes run much faster than those that
don’t.

11if/end pairs can also be nested.
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Data In, Results Out

Most data sets are too big to enter by hand, often because they were themselves generated by automated
instruments. You need to know how to bring such a data set into your computing session (“import” it). You
will also want to save your own work to files (“export” it) so you do not have to repeat complex calculations.
Matlab offers simple and efficient tools for reading and writing files.

Also, most results are too complex to grasp if presented as tables of numbers. You need to know how
to present results in a graphical form that other humans (and you) can understand. Matlab provides an
excellent collection of resources for visualizing data sets.

3.1 IMPORTING AND SAVING

3.1.1 Importing data

3.1.1.1 Getting data
Much scientific work involves collections of experimental data, or “data sets.” In order to crunch a data set,
Matlab must first import it. This is easiest if the data are in Matlab’s own proprietary format, generally
indicated by a filename that ends with the extension .mat, but Matlab can handle other formats as well.
For example, “comma-separated value” (.csv) files are plain text; each line represents a row of an array,
with entries in that row separated by commas. Also, the generic extensions .txt and .dat are often used
on data files with comma or whitespace separation between items.

First you must obtain the data set of interest, and place it in a location where Matlab can find it. Go
to http://www.macmillanhighered.com/physicalmodels1e for a list of data sets.1 Find the entry called
HIVseries (or 01HIVseries), which contains a file called HIVseries.mat. Depending on your browser, you
may need to do one of the following:

• Right-click the link2 and choose Save link as... or Download linked file as... .
• Alternatively, you can enter the URL manually in your browser, or copy and paste it.
• If your browser downloads the file when you click on it, then you may need to figure out where your it

actually placed the file; try looking in the browser’s Downloads folder. Then move the data file to wherever
you want it.

• If your browser displays the file contents as human-readable text when you click on it, you can copy and
paste the text into a new file, or just use File>Save in the browser. Place it in your working directory as
HIVseries.csv.

Where should you place your data file? Probably the most convenient place is the same folder that contains
(or will contain) the script you’ll write to analyze this particular data set.

You do not have to limit yourself to the data sets described here. Someday, you’ll use data from some
other source. You may have an instrument in the lab that creates it, or you may get it from a public repository
or a coworker. Also, any scientific publication contains quantitative data, often in the form of graphs. A

1Resources mentioned here are also maintained at a mirror site: http://www.physics.upenn.edu/biophys/PMLS/Student .
2Right-click can also be accomplished on a Mac by holding the <Ctrl> key while clicking, or by using a trackpad gesture that

you can customize in System Preferences.
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graph is a representation of a set of numbers, and can be converted back to numbers by using a special
purpose application.3

3.1.1.2 Bringing data into Matlab
You are now ready to launch Matlab and load the data set into it. To do this, do one of the following:

1. Double-click the file on your computer’s file finder; or

2. Set Matlab’s default folder, and import from within Matlab. To set the folder, look at the upper left of
the Command Window, above the words Current Folder, click the open folder icon, and navigate to
the folder you need.4 Then either
• Type load HIVseries.mat at the command prompt, or

• Find the file in Matlab’s Current Folder Window and double-click it, or

• Drag the file from your file finder and drop it onto the Matlab window.

The data file will set up some variables with predetermined names. To find out what variables have been
loaded, check Matlab’s Workspace Window. In this case, you’ll discover a variable named a has appeared.
Find out what kind of variable it is by using the command size; also find that same information in the
Workspace Window.

To import a .csv file (perhaps exported from a spreadsheet application), navigate to its folder as in option
2 above. Find the file in Matlab’s Current Folder Window. Double-click it, or right-click and choose Import
Data. A complicated Import Window opens, but just click the checkmark (“Import selection”). This time
Matlab doesn’t know what variable names to give your data, so it makes up names (examine the Workspace
Window to see them). Then close the Import Window. Try these steps with the file HIVseries.csv .

3.1.2 Saving

Saving your work is always important when working on a computer. It is even more important when you are
working with the Command Window.

Data on the screen is fleeting; files on the hard drive are permanent.

If you have been working for hours and finally finish crunching numbers and making plots, great! But the
moment you quit Matlab, all that data is gone. Only data you have saved to files will outlast your session.

3.1.2.1 Code
Each time you run a script, Matlab first saves it. The default choice of folder is probably not where you
want it; change it as described in Section 3.1.1.2 above, or use Save>Save As... in the Editor Window.

You can also easily copy code and paste it into a word-processing application as part of an assignment
(or part of your code diary), e-mail it, and so on, because code is plain text.

3.1.2.2 Data
In contrast to code, Matlab does not automatically save its state; you must do this manually. It’s an
especially good idea if you’re working on a big project, because then you can stop work and later pick up
where you left off. (You can also return quickly to where you were previously, in case Matlab crashes.)

To save Matlab’s entire current state, including all the variables that are currently defined, type

3DataThief is available at http://www.softpedia.com/get/Science-CAD/DataThief.shtml ,

Plot Digitizer at http://plotdigitizer.sourceforge.net ,

GraphClick at http://www.arizona-software.ch/graphclick/download.html , and

GetData at http://www.getdata-graph-digitizer.com .
4You can instead use cd at the Command Window prompt. Or you can automate this step by including the path command

into your script (see its Help).
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save('myData.mat')

at the Command Window prompt. You can then take the resulting file myData.mat to another computer,
double-click it in the file finder, and magically be back in the state you were in when you saved. Equivalently
you can launch Matlab, navigate to the appropriate folder, and type load myData.mat, or simply double-
click the .mat file in the Current Folder Window.

You can also save data selectively, for example, like this:

save('myData.mat', 'x', 'y')

Here the name of the file is followed by names of the variables that you wish to save. Note that each must be
enclosed in single right quotes. Dataset .mat files accompanying Physical Models were created in this way.

Matlab doesn’t allow filenames that contain blank spaces, so don’t use
them. If you wish to import a file with such a name, rename it first. Certain
other punctuation symbols are also forbidden, even if your computer’s
operating system allows them.

3.2 GRAPHS AND OTHER GRAPHICS

3.2.1 The plot command and its relatives

At last we are ready for some pictures. Matlab will make an ordinary, 2D graph for you if you supply it a
set of xy pairs. It’s up to you to space those points appropriately. Try�� ��MLG3-2-1a.m

num_points = 5;
x_list = linspace(0,4,num_points);

3 y_list = x_list.ˆ2;
plot(x_list, y_list)

Notice that:

1. A new window has appeared. This is now the “current figure,” and it’s called “Figure 1” if you previously
had no others.

2. Your graph is a bit lumpy, but you can improve that easily by specifying a larger value for the parameter
num_points.

3. Inside the current figure, Matlab has drawn and labeled some axes. These are now the “current axes.”

4. Matlab has automatically chosen to draw a region of the xy plane that contains all the points you
supplied.

5. By default, the plot function takes the items in its first argument one by one, combines them with the
corresponding items in the second argument to make xy pairs, and joins those points by a solid blue line.

6. Each figure window remains “live” until you close it. That means that you can modify its contents by
issuing further commands (see below). However, changing the values in y_list will not automatically
update your plot; you must issue another plot command to see such changes.

7. You can close a plot window manually in the usual way, or you can close them all with the command
close all.

The two lists that you supply to plot must be of exactly the same length. That may sound obvious, but
it’s surprising in practice how often you’ll get just one extraneous element in one of them, and Matlab
complains. If you’re not sure exactly how many elements you’ll get from 0:(.13):26, just take a few seconds
out from coding to type size(0:(.13):26) at the Command Window prompt and find out.
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More generally, “off by one” errors dog programmers at every level:

Get in the habit of checking exact lengths of your lists.

For the above example, you could do the following:

if size(x_list) == size(y_list)
plot(x_list,y_list)

3 else
disp('Error: x_list and y_list are not the same size')

end

Unless you only want to look at a rough plot of some data once and then discard the graph, you should
write a script to generate your plot. Otherwise, you will find yourself retyping a lot of statements at the
command prompt, just to change a label or the color of a single curve in the plot. Here are some of the more
common adjustments you can make to a plot:

Every visual feature of a graph can be changed from its default, either at the time of creation or
retroactively later. Unless you only want to look at a rough plot of some data once and then discard the
graph, you should write a script to generate your plot. Otherwise, you will find yourself retyping a lot of
statements at the command prompt, just to change a label or the color of a single curve in the plot. Here are
some of the more common adjustments you can make to a plot:

• You can change your curve color at the time of plotting by adding another, optional argument:
plot(x_list, y_list, 'r') gives a solid red line. Other line styles include the following:

• 'b' (blue), 'k' (black), and other colors.

• ':' (dotted line), '--' (dashed line): When preparing an assignment, remember that red, blue, and
other colors all look similar when printed on a grayscale printer. Other line style choices, such as dotted
and dashed, are much easier to distinguish from a regular line.

• '.' (don’t join the points; instead use a small dot for each one), 'o' (don’t join the points; instead use
a circle for each one), and other symbol choices.

To some extent, options can be combined: plot(x_list, y_list, 'or') plots red circles, and so on.

• You can change Matlab’s choice of plot region by first creating the plot, then giving the command
xlim([1, 6]) to display the region 1 < x < 6 (and stay with the default for y). The syntax is tricky:
xlim expects a single argument, a list containing the lowest and highest values to display on the horizontal
axis.5 Similarly, ylim adjusts the vertical region.

• The command axis('tight') effectively issues xlim and ylim commands to make the axes just fit the
range of the data, without the customary extra space around it.

• Matlab chooses for you the height and width of the graph, then scales the x and y values by different
amounts to make everything fit into a frame with standard height and width. If these variables are
actually points in an xy plane, you may not like the resulting distortion of your figure. The command
axis('equal') forces each axis to have the same scaling.

Some of the commands just mentioned point out a common theme in Matlab: Attributes to be changed are
often passed to a function as string literals, which must be typed exactly as shown. Some stand alone (like
'r'). Others come in pairs, with a string literal keyword (like 'FontSize') followed by another argument
that specifies the desired value (see Section 3.2.4 below).

If you don’t want to join your plotted points, in addition to the options listed above there is a separate
function called scatter. Using this function instead of plot gives you more control over the size, style, and
color of every symbol.

5These reasonable-sounding alternatives won’t work: xlim(1,6) or xlim(1:6) .
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Log axes
If you’d prefer a logarithmic vertical axis, use semilogy in place of plot. For a logarithmic horizontal axis,
use semilogx; for a log-log plot, use loglog. In the two latter cases, you may want to evaluate your function
at a set of values that appear uniformly spaced on a logarithmic scale; see the Help for logspace to set up
such a list.

3.2.2 T2 Error bars

To make a graph with error bars, use

errorbar(x_list, y_list, e_list)

This function doesn’t add error bars to an existing plot; rather, it creates the whole plot. It works like
plot except with an additional list argument: Point n will be supplemented by an error bar that extends a
coordinate distance e_list(n) above and below the point. (For asymmetric error bars and other options,
see the Help.)

3.2.3 3D graphs

Sometimes a graph consists of points or a curve in a three-dimensional space. Try

t = 0:(pi/50):(10*pi);
plot3(sin(t),cos(t),t);

The function plot3 accepts three arrays, whose corresponding entries are interpreted as the x, y, and z
coordinates of the points to be drawn.

3.2.4 Manipulate and embellish

There is no limit to the time you can spend making your graphs pretty. Here are a few of the most useful
tweaks. Many others can be quickly found via your favorite search engine (try searching the Web for matlab
graph triangle symbol).

• You can change the font size for the numbers labeling the axes by first creating the plot, then giving the
command set(gca, 'FontSize', 14). In this command, gca (“get current axes”) retrieves a number
representing the plot you just made; then set modifies an attribute of those axes.

• You can add a title with title('My first plot'). If you don’t like the default font size, instead use
something like title('My first plot', 'FontSize', 16).

• You can (and should) label the axes with xlabel('speed') and ylabel('kinetic energy'). No, wait!
You can (and should) include units in label axes: xlabel('speed [um/s]').6 Even if you are reporting a
relative quantity, like concentration relative to time zero, help your reader by stating explicitly c/c(0)

[unitless] or concentration [a.u.].

• Your screen is two-dimensional. If you ask for a “3D” plot, what you get must be a 2D projection, imagined
as what a camera would see looking at your plot from some outside “viewpoint.” Switching to a different
viewpoint may make it easier to see what’s going on. At the top of the plot window is a tiny icon called
Rotate 3D (cube circled by an arrow). Click it. Now you can click and drag within your plot to change
the viewpoint.

6Here are some other common formats: speed, um/s, or even speed/(um/s). Use whichever you (or your instructor) prefer.
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Your
Turn
3A

Start with the code at the beginning of Section 3.2.1 and improve it.
Make a smooth graph, with a thick red line, appropriate labels, and a
title. Make the text big enough to read easily.

3.2.5 Multiple graphs on a single set of axes

You probably noticed in the previous examples that, if you already have a graph open, issuing a new graphing
command wipes it out.

By default, a new graph replaces any previous graph in the currently active
figure window.

Sometimes this behavior is desirable, but not always. If you simply want two different plots open, issue the
command figure(2), which opens a new figure window named Figure 2 (or switches to it if such a window
already exists).7 The next plot command will put its output there, leaving the other figure window alone.

Often, however, you’d like more than one graph superimposed on the same figure window. One way to
accomplish this is to say hold('on') any time after creating a figure window; subsequent graphs created
in that window pile on top of each other until you close the window or give the command hold('off').
Matlab will ensure that all such graphs share the same numerical scale, and in fact the same axes.

The “hold” attribute is great for showing multiple graphs together, but it can get confusing if something is
left over from some previous run of your script. It’s good practice to start any graphing script with close all,
so you know that all graphs that appear came from the current run. Don’t attempt to superimpose log axes
with regular axes by using hold('on'). The two styles are inconsistent; one of them will supersede the other.

Two other methods can be used to get multiple plots superimposed. Try

x = linspace(0, 1, 50);
y1 = exp(x); y2 = x.ˆ2;

3 plot(x, y1, x, y2);

This example shows that you can give plot more than one set of xy list pairs. Matlab will choose different
colors for each curve, or you can specify them manually: plot(x, y1, 'r', x, y2, 'ko') .

The third method is to give plot an ordinary vector of x values, but a 2D array of y values. Each row of
y gives a separate curve. This method can be useful when you wish to look at a function for several parameter
values.

Your
Turn
3B

Try
num_curves = 3;

x = linspace(0, 1, 50);

y = zeros(num_curves, size(x,2));
for whichCurve = 1:num_curves,

y(whichCurve,:) = sin(whichCurve*x*2*pi);
end
plot(x,y);
As soon as you start having multiple curves, you may need a “legend”
explaining which is which. So look up the Help for legend and embellish
the example just given.

7If you don’t supply any argument, figure chooses a figure number that’s not in use yet.
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3.2.5.1 T2 Multiple axes in a figure window You may wish to place more than one graph side by side in a
single window for comparison. The function subplot(N, M, p) divides the current figure window into a
grid of N rows and M columns, then makes cell number p the current one, where p is an integer between 1
and N*M. Any graphing command issued now will go into cell number p. Try this example:�� ��MLG3-2-5-1a.m

close all; figure
subplot(2, 2, 1); bar(rand(10, 2))

3 mylist1 = 0:.1:10*pi;
subplot(2, 2, 2); plot3(sin(mylist1), cos(mylist1), mylist1)
mylist2 = linspace(0, 3, 10)

6 subplot(2, 2, 4); plot(mylist2, mylist2.ˆ2)

Make sure all your subplot commands for a particular figure window use the same values for N and M. If
you want more freedom to place subplots, see the Help.

3.2.6 Saving figures

You can copy a graph from the menu in its plot window (Edit>Copy figure), then paste it into a word
processor.

For higher-quality results, however, you must export the figure. One way is to use File>Save As...

from its window menu, and choose the EPS file format. The .eps file generated in this way can be opened
and modified in a “vector-graphics” application such as Inkscape or xfig (both freeware8), or a commercial
alternative. Or you can save a graph in a “raster” (also called “bitmap”) format such as .jpg or .tif, for
inclusion in a presentation slide. Another way to export, which can be written into a script, is to use the
print function (see its Help).

8http://www.inkscape.org/en/; http://www.xfig.org
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First Computer Lab

These exercises will use many ideas from the previous chapter. Our goals are to

• Develop basic graphing skills.

• Bring in a data set.

• Perform a simple fit of data to a model.

4.1 BASIC GRAPHING SKILLS: HIV EXAMPLE

4.1.1 Family of functions

Make a list by typing

time = 0:0.1:1

at the prompt and pressing <Return/Enter>. You should see a list of 11 numbers. Now assign a list of 101
numbers ranging from 0 to 10 to the variable time by typing time = followed by the appropriate expression.

Next, evaluate an expression involving your array. Use the solution to the differential equation solved in
Physical Models (Nelson, 2015, Chapter 1) when modeling the concentration, V , of HIV in the blood at time
t after the start of treatment:

V (t) = X exp(−αt) + Y exp(−βt), (4.1)

where the four parameters X, α, Y , and β are constants that control the behavior of the model; we don’t
know their values yet.

First, rename the constants as things you can type, for example, aRate and bRate. Give them some
values. Also, it’s wise to give longer, more descriptive names even to the ones you can type, for example,
time for t. Next, try the code

viralLoad = X*exp(-aRate*time) + Y*exp(-bRate*time)

Let’s first set Y = 0. Choose some interesting values for X and α, and evaluate V (t) on some interesting
range of values for t. You should now have two lists of numbers of the same length, called time and viralLoad,
so try

plot(time, viralLoad)

4.1.2 Fit

Now let’s have a look at some experimental data.
Go to the Data Sets section of http://www.macmillanhighered.com/physicalmodels1e.1 Find the

entry called HIVseries (or 01HIVseries), and get the file HIVseries.mat.2 This file contains time series

1Resources mentioned here are also maintained at a mirror site: http://www.physics.upenn.edu/biophys/PMLS/Student .
2See Section 3.1.1.
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data about the concentration of a virus in a patient’s blood versus time after drug treatment. After you
import it, you’ll find a variable called a in the Workspace Window. It is an array (like a spreadsheet) with two
columns of data. The first column is the time in days since administration of a treatment to an HIV-positive
patient; the second contains the concentration of virus in that patient’s blood in arbitrary units.

Before you can plot the viral load as a function of time, you need to do a simple manipulation to extract
one vector from the first column of a and another vector from the second column. Do that and plot the data
points now. Don’t join the points by line segments; make each point a symbol, for example, a small circle or
plus sign. Label the axes of your plot. Give it a title, too.

Assignment:

a. Figure out how to superimpose the experimental data points on a continuous-curve plot of the function
in Equation 4.1 above. Select reasonable values for the four parameters for the model and see what you
get.

The goal is now to tweak the four parameters of Equation 4.1 until the model agrees well with the data.
But it’s hard to find the right needle in a four-parameter haystack! We need a more systematic approach
than just guessing. So think: How does our trial solution behave at long times? If the data also behave that
way, can we use the long-time behavior to determine two of the four unknown constants, then hold them
fixed while adjusting the other two?

b. Even two constants is a lot to twiddle, so think some more: How does the initial value V0 depend on the
four constant parameters? Can you vary these constants in a way that always maintains fixed long-time
behavior and also the initial value? That would leave only one remaining free parameter, which you
could adjust fairly easily until you like what you see.

c. What values did you eventually choose for the parameters? Based on the development of the model in
Physical Models, what can you deduce about HIV from your results?

[Remark: You probably know that there are black-box software packages that do such “curve fitting”
automatically. In this lab, you are to do it manually, just to see how the curves respond to changes in the
parameters.]

4.2 BACTERIAL EXAMPLE

4.2.1 Two families of functions

Here are two more families of functions:

V (t) = 1− e−t/τ ; W (t) = A

(
e−t/τ − 1 +

t

τ

)
. (4.2)

The parameters τ and A are constants. Functions of this sort come up in Physical Models Chapter 10 in the
context of the Novick-Weiner experiment. Proceed as in the HIV example above, but with these functions
and some different data sets.

Assignment:

a. Choose A = 1, τ = 1, and plot W (t) for 0 < t < 2.

b. Make several lists W1, W2, W3, and so on, using different values of τ and A, and plot them simultaneously
on the same graph.
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c. Make the different lines different colors.

d. Explore some of the other graph options that are available; for example, wouldn’t it look good to add a
legend, to help the reader sort out all the curves?

4.2.2 Fit

Go to the Data Sets section of http://www.macmillanhighered.com/physicalmodels1e.3 Find the entry
called novick (or 15novick), and get the file g149novickA.mat, which sets up an array named data

containing data about bacterial population in a culture versus time. Extract one vector from the first column
of data and another vector from the second column. Now plot the data points. Don’t join the points by line
segments; make each point a symbol, for example, a small circle or plus sign. Label the axes of your plot.

Assignment:

a. Superimpose the experimental data points on a multiple-curve plot of V (t) (see Equation 4.2), similar
to the one you made for W (t) before. Select some reasonable values for the parameter τ in the model,
and see if you can get a curve that fits the data well.

b. Now try the same thing using the data in g149novickB.mat. This time throw away all the data with
time value greater than 10 hours, and attempt to fit the remaining data to the family of functions W (t)
in Equation 4.2.

[Hint: At large values of t, both the data and the function W (t) become straight lines. Find the slope and
the y intercept of the straight line determined by Equation 4.2 in terms of the two unknown quantities A
and τ . Next estimate the slope and y intercept of the straight line determined by the data. From this, figure
out some pretty good guesses for the values of A and τ . Then tweak the values to get a nicer looking fit.]
[Remark: Again you are asked not to use an automatic curve fitting system. Using methods like the one
suggested in the Hint can give you a far better feeling for the meaning of the math than just accepting
whatever a black box spits out.]

3Resources mentioned here are also maintained at a mirror site: http://www.physics.upenn.edu/biophys/PMLS/Student .
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C H A P T E R 5

More Matlab Constructions

At its highest level, numerical analysis is a mixture of science, art, and bar-room brawl.

— T. W. Koerner, The Pleasures of Counting

The preceding chapters have developed a basic set of techniques for importing, creating, and modeling data
sets and visualizing the results. This chapter introduces additional techniques for exploring mathematical
models and their results:

• Random numbers and probabilistic simulations

• Solutions of nonlinear equations of a single variable

• Solutions of linear systems of equations

• Numerical integration of functions

• Numerical integration of ordinary differential equations

In addition, this chapter introduces several new methods for visualizing data, including histograms, surface
plots, contour plots, vector field plots, and streamlines.

We start with a discussion of writing your own functions, an invaluable tool in exploring models of
physical and biological systems.

5.1 WRITING YOUR OWN FUNCTIONS

5.1.1 Don’t duplicate

Section 2.4.4 introduced a principle:

Don’t duplicate: define things once and then reuse the definitions.

In the context of parameters, this principle told us to enter a parameter’s value just once at the start of our
code. But code itself can contain duplications, if we need to do the same (or nearly the same) task many
times. Just as with parameter values, you may later realize that something needs to be changed in your code.
It would be tedious and error prone to change every instance. It’s better to define a function once, then
invoke it whenever needed. You may even need a snippet of code (perhaps a simulation module) in more
than one of your scripts. If each script invokes the same externally defined function, then fixing that file once
will fix it for all of your scripts.

Functions in Matlab can carry out mathematical operations, like cos(x); they can make plots; they
can read and write files; and much more. Your own functions can do all of these things as well. Functions are
ideal for writing code to accomplish a task once and reusing it often.
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5.1.2 Defining functions

One way to specify a function is to place it in a separate file, called, for example, myFunction.m. That file
should be located in the same folder as your main script.1

A function is a collection of Matlab code, like a script. Unlike a script, however, a function file starts
with a line like this:

function myval = myFunction(myInput, myOther, ...)

This line specifies the name of the function (in this case myFunction), some names for the input arguments
(myInput, ...), and a variable name for the value to return (myval). Each of these can have any name you
like, but the name of the function must match the filename; thus, in this case the code must be in a file
named myFunction.m. Once you have finished setting up your function file (and saved it!), then any other
Matlab code in the same folder can include lines like

y = myFunction(u, wˆ3) + 3;

When this line is executed, myFunction acts just like sqrt or some other predefined function:

• Matlab transfers control to myFunction.m, after first assigning the current value of the variable u in
the main code to a variable called myInput in myFunction. Similarly, it evaluates wˆ3 in the main code
and assigns that value to myOther in myFunction.

• When myFunction.m is finished, Matlab takes the current value of the output variable specified in its
opening line (here myval) and substitutes it in place of myFunction(u, wˆ3) in the main script. It then
finishes evaluating the expression containing that code and, in this case, assigns the answer to y.

A function can return anything to the code that invokes it:2 a number, an array of numbers, a string,
even nothing at all. The arguments can also be of any type (or there may not be any at all). For instance,
you might like to perform a rotation. The first argument could be a column vector to be rotated; the second
could be the angle of rotation. The output would then be the rotated vector. Here is a complete working
example of a user-defined function that implements these steps:�� ��MLG-rotavec.m

function newvec = rotavec(oldvec, theta)
% MH Flambeau 8/2014 file rotavec.m MATLAB R2014a: rotate a vector

3 % oldvec = 2D column vector
% theta = angle to rotate, in radians
% returns a 2D column vector

6 newvec = [cos(theta), -sin(theta); sin(theta), cos(theta)]*oldvec;

Note that the * in line 6 indicates matrix multiplication.
After creating the file rotavec.m with the above contents, try typing help rotavec at the Command

Window prompt. Matlab types back the first few lines of comments it finds in the file. Then try the
command rotavec([1;0], pi/2) and so on.

After you edit a function in the Editor Window, you must manually save it
before using it. Matlab only automatically saves a top-level script when
you click the

�� ��Run button.

Section 5.5.1 gives a more concise way to set up short, user-defined functions.

1When you launch Matlab, its default folder will be something like <your username>/Documents/MATLAB/ . Files in this

folder are always available to Matlab, even if you change the default, so this is another place where you may wish to place

useful functions. If you know about “paths,” then you can figure out how to create other folders that are visible to Matlab

regardless of the current folder (doc path).
2A user-defined function can return two or more results via the syntax function [val1, val2] = myFunction(...) .

The calling script receives these values via the syntax [x, y] = myFunction(...) .
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5.1.3 Scope

Another feature of function files is subtle but important. The function command also tells Matlab to
create a “sandbox,” in which all variables in the main code’s workspace are hidden from the rest of your
code. While the function is running, it knows nothing about the surrounding world that called it except
the values of arguments that were explicitly passed to it. And those arguments are passed only as values;
while the function is running, it does not even know, or need to know, what their names were in the calling
code. Thus, in the example above, the code myFunction.m does not know that the code that called it has
a variable named u. And if myFunction.m changes the value of its variable myInput, that change does not
affect the value of u when control returns to the calling script.

Similarly, after the function finishes, the calling script doesn’t need to know the name of the output
variable in myFunction.m. All that it learns about the function is the value of its result. The two codes are
therefore “insulated” from each other, communicating only through the arguments and outputs.3

Thus, a function interacts with other code only via a very narrow pipeline, the values of its input
argument(s), and the returned value(s). It is easy to forget this feature, tell myFunction to use a variable
from the surrounding code, and receive a perplexing error message that the variable is not defined. But this
feature saves much more trouble than it causes. By limiting the scope of variables in this way, Matlab
saves you from the much more perplexing situation where you change a variable by inadvertently creating an
unrelated variable with the same name inside a function! The modularity imposed by a functional structure
is another key feature of good coding practice.

5.2 RANDOM NUMBERS AND SIMULATION

There are many interesting problems in which we do not have complete knowledge of a system, but we do
have knowledge of the probabilities of the outcomes of simple events. For example, you know the probability
of any given outcome in the roll of a single die is 1/6, but do you know how likely it is that the sum of a roll
of 5 dice is less than 10? Rather than work out the combinatorics, you could instead roll dice many times
and determine the probability empirically.

A random number generator makes it possible to “roll dice” millions of times per second, by using a
computer. You can use a random number generator to determine the likely behavior of a system described by
a stochastic model in which the probability distributions of the parameters are known, but it is impossible to
determine the exact behavior. Such calculations are called Monte Carlo simulations.

5.2.1 Simulating coin flips

Suppose that you want to simulate flipping a coin one hundred times, record the number of heads, and then
repeat that N times, arriving at N numbers, each lying in the range between 0 and 100, inclusive. First try
typing

1 > 2

at the Command Window prompt, then repeat with 2 > 1. You’ll see that Matlab assigns the values 1 or 0
to indicate the truth of a proposition. So you can simulate a coin flip by using the function rand to generate
a Uniformly distributed variable on the range from 0 to 1, then convert it to a binary digit by comparing it
to 1/2.

To make a long list of independent flips, first make a list called rlist with 100 Uniform random numbers.
(Use help rand for a clue about how to do this easily.) Then you can say rlist = (rlist > 0.5) . Matlab
applies the condition to the list item by item, then substitutes the new values for the old ones. You can then
count heads by using the sum command.

3 T2 This tutorial will not discuss the different rules governing “subfunctions.”
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5.2.2 Generating trajectories

Let’s create a random walk of 500 steps. Thus, our trajectory will be a list of 500 x values and 500 y values.
Following good practices (Sections 2.4.4 and 2.4.6), begin with

walklength = 500;
x = zeros(1,walklength); y = zeros(1,walklength);

Next, notice that the x and y coordinates of our random walker make independent steps. You know from the
preceding section how to get a list of 500 random binary digits. Make two such lists called stepx and stepy.
But we need lists consisting of random ±1 entries, not ones and zeros.

Your
Turn
5A

a. Do a simple operation on stepx to convert it to that form, and
similarly for stepy.
b. Now you need to convert your lists of steps into actual successive
positions of the random walker. Consult Matlab’s help for the command
cumsum to see why it’s what you need.
c. Complete your code by making a picture representing your random
walk. Run it several times.

5.3 THE HIST COMMAND AND ITS RELATIVES

A histogram is a bar plot used to display a discrete, empirical probability distribution. To make a simple
histogram, try4

hist([1, 2, 2, 2, 3, 10, 10])

Indeed, a figure appears, but a number of things have happened without your supervision. Matlab has
inspected the list of data and found its range, decided how many equally spaced bins to divide that range,
counted how many entries in the data fall into each bin, and graphed the result as a set of bars. But you
may want to set those divisions yourself, or at least know what Matlab has chosen. If you only want a
little control, you could add an optional argument telling Matlab how many bins you want in that range.
Compare the output of hist(rand(1, 1000)) to hist(rand(1, 1000), 50).

For even more control, you can tell Matlab exactly where you want each bin to be centered; this is a
bit tricky, so look carefully at help hist .

For control over presentation, you can instead write

[mycounts, mycenters] = hist([1, 2, 2, 2, 3, 10, 10]);

On the left of the equals sign, we are specifying that we wish for hist to return two results to us, and that
they are to be placed in variables called mycounts and mycenters, respectively. Matlab tells the hist
function how many results were requested. If no returned values were requested, as at the start of this section,
then hist draws a bar graph. If two results are requested, as above, then no graph is drawn; instead, hist
returns an array with the numbers of counts in each bin, and a second array with the centers of each bin.

Your
Turn
5B

Try it, and inspect the returned variable values to make sure you under-
stand.

4hist is deprecated starting with Matlab version R2014b; histogram is the recommended replacement.
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We are now free to make the bar graph ourselves:

bar(mycenters, mycounts)

or to plot in some other style, or even to perform some other transformation prior to plotting. The hist
function has simply done the binning (classifying and counting) for us.

Often it is more convenient to specify not the centers of the bins, but instead the range of values that
each bin collects. The histc function accomplishes this; see its Help. Note that histc never draws a graph;
you must do that yourself as described above.

5.4 SURFACE AND CONTOUR PLOTS

In earlier chapters, we have seen several methods for plotting data sets in which only a single parameter
is varied. Such data sets lend themselves to two-dimensional plots. However, models with two or more
independent parameters require higher dimensional plots.

5.4.1 Surfaces

A function of two variables, h(x, y), can be visualized as a surface whose height over each point (x, y) has
been specified, just as Earth’s topography is specified by altitude as a function of latitude and longitude. To
draw such a representation, we set up a grid of xy pairs, evaluate our function at each grid point, and invoke
Matlab’s function surf.

Typically our grid consists of points regularly spaced in x and in y. We can specify it by making a list of
desired x and another list of y, and then invoking meshgrid . Try�� ��MLG5-4-1a.m

xrange = -1:1; yrange = 0:100:100;
[X, Y] = meshgrid(xrange, yrange)

Make sure you understand the result: meshgrid returned two outputs, X and Y, each an array with 3× 2 = 6
entries giving the x and y coordinates of six grid points. You can now evaluate a function on those values,
perhaps using vectorized arithmetic, to produce a third array called Z, and then invoke surf(X, Y, Z) to
show the result.

Your
Turn
5C

Show the function z = x2 + y2 over a suitable grid of values, where x
and y range from −1 to 1.

The function surf uses color as a secondary indicator of the value of the function. If you’ll be printing
an assignment in grayscale, you may get better results if you tell Matlab not to use color: After creating
the graph, use the command colormap('gray') or colormap('bone') .

5.4.2 Contour plots

Generating a contour plot is similar to creating a surface: Set up a grid and evaluate your function as before,
then use

contour(X, Y, Z);

The number of contour lines is 10 by default. To change this, add a fourth argument to the function call:
contour(X, Y, Z, 20) . You can also label the contour lines by using the following commands:

[C, h] = contour(Z);
clabel(C, h);
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5.5 NUMERICAL SOLUTION OF NONLINEAR EQUATIONS

It is often necessary to solve nonlinear equations when studying physical and biological system. For example,
determining the fixed points in a single-gene toggle system requires finding the roots of a sixth-order
polynomial, but there are no general analytic solutions for polynomials higher than the fourth degree.
Biological oscillators involve even more complicated functions that are not even polynomials. Numerical
methods for finding the roots of such expressions are therefore essential.

5.5.1 Function handles and anonymous functions

Numerical solvers, and other functions to be introduced later, involve a syntax that we haven’t met yet. In
order to tell the solver what to solve, we need to pass it an argument that is itself a function (the one whose
roots we are seeking). We do this by creating a function handle, that is, a “pointer” to a function; the syntax
is to preface the function’s name by the @ symbol. Thus @sin is a handle to the function sin, and so on.

The @ symbol can also be used to create a function, if its definition is very simple. Try entering
myFn = @(x) xˆ2-1 at the command prompt. In the Workspace Window, you will now see myFn as a new
symbol; typing myFn(3) confirms that it is a function.

More generally, when the @ sign is followed by an opening parenthesis, not the name of a function,
then it first creates a new function, and then returns a handle to it. The symbol(s) inside the first set
of parentheses are variable(s) that will be assigned from the arguments supplied when function is used;
the following expression involving those argument(s) defines what will be computed and returned. Thus,
@(x) xˆ2-1 creates a function (“square the argument and subtract 1”) and returns a handle pointing to
that function. If you wish to use that function directly, you can name it, as in the example above. If you only
wish to pass it along to another function, however, then you needn’t give it any name; just substitute the
“anonymous function” handle @(x) xˆ2-1 anywhere a function handle is required.

5.5.1.1 T2 Scope and anonymous functions
Unlike functions defined via function, anonymous functions defined by @ can also “see” the values of
variables in the surrounding Matlab code. But those values are frozen at the time the @ is executed; they
are not the current values when the anonymous function itself is called.

5.5.2 Roots of general real equations

Matlab can find the roots (zeros) of a nonlinear function using fzero. This function takes two arguments,
a function handle and a point in the domain of the function at which fzero begins searching for roots. The
function can be defined in any of the ways discussed in Sections 5.1 and 5.5.1.

Example: Try the following and explain the results:
fzero(@(x) xˆ2-1, 0.5)

fzero(@(x) xˆ2-1, -0.5)

Solution: The equation x2 − 1 = 0 has two roots, but which root fzero returns to us depends on where we
tell the function to begin searching.

Example: Now try the following, and explain what you see:
fzero(@sin, 2)

fzero(@sin, 1)

Solution: The second expression does not return exactly 0. What you are seeing is an example of numerical
error, caused by the finite number of binary digits that Matlab uses to represent a number. The result is a
number that is extremely close the correct solution, but not exact.
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The phrase “numerical error” is standard, but unfortunate. You didn’t make any error; neither did Matlab.
Your computer’s hardware simply has limited precision.

Understanding how fzero operates also helps us understand the return value of fzero(@(x) 1/(x-1), 2).
Note the discontinuity in the function 1/(x− 1) at the value x = 1. The function is positive when approaching
the discontinuity from the right and negative when approaching it from the left. The function fzero iterates
through the domain of the function looking for points where the value crosses zero, so in this situation it
incorrectly finds x = 1 to be a root. By using the syntax

[root, fval, statusflag] = fzero(@(x) 1/(x-1), 2)

and checking the return value of statusflag, singular points (and a variety of other error conditions) can
be detected. If your numerical result doesn’t make sense, consult help fzero. It’s also often helpful to make
a graph of your function and look at it to understand what’s going on.

You may be able to give fzero better instruction if you know that the root of interest lies between two
values. Replace the starting point by a two-element list to supply the lower and upper bounds of the region
you’d like fzero to search. (If there’s no zero in that range, you’ll get an error message.)

5.5.3 Complex roots of polynomials

Unfortunately, fzero is restricted to real numbers only. Consider the function 1/x = 1 + x3. In order to use
fzero, we can manipulate this into 0 = x(1 + x3)− 1 and solve for the roots (assume that we have some
good reason to guess that the real roots are near 1 and −1):

fzero(@(x) x*(1+xˆ3)-1, 1)
fzero(@(x) x*(1+xˆ3)-1, -1)

But a quartic equation has four roots; in the present case, fzero missed two roots because they are complex.5

Matlab can find the roots of any polynomial by using the function roots, which takes a vector of
coefficients (see help roots for details). For arbitrary nonlinear equations, however, Wolfram Alpha (or
Mathematica) is probably the most effective tool. For example, the equation 1/x = 1 + x2.4 cannot be solved
by using roots.6 In fact, it has three solutions, but only one is real.

5.6 SOLVING SYSTEMS OF LINEAR EQUATIONS

Often we need to solve a set of simultaneous linear equations, with the general form[
a1
a2

]
=

[
c11 c12
c21 c22

] [
x1
x2

]
.

That is, we are given the a’s and c’s, and wish to know the x’s. Matlab has an extremely concise notation
for the solution to this problem, represented by the backslash operator (see help mldivide). The code�� ��MLG5-6a.m

A = [-1; 5];
C = [1, 3; 3, 4];

3 X = C\A

puts the solution to this problem into the column vector X, as you can confirm by computing C*X. There is a
mnemonic to help you remember this notation: You can think of the solution of A = CX as “dividing both
sides from the left by C.” The backslash operator does this.

5One way to see this is to use a symbolic math package like Wolfram Alpha: solve(x*(1+xˆ3) - 1,x) . See Section 7.3.
6Actually, you can solve this particular equation by using roots. Rewrite it as x3.4 = 1 − x, raise both sides to the fifth power

to generate a 17th-order polynomial, get all 17 roots from roots, then use a for loop to substitute them into the original

expression and eliminate the extraneous solutions.
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5.7 NUMERICAL INTEGRATION

There are several integration routines available, each with particular strengths. The all-purpose workhorse is
called integral.

5.7.1 Integrating a predefined function

To set up a numerical integration, define a function that is to be your integrand, then give integral a
handle for that function (Section 5.5.1). To illustrate this, let’s evaluate

∫ xmax

0
dx cos(x) for various values of

xmax. Try this code:�� ��MLG5-7-1a.m

ind = 0;
for xmax = 0:(3*pi/15):3*pi, % try various upper limits

3 ind = ind + 1;
result(ind) = integral(@cos, 0, xmax);
end

6 plot(0:(3*pi/15):3*pi, result)

Remarks:

• The first line sets up an integer index ind, which keeps track of where each intermediate result is to be
kept. Note that in Matlab, the first element of an array has index 1, but we initialized ind to 0, so ind

must be incremented before it is used.

• The next line sets up a list of values for xmax; we’d like to evaluate the definite integral with each of these.
The actual integrations are done in the third line.

• The syntax @cos creates a handle for an existing function, in this case cos. The function must be able to
accept a vector of input values and return a vector containing its values when evaluated item by item on
that list. The built-in function cos can do this.

• Passing @cos as an argument to integral tells it what function you’d like it to integrate.

The integral function evaluates cos at a vector of input values and uses the output to compute the integral
over the range given by its second and third arguments.

Your
Turn
5D

Do the integral analytically, and check whether Matlab got it right.

5.7.2 Integrating your own function

Next, suppose that you wish to integrate a function that is not predefined. If the function is long and complex,
you’ll want to define it in a separate file myFunction.m, as described in Section 5.1, then substitute the
handle @myFunction for @cos in the above code. But if your function can be expressed in a single line, the
following abbreviated syntax is more concise. Try entering this code in the Editor Window, then running it:�� ��MLG5-7-2a.m

ind = 0;
for xmax = 0:(3*pi/15):3*pi; ind = ind + 1; % try various upper limits

3 otherresult(ind) = integral(@(x) (1/10)*x.ˆ2, 0, xmax); end
plot(0:(3*pi/15):(3*pi), otherresult)
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Your
Turn
5E

a. Why did we need to use the syntax x.ˆ2 in the above code?
b. Again check that Matlab got the right answer.
c. Try a function whose integral you don’t know: Evaluate∫ xmax

0

dx e−x
2/2

for values of xmax from 0 to 5, and plot the answer.

If a function can be integrated all the way to infinity, Matlab may be able to give you that answer: Try
replacing the upper limit by Inf (or the lower limit by -Inf) in the above question.

5.7.2.1 T2 Oscillatory integrands
Sometimes we wish to evaluate an integral whose integrand oscillates rapidly. A variant of integral, named
quadgk, is optimized for this purpose (see its documentation):�� ��MLG5-7-2-1a.m

clear all; close all
i = 0;

3 for thetamax = 0:(3*pi/15):3*pi; i = i + 1; % try various upper limits
result(i) = quadgk(@(theta) cos(theta), 0, thetamax, 'MaxIntervalCount', 5000);

end
6 plot(0:(3*pi/15):(3*pi), result)

Actually, for the calculation just given integral would have worked fine. But the code snippet above does
illustrate an important option that you can give to quadgk: Setting MaxIntervalCount equal to 5000 tells
Matlab how hard to work on this calculation. Bigger values give you better results, but take longer to run.

5.8 NUMERICAL SOLUTION OF DIFFERENTIAL EQUATIONS

In both physical and life science, it is often possible to write down a set of differential equations that govern
a system (or describe the behavior of a model), but impossible to solve this system in terms of known
functions. A classical example is the three-body problem in classical mechanics: F = ma and Newton’s law
of gravitation are all that is required to write down the differential equations, but no one in the last four
centuries has been able to solve them!

Numerical stepping is a powerful tool in studying such systems. Starting from some initial configuration
of a system, you can calculate the next configuration by using the differential equation(s). From that
configuration, you can calculate the next configuration, again by using the differential equation(s), and so on.
Computers are ideal for executing this repetitive operation, and many efficient libraries have been developed
for the task.

5.8.1 Reformulating the problem

An ordinary differential equation system (ODE) is one that only involves functions of a single parameter,
often considered as “time” and denoted t. A textbook example is the driven harmonic oscillator:

d2y

dt2
= −y + g(t),
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where g(t) is some given “driving” function. Matlab’s function ode45 can “only” solve ODEs of the form

dy

dt
= F (t,y). (5.1)

Fortunately, any ODE can be put into this form. For the harmonic oscillator example, first define two
variables that will be the components of a vector y:

y1 = y y2 =
dy1
dt

.

Next, write the derivatives of y1 and y2 in terms of y1, y2, and t:

dy1
dt

=
dy

dt
= y2

dy2
dt

=
d2y

dt2
= −y + g = −y1 + g.

This allows us to cast our problem, a second-order differential equation, in the form required by ode45
(Equation 5.1). y is a vector with two entries, and F (t,y) returns a vector with two entries:

F (t,y) =

[
y2

−y1 + g(t)

]
(5.2)

Any ordinary differential equation, or coupled set of such equations, can be recast in a similar manner.

5.8.2 Explicit solutions

The function F in Equation 5.1 specifies what ODE we would like Matlab to solve. The function F must
specify a vector field on state space, possibly with explicit dependence on time (Equation 5.2). That is, F
should accept a time value and a vector y, and return a vector. Use help ode45 to see how we specify that
information. Our goal is to create a function that evaluates F (t,y).

Consider a simpler example, exponential growth, for which dy/dt = 0.05y. In this case, we create a
function, called expGrowth, in a file called expGrowth.m. Note that, although in this simple case F (y) has
no dependence on t, we must still include the variable t as its first argument, because ode45 requires it:�� ��MLG-expGrowth.m

function out = expGrowth( t, y )
% file expGrowth.m: MATLAB R2014a: evaluate right side of differential equation

3 k = 0.05;
out = k*y;

Now we can solve the equation by using ode45:�� ��MLG-solveODE.m

% solveODE.m: MATLAB R2014a: illustrate solution of an ODE
clear all; close all

3 y0 = [1, 2]; % solve equation for two different initial values
t0 = 0; % starting time
tfinal = 100;% ending time

6 kvalue = 0.05;
[t, y] = ode45(@expGrowth, [t0, tfinal], y0);
plot(t, y(:, 1), 'og'); hold('on');

9 plot(t, y(:, 2), 'or');
plot(t, y0(1)*exp(kvalue*t), 'g'); %check against explicit solution for y0 = 1
plot(t, y0(2)*exp(kvalue*t), 'r'); %check against explicit solution for y0 = 2

12 hold('off');

Comments:
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• As with numerical integration, the solver expects a function handle, coded with the @ construction
(Section 5.5.1).

• The second argument is a vector with two entries, specifying the start and end times for the desired
solution.

• The solver returns a list of times in the range that we specified and another list containing the solution
evaluated at those times.

• The code above gave ode45 multiple initial values (y0 is a list) in a single function call. The solver in turn
produced multiple solutions (so actually y is an array), which we plotted individually.

For a simple function like exponential growth, we could have used an anonymous function, instead of
writing an external .m file. In this case, ode45(@(t, ytmp)(kvalue*ytmp), ... works equally well, avoids
the secondary .m file, and moreover implements the “Don’t duplicate” principle, because now the value 0.05

is only entered once. Finally, using an anonymous function allows us to put the whole thing in a loop over
several values of kvalue, generating solutions to a family of similar equations.

5.8.2.1 T2 Advanced syntax
For more complex functions, we can use a method called “parameter binding” to accomplish the same thing.
For this, we redefine our function (here expGrowth) to include dependence on the parameter k:

function out = expGrowth2(t, y, k)
% file expGrowth2.m MATLAB R2014a:

3 out = k*y;

We cannot give this function directly to the solver, because it doesn’t have the expected two arguments.
Instead we use an indirect method:

k_range = [0.03, 0.04, 0.05];
colors = ['r', 'g', 'm'];

3 y0 = 1;
t0 = 0;
tfinal = 100;

6 %% expGr_h is a handle to an anonymous function of k, which itself returns a handle:
expGr_h = @(k)(@(t,y) expGrowth2(t,y,k));
for ndx = 1:size(k_range,2)

9 kvalue = k_range(ndx);
color = colors(ndx);

% since expGr_h is already a handle, we do not use @
12 [t,y] = ode45(expGr_h(kvalue), [t0 tfinal], y0);

plot(t, y, [color, 'o']); hold('on');
% check against explicit solution for y0 = 1:

15 plot(t, y0*exp(kvalue*t), color);
end
hold('off');

5.9 VECTOR FIELDS AND STREAMLINES

5.9.1 Vector fields

A vector field is a function whose value at any point in space is a vector. Common examples from physics
include the electric field, the magnetic field, and the velocity field of a fluid. Matlab provides two useful
functions for visualizing vector fields and their streamlines.
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You can plot a 2D vector field by using the quiver function. It requires four arguments, all of which are
arrays of the same size. The first two arguments define a grid of xy values, as in Section 5.4.1. But instead of
specifying an ordinary function at these points, we specify a 2D vector V (x, y) at each one. And instead of
constructing a smooth surface interpolating between the points, Matlab will draw an arrow at each one,
with direction and length given by the corresponding 2D vector.

Your
Turn
5F

For example, try the script
close all;
[X, Y] = meshgrid(-1:.2:1, -1:.2:1);

Vx = Y; Vy = -X;

quiver(X, Y, Vx, Vy)

and explain the “vortex” pattern you get.

5.9.2 Streamlines

Systems of first order, ordinary differential equations can be visualized in terms of a vector field. Another
way to find solutions is to follow the arrows, generating “streamlines.” The word comes from an analogy to
water flow: The velocity of the water defines a vector field; the trajectory of any one water molecule is a
streamline. Electric and magnetic “field lines” are also streamlines.

Matlab’s streamline function will follow a vector field and make a graph of the resulting trajectory.
The syntax is

streamline(x, y, Vx, Vy, startx, starty)

The first four arguments are the same as quiver: They specify the vector field to follow. The fifth argument
can be a single entry with the x coordinate of the starting point, and similarly for the last one. Or startx
and starty can be lists, if you wish to draw more than one streamline.

To illustrate the process, begin with the same vector field you drew in Section 5.9.1:�� ��MLG5-9-2a.m

clear all; close all
gridMin = -2; gridMax = 2; gridStep = 0.2;

3 [Xfine, Yfine] = meshgrid(gridMin:(gridStep/10):gridMax);
Vx = Yfine; Vy = -Xfine;
streamline(Xfine, Yfine, Vx, Vy, [1, 0, .5], [1, 1.3, 1.7])

6 axis('equal')

Notice that this time, we chose a finer grid of points than before. Such a fine grid would have made a very
cluttered picture of the vector field (too many arrows). But for the present purposes, a fine grid means more
accurate results (Matlab doesn’t need to interpolate as much as it would otherwise).

Your
Turn
5G

a. Perhaps the picture drawn in the preceding example was a bit too
tame and predictable. Replace line 4 with
Vx = Yfine - 0.1*Xfine; Vy = -Xfine - 0.1*Yfine;

and explain the streamlines that you find.
b. For even greater excitement, replace line 4 with
Vx = Xfine; Vy = -Yfine; and explain what happens.
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Second Computer Lab

In this lab, you’ll use Matlab to generate some two-dimensional random walks, plot a few such trajectories,
and then take a look at the distribution of a large number of random walkers. Our goals are to

• Generate some random walk trajectories, each of which begins at the origin and proceeds in random
diagonal steps according to

xn+1 = xn ± 1, yn+1 = yn ± 1. (6.1)

• Plot the full trajectories of three such walks in three separate figures.

• Plot all the end points of the trajectories in a single figure to see how they are distributed.

• Compute the average position of the walkers and their average distance from the origin, and compare each
to an expected result.

First review Section 5.2.

6.1 GENERATING AND PLOTTING TRAJECTORIES

Our first task is to create a random walk of 500 steps, each of the form in Equation 6.1. So our trajectory will
be a list of 500 x values and 500 y values. It’s good programming practice to let Matlab know in advance
how long the lists will be:

walklength = 500;
x = zeros(1, walklength); y = zeros(1, walklength);

Assignment:

a. Use the ideas in Section 5.2 to make a random walk trajectory, then plot it. To remove the default
distortion in this picture, use the command axis('equal') after making the plot. Also, Matlab may
give each plot a different magnification. Review the Help for the command xlim. Then give each of your
plots the same x and y limits, so that they may be compared properly.

b. Now make two more such trajectories, and look at all three side by side. (To create a new plot window,
give the figure command before plot.)

6.2 PLOTTING THE DISPLACEMENT DISTRIBUTION

Your three plots all look different! And yet, there is some family resemblance between them. Let us begin to
understand in what sense they resemble each other, by considering the question “How far does the random
walker get after 500 steps?” More precisely, we want to know the distance from the starting point (0, 0) to
the ending point (x500, y500), for each of many random walks.
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Instead of three walks, we now want many, say, 50. You could manually examine all 50 plots, but it
would be hard to see the common features. Instead we’ll ask Matlab to generate them all, but only show us
a summary.

One straightforward way to make 50 walks is to take the code you already wrote and “wrap” it in a for
loop. Just before the loop’s end, you could then say something like

xfinal(j) = x(500); yfinal(j) = y(500);
D(j) = sqrt(x(500)ˆ2 + y(500)ˆ2);

After the end, you’ll have three lists: xfinal, yfinal, and D. (There’s a clever, alternate construction that
will run faster than this method. Feel free to discover it if you wish.)

Now we can summarize the results, in three ways. First, you have a lot of end points (xfinal, yfinal
pairs), so you can make a “scatterplot” using plot or scatter. Then, you can look at the final displacements
D, or at their squares.

Assignment:

a. Now that you have a code that works, increase from 50 to 600 random walks.1 Make a scatterplot of the
end points.

b. Use hist to make a histogram of all the D values.

c. Also make a histogram of the values of the quantity D2.

d. Your answer to (c) may inspire a guess as to the mathematical form of the histogram. How could you
change your graph to make it easier to test that guess? Try it.

e. Also use mean to find the average value of D2 (the “mean-square displacement” of the 500-step walk).

f. Repeat to find the mean-square displacement of a 1000-step walk.
Physical Models Chapter 5 discusses a theoretical expectation that agrees with what you found; it turns out
that random walks are partially predictable after all. Out of all the randomness comes systematic behavior,
partly visible in your answers to (b–d).

Experimental data also agree with these predictions. The random walk, although stripped of much of
the complexity of real Brownian motion, nevertheless captures nontrivial aspects of reality that are not
self-evident from its original formulation. See if your output qualitatively resembles the experimental data
shown in Physical Models Chapter 3 (below) for the diffusion of a micrometer-size particle.

displacement∆x

∆y

1See “Good practice,” Section 2.4.4.
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6.3 RARE EVENTS

6.3.1 The Poisson distribution

Imagine an extremely unfair coin that lands heads with probability ξ equal to 0.08 (not 0.5). Each trial
consists of flipping the coin 100 times. You might expect that we’d then get “about 8” heads in each trial,
although we could in principle get as few as 0, or as many as 100.

Physical Models Chapter 4 defines a discrete probability distribution called “Poisson.” In the situation
just described, the relevant formula is

P(`) = e−88`/(`!), (6.2)

where ` is an integer ≥ 0.

Assignment:

a. Before you get on with the flipping, plot this function for some interesting range of ` values.

[Hints:
You need not take values of ` all the way out to infinity! You’ll see that P(`) gets negligibly small after a
while.
In Matlab, the elements of a vector are always numbered 1, 2, 3,. . . ; but our ` is an integer starting from
zero. So the first entry of your variable, which you may call Pvalues(1), should be the number P(0), and so
on; thus, the value of P(`) is contained in the list element Pvalues(ell + 1). To make your graph, you’ll
plot a list like [0:20] versus Pvalues.]

b. Perform N “coin flip trials,” each consisting of N sets of 100 flips, which land heads only 8% of the
time. [Good practice: Eventually you may want to take N to be a huge number. But while developing
your code, make it not so huge, say, N = 500, so that your code will run fast.]

c. Get Matlab to count the number of heads for each set. Then use hist, which will create a histogram
populated according to the frequencies of outcomes of those N trials. If you don’t like what you see,
consult help hist. (For example, hist may make a decision about how to bin the data that isn’t what
you want.)

d. Make a graph of the Poisson distribution (Equation 6.2 above) times N . What’s the most probable
outcome? Superimpose that plot on the histogram in (c). Repeat for N = 20 000, and comment. Click

the
�� ��Run button over and over to see that your distribution is a bit different every time, and yet each

plot has a general similarity to the others.

6.3.2 Waiting times

If we flip our imagined coin once every second, then our string of heads and tails becomes a time series,
similar to something Physical Models calls a “Poisson process” (or “shot noise”). Flipping heads is a rather
rare event, because ξ = 0.08. We expect long strings of tails, punctuated by occasional heads. Now a question
arises: After we get a heads, how many many flips go by before we get the next heads? More precisely, what’s
the distribution of the “waiting times” from one heads to the next?

Here’s one way to get Matlab to answer that question. We can make a long list of ones and zeros,
then search it for each occurrence of a 1 by using Matlab’s find function. This function’s argument
is a list of numbers; it returns the positions within that list of the nonzero entries. Experiment with
find([1, 0, 0, -1]) to understand this. You can subtract successive entries in that list to find the
numbers of zeros that intervene between ones, then make a graph showing the frequencies of those outcomes.
(Each waiting time is the length of a run of zeros, plus one.)
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You should try to guess what this distribution will look like, before you get the answer. Nick reasoned,
“Because heads is a rare outcome, once we get a tails we’re likely to get a lot of them in a row, so short
strings of zeros will be less probable than medium-long strings. But eventually we’re bound to get a heads,
so very long strings of 0’s are also less common than medium-long strings.” Think about it—is that the right
reasoning? Now get your answer. If your output doesn’t look like what you expected, think some more.

Assignment:

Construct a random string of length 1000, and plot the frequencies of runs of zeros with lengths 0, 1, 2, . . . ,
as outlined above. Also make a semilog plot of these frequencies. Is this a familiar-looking function? Repeat
with a random string of length 20 000.
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Still More Techniques

It’s nice to know that the computer understands the problem. But I would like to
understand it, too.

— Eugene Wigner

This short section introduces some tools for image manipulation and animation in Matlab, and discusses
symbolic (analytic) calculation in other systems.

7.1 IMAGES ARE ARRAYS OF NUMBERS

7.1.1 Basics

Matlab can import and display image files. This makes sense because Matlab works with arrays of numbers,
and in the case of a black and white digital image, each pixel is simply a number corresponding to the
intensity (mean photon rate) sensed at a point in the xy plane of the detector. A digital camera takes the
light intensity in each pixel and reports it as an integer between 0 and 2m − 1, where m is the “bit depth.” A
common choice is m = 8 (256 distinct light levels). A color image consists of three such arrays, reporting the
intensities of red, blue, and green light.

Because an image is just a two-dimensional array of numbers, we can take advantage of all of Matlab’s
functions to do calculations on the data that the image represents. But to do that, we first need to give Matlab
access to some image data. Go to the Data Sets section of http://www.macmillanhighered.com/physicalmodels1e.1

Find the entry called catphoto (or 16catphoto) and get the file bwCat.tif. Use

A = imread('bwCat.tif');

to load the image (don’t forget the semicolon!). Check that this is indeed represented as an array of numbers
by looking at some particular elements of A (also check it in the Workspace Window).

The array A arrives in a numeric format that Matlab finds inconvenient. So before proceeding, convert
it to a more usual form by saying

A=single(A);

To view a black and white image using Matlab, we first need to specify the “color map.” Do this by
typing

co = (0:255)/256; colormap([co; co; co]');

(Notice the punctuation!) The values in the list co tell Matlab how brightly to illuminate each pixel for
each allowed value in the image. We convert it to a 256× 3 array and call the function colormap, which sets
a property of the currently open window (its color map).2 Here we have made a linear choice; other choices
would distort the image display in interesting ways, without changing the values in A.

Having set the color map, use

1Resources mentioned here are also maintained at a mirror site: http://www.physics.upenn.edu/biophys/PMLS/Student .
2The list co appears three times in colormap because, for a grayscale image, we always want equal amounts of red, green,

and blue. If you don’t set the color map, you’ll get Matlab’s alarming default choice.
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image(A);

to display the image. You can then export the image in a photographic format by using Save>Save As...

from the figure window’s menu. Or you can manipulate the image first by applying mathematical operations
to A.

Your
Turn
7A

Try this:
A = (A < mean(A(:)))*256;
Display the image again, and explain what you see.

7.1.2 Manipulate and embellish

After your calculations are done, your image array may not be a list of numbers that fits perfectly into the
range from 1 to size(colormap,1). The alternative display function imagesc(A) attempts to scale the
entries in A to utilize your color map’s full range.

The image and imagesc commands may distort your image’s length/width ratio, just like other plotting
commands. Follow them by

axis('image')

(similar to axis('equal')) to correct this. If you don’t want axes and their labels, you can then also issue
axis('off').

By default, image displays your image as pixels, with larger column numbers to the right of smaller ones,
and with larger row numbers lower down than smaller ones. This convention is natural if you think of your
image as an array. But it conflicts with another expectation, that y values on a graph should increase as we
move in the upward direction! If you wanted the latter convention, your image will appear flipped relative
to what you expected. It can be unflipped by issuing the command set(gca, 'YDir', 'normal') after
image.

In Chapter 8, you’ll learn about some more common image enhancement techniques. However, you should
be aware of the limits imposed by scientific ethics on modifying images to be used as evidence; see Cromey,
2010.

7.2 ANIMATION

A picture may be worth a thousand words, but a motion picture can be even better than a bunch of still
ones. There are several ways to create animated graphics in Matlab. Here we show one simple method
that outputs a GIF animation. The advantage of this method is that anyone can view the resulting graphic
without having any special software. For example, any Web browser can open a local GIF file and view it;
you can embed such a file into a Web page; and so on. The GIF format permits only a limited set of colors
(no more than 256 distinct colors), but that’s plenty for any animated graph.

The following example code

• Sets up axes with appropriate properties (line 9).

• Creates a graph for each desired video frame (line 14).

• Converts the graph to a frame, and then further converts to the indexed-color scheme used by the GIF
format (lines 17–22).

• Writes the completed collection of frames to a file.

When we view the resulting file, the frames are presented in quick succession, creating a motion picture. In
this example, the animation shows a traveling sine wave (see line 12).�� ��MLG-gifanimate.m
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%% William Parkin 4/2013 gifanimate.m MATLAB R2014a: make a gif animation
clear all; close all

3 %% initialize
% create our ranges
xo = 5;

6 x = -xo:.1:xo;
ct = (-xo):(.1):(xo);
%% create video frames

9 figure
set(gca, 'nextplot', 'replacechildren', 'Color', 'white','FontSize',14)
title(['time ranges from ', num2str(-xo), ' to ', num2str(xo)])

12 xlabel('x'); ylabel('sin(x-ct)')
for j = 1:size(ct,2),

result = sin(x - ct(j));
15 plot(x, result, 'r')

ylim([-1.1, 1.1]) % fix this to avoid frame-to-frame jitter
% get frame to fill gif

18 f = getframe(gcf);
if j==1

[im(:, : ,1 ,j), map] = rgb2ind(f.cdata, 256, 'nodither');
21 else % every frame uses the same color map

im(:, :, 1, j) = rgb2ind(f.cdata,map, 'nodither');
end

24 end
%% save the gif animation
imwrite(im, map, 'DancingPeaks.gif', 'DelayTime', 0, 'LoopCount', inf)

7.3 ANALYTIC CALCULATIONS

Matlab can also do analytic (symbolic) math. But for our purposes, it can be easier to turn to a free
resource like http://wolframalpha.com. Go there, and try entering the examples below. Naturally this
system doesn’t use precisely the same syntax as Matlab, but for simple calculations it’s not too hard to
adapt.

7.3.1 Integrals

The definite integral ∫ ∞
−∞

dx
1/π

x2 + 1

1/π

(a− x)2 + 1

represents the convolution of two Cauchy distributions, discussed in Physical Models Chapter 5. After doing
the integral, you get a number that depends on the value of a, that is, a function of a real variable a. It looks
daunting, but try entering it into Wolfram Alpha (or Mathematica3) as

Integrate[1/(Piˆ2*((a-x)ˆ2+1)*(xˆ2+1)),{x,-Infinity,Infinity}]

Notice the syntax used here: The Integrate function accepts two arguments, enclosed in square brackets.
The first is a symbolic representation of the integrand. The second is itself a list (created by the curly brackets)

3Wolfram Alpha and Mathematica are registered trademarks of Wolfram Research, Inc.
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with three entries: The first is the variable to be integrated (we don’t want the computer to integrate over a).
The next two specify the range of integration. Note that in this system, predefined functions (Integrate)
and constants (Pi and Infinity) are capitalized.

Remarkably, the result of the integration is that this convolution is itself a Cauchy distribution, though
broader than the two that we started with.

Here is another example relevant to Physical Models Chapter 6. The integral
∫ b
a

dxxn(1 − x)M−n

arises when we study credible intervals for the parameter of a Bernoulli trial, given that M trials yielded n
“successes.” We can make progress evaluating it by entering

Integrate[xˆn * (1-x)ˆ(M-n),{x}]

This time, the second argument of Integrate is a list with only one entry, the integration variable; because
we don’t specify any specific integration range, Wolfram Alpha responds with the indefinite integral, a
function of x, M , and n. It may not seem helpful to be told that this function is the “incomplete beta
function,” but now we can see if Matlab knows about that function (even if we don’t!). It does, so we can
now write code that evaluates the integral by evaluating that function. The answers that we obtain this way
will generally be more accurate, and faster to run, than if we had directly attempted a brute-force numerical
integration.

If all you need is the normalization integral, that’s the case where we integrate from 0 to 1. Wolfram
Alpha can evaluate this via

beta(1, 1 + n, 1 + k - n) - beta(0, 1 + n, 1 + k - n)

We learn that, for this case, the integral equals Γ(n+1)Γ(k−n+1)/Γ(k+2), or equivalently n!(k−n)!/(k+1)!.

7.3.2 Sums

You may have forgotten the result of the infinite discrete sum
∑M
j=0 j

3, but typing

Sum[iˆ3, {i,0,M}]

into Wolfram Alpha tells you it’s M2(M + 1)2/4, a result you may need for computing the third moment of
a Uniform probability distribution.

7.3.3 Ordinary differential equations

The differential equation dv/dt = −Av+Be−ct arises in our study of virus dynamics, where A, B, and c are
constants. We can ask Wolfram Alpha to solve it:

solve dv/dt = -A*v + B*exp(-c*t), v(0) = vzero

To get a definite solution, we need to specify an initial value; above we required that v(t) should equal some
constant vzero at time zero.

Another first-order ordinary differential equation, arising in the chemostat problem (Physical Models
Chapter 9), can be solved similarly:

solve dx/dt = t-x, x(0) = 0
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C H A P T E R 8

Third Computer Lab: Import, Display, and Manipulate

Image Data

This lab will show you how to import images into Matlab and display them. We will also talk about an
important operation in image analysis: convolution. If you’ve ever played with photographic software such
as GIMP1 (or a commercial alternative), you’ve probably already used convolutions to smooth or sharpen
images, but perhaps you didn’t know it. In fact, your eyes and brain are constantly doing convolutions
whenever you look at anything!

Moreover, many kinds of lab data, although not photographic images, are nevertheless arrays of numbers
with spatial meaning, and so can conveniently be represented to our brains as images. (Examples include
atomic force microscopy data, computed tomography data, and so on.) Basic image manipulations, like the
one in this lab, are useful in order to make those images more meaningful to humans.

Our goals are to

• Explore the effects of various kinds of local averaging on an image.

• See how to use such averaging to damp down noise.

• Use specialized filters to emphasize specific visual features in an image.

8.1 CONVOLUTION

Physical Models Chapter 4 defines convolution as an operation we sometimes perform on probability
distributions, but it has others uses as well. Matlab defines the two-dimensional, discrete convolution C of
an image array I with a filter array F as a new array of numbers:

C(n1, n2) =
∑
k1,k2

F (k1, k2)I(n1 − k1 + 1, n2 − k2 + 1), (8.1)

where the ranges of the sums are over all values of k that refer to legal entries of both F and I. That is, all
the indices must be larger than zero and not larger than the size of their respective arrays.2

Your
Turn
8A

a. Consider the trivial transformation for which F is a 1× 1 array with
a single entry equal to 1. Make sure you understand why in this case C
is exactly the same as I.
b. Suppose that the size of F is m1×m2, and that of I is n1×n2. Make
sure you understand why the size of C is then (m1+n1−1)×(m2+n2−1).

Thus, when we convolve an image with a filter, we get another image. The expression in Equation 8.1 is
a set of instructions for constructing this new image: To create each pixel in C, we take the pixels from a
subset of the original image, multiply them by their respective weights assigned by the filter, and add up the

1GIMP is freeware: http://www.gimp.org .
2You may wonder about the +1’s in this formula. Matlab introduces this shift because its array indices always start from one,

not zero.
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8.2 Denoising an Image 61

result. It’s a simple recipe that has powerful applications and can have very different results depending on
the type of filter you design.

8.1.1 Averaging

The simplest filter we can choose assigns the same weight to each pixel in a fixed range. Make a 3× 3 array
F in which each element equals 1/9. (Why does it make sense to choose the value 1/9?) We’ll call this array
the “small square filter.”

Go to the Data Sets section of http://www.macmillanhighered.com/physicalmodels1e.3 Find the
entry called catphoto (or 16catphoto), get the file bwCat.mat, and load it into Matlab.

Assignment:

a. Use the conv2 command to convolve your new filter with the image you downloaded, and display the
result. How does the image change?

[Hint: You can retain the previous picture for comparison by first saying

figure(2); colormap([co; co; co]');

Note that you need to declare the color map separately for each figure window that you create.]

b. Repeat this procedure with a 15× 15 array with an appropriate, constant value in each entry (the “large
square filter”). How does the image change, and how does it compare with the result of the smaller
filter?

c. Use the definition of convolution to show that the above procedure results in an image in which each
pixel is the average of some of the neighboring pixels in the original.

8.1.2 Smoothing with a Gaussian

Go to the Data Sets section of http://www.macmillanhighered.com/physicalmodels1e. Find the entry
called catphoto, get the file gaussFilt.mat, and load it into Matlab. You should now have a variable
called gauss, which we’ll call the “Gaussian filter.” Review Section 5.4.1 on the function surf.

Assignment:

a. Use surf to graph the array gauss. Find the result of the convolution of gauss with the original image
and display it as an image.

b. Imagine the kind of surface plot you would have gotten from the filter you used in question 8.1.1b. Then
explain in words how convolution with gauss differs from that filter, and why one might prefer gauss.

8.2 DENOISING AN IMAGE

8.2.1 Random noise

Measuring instruments, including your eyes, inevitably introduce some randomness, or “noise.” You can
simulate this by making a noisy version of the original image. To do this, multiply each pixel in the original
image by a random number. If you take the default result of rand, which is a random variable with mean
0.5, the image will get darker.

3Resources mentioned here are also maintained at a mirror site: http://www.physics.upenn.edu/biophys/PMLS/Student .
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8.3 Emphasizing Features 62

8.2.2 Suppressing noise by using convolution

Assignment:

a. To correct for the darkening, multiply the noisy image by something a bit bigger, like 1.2*rand().
[Hint: Review the useful Matlab syntax .* for this (see Section 2.3.2).] Display the image again.

b. Apply each of the three filters from Sections 8.1.1–8.1.2 (small square, big square, Gaussian) to the noisy
image from part (a). If they improve the pictures, explain why. Which one works the best? Why?

8.3 EMPHASIZING FEATURES

You have probably news people say “Geeks at NASA’s Jet Propulsion Laboratory have enhanced these
images . . . .” Let’s go.

In between “features” (real things of interest to us) and “noise” (random things), experimental images
may contain things that are real, but not of interest to us. We may wish to deemphasize such things. Or we
may wish to quantify some visual feature instead of leaving it subjective. A. Zemel and coauthors encountered
such a situation when making fluorescence images of mesenchymal stem cells.4 When subjected to mechanical
stress (stretching), the cells polarize: The internal network of “stress fibers” begins to align in the direction
of the stretch. Zemel and coauthors sought to quantify the extent to which the cell was polarized, at every
point in the cell.

Go to the Data Sets section of http://www.macmillanhighered.com/physicalmodels1e.5 Find the
entry stressFibers (or 17stressFibers), get the file stressFibers.mat, and load and view it as before.
This file has a feature that we have not yet met: Look at the maximum and minimum numerical values of
the numbers in the array A. They are not 0 and 256, respectively, so you’ll need to modify something in your
code.

The image shows the long, slender stress fibers. Let us apply a filter that emphasizes long, slender objects
oriented vertically.

Assignment:

a. Use the following code, and then explain why it creates the picture that results:�� ��MLG8-3a.m

[x, y] = meshgrid(-25:25);
gFilter = exp(-.5*(x.ˆ2/2 + y.ˆ2/45));

3 figure; surf(x, y, gFilter)

b. The array gFilter that you created is nearly right, but it changes the overall brightness of an image.
Use the following “black box” code to modify it slightly:�� ��MLG8-3b.m

laplaceFilter = [0, -1, 0; -1, 4, -1; 0, -1, 0];
K = conv2(laplaceFilter, gFilter);

3 combinedFilter = K(2:(end-1), 2:(end-1));

c. Now use conv2 to apply the filter combinedFilter to A, display your results, and comment.

d. In order to emphasize horizontal objects, repeat the above steps with a different choice for gFilter.
Optional: Make a third choice, like the first two but emphasizing objects at 45◦ to vertical.

4A fluorescent label for non-muscle myosin IIa was used to tag the stress fibers. See Zemel et al., 2010.
5Resources mentioned here are also maintained at a mirror site: http://www.physics.upenn.edu/biophys/PMLS/Student .
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A P P E N D I X A

Answers to “Your Turn” Questions

Your Turn 2A:
Matlab starts filling in the (1,1) cell of the array. Each comma tabs over to the next column in the same
row. The semicolon tabs down to the next row, first column. The result is an array with three columns and
two rows (a “2× 3” array).

Your Turn 2B:
linspace ends exactly at 10, and uses whatever spacing it needs to accomplish that.
The colon construction uses spacing exactly 1.5, and ends wherever it needs to in order not to exceed 10.

Your Turn 2C:
The first line sets up two arrays, each with one row and 20 columns, and then stacks them vertically, to
create a 2× 20 array. Finally, the apostrophe operator transposes this array to be 20× 2.
The second line slices out the second column, and in it also removes the last entry.

Your Turn 2D:
We need to use concatenation to insert a blank space between words.

Your Turn 2E:
a.
y = exp(-(1:10).ˆ2)
b.
jlist=0:10;

exp(-mu)*(mu.ˆjlist)./factorial(jlist)

Your Turn 3A:

num_points = 50;
x_list = linspace(0,4,num_points);

3 y_list = x_list.ˆ2;
plot(x_list, y_list,'r','LineWidth',2)
set(gca,'FontSize',15)

6 title('My Little Plot')
xlabel('x')
ylabel('eˆx')

Note that we set the font size for the current axes (gca); this applies to the axis numbers, and to the
subsequent plot title and axis labels. You can instead do this separately for individual commands, if you
don’t want them all the same size.

Your Turn 3B:
legend('sin(2\pi x)','sin(4\pi x)','sin(6\pi x)')

Your Turn 5A: a. stepx = stepx*2 - 1

b. x = cumsum(stepx)
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c.
walklength = 500;

stepx = rand(walklength, 1); stepy = rand(walklength, 1);

stepx = 2*stepx - 1; stepy = 2*stepy - 1;

plot(cumsum(stepx), cumsum(stepy))
axis('equal')

Your Turn 5B:
hist set up ten equally spaced bins. The first bin’s lowest point is at 1, the smallest entry in the list. The
last bin’s highest point is at 10, the largest entry in the list. Thus, each bin’s width is 9/10. The first bin’s
center is at its lower limit plus one half the bin width, or 1.45, so it catches all entries between 1 and 1.9.
There is only one list entry in that range, so the first entry of mycounts gets the value 1, and so on.

Your Turn 5C:
[X, Y] = meshgrid(-1:.1:1, -1:.1:1);

surf(X, Y, X.ˆ2+Y.ˆ2)

Your Turn 5E:
a. integral expects a function that can operate item-by-item on a list of values.
c.
ind = 0;

for xmax = 0:.1:5; ind = ind + 1; %try various upper limits

result(ind) = integral(@(x)exp(-x.ˆ2/2), 0, xmax); end
plot(0:.1:5, result)

Your Turn 5F:
At the point x, y, we have placed the vector with components (y,−x). This arrow is always perpendicular to
the vector from the origin to its base point, just like the velocity vector field of a rigid, spinning disk.

Your Turn 5G:
a. This example gives trajectories that all spiral into the origin, because we added a small component to V
that points radially inward.
b. This example gives a fixed point at the origin of “saddle” type. One of the initial conditions runs smack
into the fixed point at the origin, but the others veer away and run off to infinity.

Your Turn 7A:
See Section 2.1.3 for the syntax A(:). It’s a negative image with no shades of gray, just black and white.
That’s because everything darker than the mean lightness became fully white, and everything lighter than
the mean became fully black.
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A P P E N D I X B

More Errors and Error Messages

Now would be a good time to start making errors. Whenever you learn a new feature,
you should try to make as many errors as possible, as soon as possible. When you

make deliberate errors, you get to see what the error messages look like. Later, when
you make accidental errors, you will know what the messages mean.

— A. Downey (2008)

Everyone makes mistakes. When Matlab detects something’s wrong, it attempts to tell you. But of course
it doesn’t really know what you are trying to accomplish. So if you enter something syntactically and
mathematically correct, but not what you need to solve your problem, Matlab can’t point that out to you.
Even when it does detect something wrong, it may not be able to tell you what you need to fix.

This appendix makes no attempt to catalog Matlab’s error messages. Instead, we show a few examples
and decode them. After you start to understand how Matlab interprets your code, you’ll get insights into
what other error messages mean, too. We also show a couple of examples of “silent” errors, to help you be
alert for similar things. Several of these examples were drawn from Downey (2008).

B.1 ERRORS RELEVANT TO CHAPTER 1

• Suppose that you ignored the warning in Section 1.2.1, and cut and pasted the code 100ˆ2 from this
document into the Editor Window. (Try it.) When you click Run, Matlab replies

Error: File: untitled.m Line: 1 Column: 4
Unexpected MATLAB operator.

Worse, if you paste the same thing into the Command Window, you may not even get an error message—just
the wrong answer. Your only clue that something is amiss is that in each case, the ˆ character appears in
Matlab in red. This indicates that it’s an unknown character that just looks like the Shift-6 key that you
wanted.

• Suppose that, as often happens, you use a single equals sign when you wanted to test for a relation, for
example, typing if q = 3, 'foo'; else, 'bar'; end . Matlab replies

if q = 3, ’foo’; else, ’bar’; end
|

Error: The expression to the left of the equals sign is not a valid target for an assignment.

Here the vertical bar pinpoints where Matlab’s scanner had arrived when it detected something wrong. A
single equals sign must have a single expression to its left, and “if q” is not a single expression: It is not a
valid “target” for the assignment that the equals sign is requesting.

• The standard mathematical notation 0 < x < 10 means “x is greater than 0 and less than 10.” If you
enter

x = 5; 0 < x < 10
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B.2 Errors Relevant to Chapter 3 66

the answer will be 1 (true), and you may be satisfied. But try setting x equal to −1; you again get 1. Neither
case generates any warning message.

What has happened is that Matlab treats a relation symbol as a binary operator, and proceeds from
left to right. When x = −1, it first evaluates 0 < x, which equals 0 (false). Then it evaluates 0 < 10, which
is true! The right way to code this condition is to use an explicit and operator:

x=5; (0 < x) & (x < 10)

• Matlab regards hold on as an abbreviation for hold('on'). That may save you a bit of typing, but
rules must be followed consistently. So if you follow the standard mathematical notation sin θ and type

sin theta

then Matlab regards this as an abbreviation for sin('theta'), and responds with

Undefined function ’sin’ for input arguments of type ’char’.

The message is telling you that you cannot evaluate the sin function with a string (character, or char)
argument.

B.2 ERRORS RELEVANT TO CHAPTER 3

• A common mistake with integral, fzero, ode45, and their kin is to supply the name of a function
(such as sin) where a handle is required (@sin). Try making this error intentionally with the code listed in
Section 5.7.1 to see the rather confusing message that you get:

Error using cos
Not enough input arguments.

Error in untitled (line 4)
result(ind) = integral(cos, 0, xmax);

The same mistake (omitting @) can generate various other, equally confusing messages.
It’s best to read such messages starting from the bottom. In this case, the last line is the line of your code

that initiated the error; it is line 4. Moving upward in the message, we see that the problem has something
to do with cos. That’s your clue to look at how you used it, and, if you’re lucky, you’ll figure out what’s
wrong. If you don’t, the next step might be help integral to recall the syntax of this function.

• Another common problem is to send integral a function that can only process single numbers, for
example:

integral(@(x) xˆ2, 0, 1)

integral tries to evaluate your function on a list, and another confusing error message results.

• When creating your own functions, it’s easy to forget the crucial last step of assigning a value to the
function’s output variable before terminating. Try this: Create a file called badFn.m, containing

function outValue = badFn(x)
y = xˆ2

Remember to save the file before invoking the function. This code computes the square of its argument, and
even prints it out. So if you type badFn(2), you’ll see what you expect. But y = badFn(2) gives the error

Error in badFn (line 2)
y = xˆ2
Output argument "outValue" (and maybe others) not assigned during call to
"/.../badFn.m>badFn".
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The explanation is that, although badFn did assign the answer to a variable called y, that variable is
internal to the function and disappears when the function terminates. In fact, badFn returns no value. The
way to get an answer out of your function, and return it to the calling code, is to assign its value to the
output variable that you named in the function command (here outValue).
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& (and), 29
', see apostrophe operator and quote
@, see function handle
\, see backslash operator
:, see colon construction
=, 9
==, 9
>=, 29
.ˆ, see item-by-item evaluation
<=, 29
˜= (not equal), 28
| (or), 29
%, see commenting
%%, see commenting
./, see item-by-item evaluation
.*, see item-by-item evaluation
algorithm, 9
all, 11, 12, 24, 26, 32, 35, 48, 49, 51, 57
and (Boolean operator), 29, 66
angles, 14
animation, 57–58
apostrophe operator (transpose), 19
argument of a function, 14, 15, 19, 41, 42
arithmetic operators, 13
array, 17
axis, 33, 51, 52, 57, 64

backslash operator, 46
bar, 36, 44
Bernoulli trial, 59
beta function, 59
bins, 43
bit depth, 56
bitmap graphics, see raster graphics
branching, 28
break, 28
bug, 8

Cauchy distribution, 58, 59
cd, 31
chemostat, 59
clabel, 44
clear, 11, 12, 24, 26, 48, 49, 51, 57
close, 32, 35, 48, 49, 51, 57
coin flips, 42
colon, 18
colon construction, 18, 19
for loop, 22

color map, 56

colormap, 44, 56, 61
comma-separated value file format, see

.csv files
Command Window, 11–15, 22, 24, 25, 28,

31, 32, 41, 42, 65
prompt, 11

commenting, 26–27
complex number, 13
contour, 44
conv2, 61, 62
convolution, 58–61
cos, 14, 22, 34, 36, 40, 41, 47, 48, 66
credible interval, 59
crunching sound, 8
.csv files, 30, 31
cumsum, 43, 63, 64
current axes, 32, 34
current figure, 32
Current Folder Window, 31, 32
curve fitting, 38

.dat files, 30
Datathief, 31
debugging, 24–26
disp, 15, 22, 25, 26, 28, 33
doc, 12, 41, 69
dot product, 23

edit, 24
Editor Window, 11, 24, 28, 31, 41, 47, 65
elfun, 14
else, 28, 33, 58
elseif, 28
end, 19, 21, 22, 25–29, 33, 35, 47, 48, 50,

53, 58, 64, 65
.eps image files, 36
equals sign

command, 9
double, 9

equations, solving
linear, 46, 46
nonlinear, 45–46
ordinary differential (ODE), 48–51

analytic, 59
polynomial, 46

analytic, 46
errorbar, 34
exp, 10, 22, 35, 37, 49, 50, 62–64
eye, 17

factorial, 63
figure

window, 15, 32, 34–36, 52, 57
figure, 35, 52, 58, 61, 62
filter, 60

Gaussian, 61
square, 61

find, 20, 54
flattening an array, 20
floor, 13
for, 21, 22, 28, 29, 35, 46–48, 50, 53, 58,

64
function, 41, 42, 45, 49, 50, 66, 67
functions, 42

anonymous, 45, 50
handle, see handle
user defined, 40–42

fussy hygiene, 15
fzero, 45, 46, 66

gca, 34, 63
gcf, 58
geeks, 62
getframe, 58
.gif (GIF) image files, 57
GIMP, 60
graphs, 44

2D, 32
3D, 34
axis labels, 34
contour, 44
error bars, 34
legend, 35
line styles, 33
log axes, 33
surface, 44
symbol choices, 33
title, 34
vector field, 50–51

handle, 45, 45, 47, 50, see function
hardcoding, 27
help, 13, 14, 18, 20, 41–43, 46, 49, 54, 66
Hermitian conjugate, 19
hist, 14, 43, 44, 53, 54, 64
histc, 44
histogram, 43
hold, 35, 49, 50, 66
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i, 13, 14, 48
i (imaginary number), 14
if, 25, 28, 29, 33, 58, 65
image

color, 56
import, 56

image, 57
imagesc, 57
Import Window, 31
importing data, 30–31
imread, 56
imwrite, 58
indentation, 27
Inf, 48
initial values, 50
Inkscape, 36
input, 28
integral, 47, 48, 64, 66
integration, 47–48

analytic, 58–59
IPython

Console, 33
item-by-item evaluation, 22, 23, 42, 47

.jpg files, 36

legend, 35, 63
length, 15
linspace, 18, 32, 35, 36, 63
list, 17
load, 31, 32
log, 12–14, 25
log10, 14
loglog, 33
logspace, 34
loops, 21–22

nested, 29

M-file, see scripts
.mat files, 30
Mathematica, 58
matrix, 17, 22, 23

product, 23, 41
max, 24
mean, 20, 24, 53, 57
meshgrid, 44, 51, 62, 64
min, 24
mldivide, 46

name collision, 15
Nick, 55
num2str, 21, 58

numerical error, 45

ODE, see equations
ode45, 49, 50, 66
ones, 17
or (Boolean operator), 29

parameter binding, 50
path, 31, 41
pi, 14, 34–36, 41, 47, 48
plot, see graphs

window, see figure window
plot, 11, 15, 25, 32–37, 47–50, 52, 53,

58, 63, 64
plot3, 34, 36
Poisson distribution, 54
preallocation, 29
print, 36

quadgk, 48
quiver, 51
quote

left (grave accent), 20
right, single (apostrophe), 20

rand, 15, 17, 36, 42, 43, 61, 62, 64
random walk, 43, 52, 53
raster graphics, 36
rgb2ind, 58
roots, 46
roots of equation, see solving equations
round, 13
Rubber Duck Debugging, 26

save, 31, 32
saving data and code, 31–32
scatter, 33, 53
scope of variables, 42

anonymous functions, 45
scripts, 24–27
semicolon

in array specification, 17
to suppress output, 12

semilogx, 33
semilogy, 33
set, 34, 57, 58, 63
side effects, 15
sin, 14, 22, 23, 34–36, 41, 45, 58, 66
single, 56
size, 17, 19, 23, 31–33, 35, 50, 57, 58
slicing an array, 18–19
sqrt, 14, 15, 21–23, 26, 28, 41, 53

std, 24
streamline, 51
streamlines, 51
stress fibers, 62
string

join (concatenate), 20
literal, 20
variable, 20

subfunctions, 42
subplot, 35, 36
sum, 24, 25, 42
sums, evaluated analytically, 59
surf, 44, 61, 62, 64

.tif (TIFF) image files, 36, 56
title, 21, 34, 58, 63
transpose, of matrix, 19
.txt files, 30

variable, 9
variable names, 15
vector

column, 17
graphics, 36
row, 17

vectorizing math, 22–24

waiting times, 54–55
while, 22, 26, 28
window

Command, see Command Window
Current Folder, see Current Folder

Window
Editor, see Editor Window
Import, see Import Window
plot (figure), see figure window
Workspace, see Workspace Window

Wolfram Alpha, 58
Workspace Window, 11, 17, 20, 25, 31,

38, 45, 56

xfig, 36
xlabel, 34, 58, 63
xlim, 33, 52

ylabel, 34, 58, 63
ylim, 33, 58

zeros, 17, 24, 29, 35, 43, 52
zeros of equation, see solving equations
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