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Natural Gradient Multichannel Blind Deconvolution
and Speech Separation Using Causal FIR Filters
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Abstract—Natural gradient adaptation is an especially conve-
nient method for adapting the coefficients of a linear system in
inverse filtering tasks such as convolutive blind source separation
and multichannel blind deconvolution. When developing practical
implementations of such methods, however, it is not clear how best
to window the signals and truncate the filter impulse responses
within the filtered gradient updates. In this paper, we show how
inadequate use of truncation of the filter impulse responses and
signal windowing within a well-known natural gradient algorithm
for multichannel blind deconvolution and source separation can in-
troduce a bias into its steady-state solution. We then provide modi-
fications of this algorithm that effectively mitigate these effects for
estimating causal FIR solutions to single- and multichannel equal-
ization and source separation tasks. The new multichannel blind
deconvolution algorithm requires approximately 6.5 multiply/adds
per adaptive filter coefficient, making its computational complexity
about 63% greater than the originally-proposed version. Numer-
ical experiments verify the robust convergence performance of the
new method both in multichannel blind deconvolution tasks for
i.i.d. sources and in convolutive BSS tasks for real-world acoustic
sources, even for extremely-short separation filters.

Index Terms—Blind source separation, multichannel blind de-
convolution, natural gradient, speech enhancement.

I. INTRODUCTION

B LIND SOURCE separation (BSS) is a field that has re-
ceived much attention recently in several research fields.

Most formulations to the BSS task assume that a set of sensor
signals contain linear mixtures of several source signals of in-
terest. The goal is to process the sensor signals to extract ver-
sions of each of the source signals without crosstalk and without
precise knowledge of the source signals, the mixing conditions,
or any training information.

Initial approaches to BSS assumed that the source signal mix-
tures were instantaneous, in that there were no consistent rela-
tionships between the sensor measurements at different times
other than those due to the source signals themselves. Recently,
however, much research has been devoted to the convolutive
mixing case, in which a sequence of sources
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is mixed by a causal time-dispersive multichannel system
as

(1)

where are the sensor signals and
are the coefficients of the mixing system. Because the relation-
ship between the and signals is time-invariant,
it makes sense to construct a separation system in the form of
a linear multichannel filter. For practical implementations, this
separation system takes on the finite impulse response (FIR)
form

(2)

where are the coefficients of the sepa-
ration system at time . The separation system is made time-
varying with the assumption that the can be iteratively
adapted to achieve the separation task.

The goal of blind source separation using the models in (1)
and (2) depends on what is known, or can be assumed about
the source signals for and different .
Almost all separation methods assume that the source signals
are spatially-uncorrelated, such that for all

, any , and any . Certain algorithms require that and
are independent, a much stronger condition. All separation

methods make use of additional assumptions about the statistics
of the sources, such as the non-Gaussianity of their amplitude
statistics, the nonstationarity of their second-order statistics, or
the uniqueness of their power spectra [1]–[15]. In this paper, we
shall be concerned with algorithms that exploit the non-Gaus-
sianity of the source signals. In such cases, two solutions to the
separation task are possible

• Multichannel blind deconvolution: The goal is to itera-
tively calculate such that

(3)

where is a scaling factor and the one-to-one index as-
signments guarantee that each sequence ap-
pears in only one output.

• Convolutive blind source separation: The goal is to itera-
tively calculate such that

(4)
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where is a sequence of coefficients such that the fre-
quency response for any .

Multichannel blind deconvolution is a special case of convolu-
tive BSS in which the time-domain structure of the sources is
preserved in the system’s outputs.

Numerous algorithms for multichannel blind deconvolution
and convolutive BSS have been developed [1]–[15]. These
differ in the computational requirements for their implemen-
tation. One of the simplest classes of approaches is based
on the concept of the natural gradient, which is a modified
gradient search. In [4], the natural gradient BSS method for
instantaneous mixtures was extended to the multichannel blind
deconvolution task, resulting in the following algorithm for
updating the coefficients :

(5)

(6)

where is a nonlinear function that is related to the ampli-
tude statistics of the source signal being extracted at the
th output. This algorithm is particularly simple, requiring about

four multiply/adds per adaptive filter coefficient. The algorithm
also employs linear convolutions, thereby making it amenable
to fast convolution techniques.

For convolutive BSS, the assumption of source sequences
with time-independent structures is not a good one. Even so,
several researchers have indicated that the above algorithm and
similar ones to it do an adequate job of separating convolutive
signal mixtures [5]–[7]. The main artifact produced by the
algorithms appears to be a “whitening” or approximate spectral
flattening of the sources at the extracted outputs. Since this
operation is linear and time-invariant, it is a straightforward task
to impose a spectral weighting via post-filtering of the system’s
outputs assuming that a desired spectral characteristic has been
chosen. Improvements in signal-to-interference (SIR) ratios
typically range from 6 dB to 14 dB for real-world two-channel
mixtures. This algorithm also forms the basis of several exten-
sions that directly address the time-domain decorrelation of the
separated source signals [7], [13], [14].

The multichannel blind deconvolution and source separation
algorithm in (2), (5), and (6) has been derived assuming that
the separation system is adequate for the chosen task. It is well-
known, however, that FIR systems cannot perfectly equalize any
causal linear system. In situations where oversampling is not
used, only those linear systems that are minimum phase have
causal inverses, and only those systems that are purely autore-
gressive have causal FIR inverses [17]. Moreover, in the mul-
tichannel case, FIR systems cannot adequately compensate for
channel multipath in general.

Because the approaches in [5]–[14] are based on FIR approx-
imations to doubly infinite impulse response (IIR) filter separa-
tion procedures, the way these algorithms have been approxi-
mated using signal truncation and windowing could affect their
estimating abilities. At best, a procedure with poorly-chosen
signal truncation and windowing is likely to require overly-long

Fig. 1. Impulse responses for the acoustic channel in the multichannel
simulation experiments.

Fig. 2. Combined system impulse responses for the original natural gradient
multichannel blind deconvolution procedure for i.i.d. binary source signals,
where L = 250.

FIR separation filters to achieve adequate performance—even if
the acoustic mixing conditions do not require such long filters to
achieve adequate separation—leading to systems that are slow
to converge and difficult to tune properly for best performance.
A system with inadequate signal truncation may require addi-
tional mechanisms to achieve adequate separation [16].

We have identified a performance limitation of the algorithm
in (2), (5), and (6), as demonstrated in Figs. 1–3. Complete de-
tails of this example are provided in Section III-C. Fig. 1 shows
the impulse responses for a two-loudspeaker, two-mi-
crophone laboratory measurement setup at a sampling rate of 8
kHz. Fig. 2 shows the impulse responses of the combined
system obtained after applying the multichannel blind decon-
volution procedure described above to i.i.d. binary- -dis-
tributed sources that are mixed by the acoustic channel, where
each subfilter within the separation system has 251 coefficients.
Notice that the edges of the impulse responses of the various
subfilters within the combined system exhibits “spikes” at either
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Fig. 3. Combined system impulse responses for the original natural gradient
multichannel blind deconvolution procedure for i.i.d. binary source signals,
where L = 407.

end of their temporal windows. These spikes create a pre- and
post-echo that harm the overall separation performance of the
scheme. Fig. 3 shows the combined system impulse responses
for a separation system with 408-tap subfilters, in which the
same spikes are evident at the ends of their temporal windows.
Although illustrated with artificial signals, these artifacts appear
with most signal sets after an extended number of algorithm it-
erations, and they cause a significant decrease in overall sepa-
ration performance. Several researchers have developed exten-
sions of these algorithms in an attempt to mitigate these effects,
which generally increase the complexity of the approach [7],
[12], [14]. To our knowledge, no researcher has identified the
cause of this behavior in the algorithm, and thus, any approach
designed to mitigate it is difficult to justify. Addressing this is-
sues could lead to improved steady-state separation and decon-
volution performance for this algorithm and others on which it
is based.

In this paper, we study the effect that signal windowing and
filter truncation play in the design of natural gradient methods
for blind deconvolution and source separation tasks. We show
that the windowing approximations used in the derivation of (5)
and (6) have the potential of introducing a bias into the sepa-
rating solution, lowering the overall performance of the system
in steady-state. We then introduce a new implementation of the
natural gradient method for multichannel blind deconvolution
that does not suffer from these performance limitations. The
proposed multichannel blind deconvolution and source separa-
tion algorithm requires about 63% more multiply/adds than the
original implementation on a per-sample basis for equivalent
filter lengths. Because the steady-state performance of the pro-
posed algorithm is more well-behaved, however, it is possible to
choose smaller filter lengths than the original method to tradeoff
performance versus complexity, so long as the mixing condi-
tions are not too dispersive. Simulations on real-world acous-
tical data show that the proposed algorithm performs multi-
channel blind deconvolution on i.i.d. sources and convolutive
BSS on speech signal mixtures.

II. CAUSAL NATURAL GRADIENT ALGORITHMS FOR

SINGLE-CHANNEL SYSTEMS

A. Problem

In this section, we identify the problems associated with in-
adequate signal windowing and filter truncation that are present
in the procedure in (2), (5), and (6). In this case, the issues sur-
rounding the design of FIR approximations to the doubly-infi-
nite IIR adaptive system on which this algorithm is based do
not depend on the number of signal channels. Hence, we shall
for simplicity limit our focus in this section to a single-input,
single-output blind deconvolution task, in which
in the signal model of (1). In later sections, we shall expand our
scope to include the more-practical multichannel case.

For a single-channel blind deconvolution task, the natural gra-
dient algorithm in the time domain as specified in [4] is given
by the equations

(7)

(8)

(9)

This algorithm is designed to iteratively minimize the cost func-
tion

(10)

where

(11)

is the -transform of the adaptive equalizer’s impulse response,
denotes statistical expectation, and is a model of the

p.d.f. of the source to be deconvolved. It can be shown that (10)
is, up to a constant independent of the equalizer, proportional
to the mutual information of the output signal sequence
when is the p.d.f. of the source sequence [18]. Minimizing
this measure results in a sample sequence that is most indepen-
dent from sample to sample. When is a linearly-filtered
version of an i.i.d source sequence , minimizing (10) re-
sults in deconvolution of the filtered source sequence.

The natural gradient procedure used in (7)–(9) to approxi-
mately minimize (10) is a filtered-gradient one, in which an

-sample delay is introduced to make the updating relations
causal. It is useful to determine the form of the standard gradient
algorithm that minimizes (10) for comparison. The gradient of
the cost function is straightforward to calculate as-
suming that has no zeros on the unit circle; this gradient
is

(12)
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where and we have used the substitu-
tion to transform the contour integral on the right-hand
side of (10) into a Fourier integral before taking derivatives of
this term with respect to . Standard steepest descent min-
imization of (10) would adjust the sequence as

(13)

where is the algorithm step size. Using the stochastic gra-
dient approximation where expectations are replaced by instan-
taneous values, and defining the quantities

(14)

(15)

(16)

(17)

we obtain the standard stochastic gradient minimization proce-
dure as

(18)

(19)

Note that contains the coefficients of an estimate of the
inverse of the separation system in time-reversed order.

To better see the connection between the coefficient updates
in (9) and the standard gradient procedure in (19), we shall write
(9) in its delayless and noncausal form [4], such that

(20)

where

(21)

Define the coefficient autocorrelation function as

(22)

Then, it is straightforward to show that

(23)

Thus, the update in (20) can be written as

(24)

This update can be written in vector form by defining (25) and
(26), as shown at the bottom of the page. Then, (24) becomes

(27)

Comparing (27) with (10) and (19), we see that the update
in (27) depends on signal values that are not within the stan-
dard gradient-based procedure. Moreover, since the cost func-
tion depends only on the signal elements within , any signal
values outside of used in the co-
efficient updates are problematic. Introducing such terms could
change the gradient search direction for the procedure and ul-
timately bias the solution obtained by the procedure in steady-
state. These arguments are difficult to prove theoretically given
the complexity of the cost function in (10). Later, we shall il-
lustrate the potential problems of these terms through a simple
numerical example.

B. Proposed Solution

Because the problematic terms in the coefficient updates
are additive and easy to identify—they depend on input signal
values other than —it is relatively
straightforward to modify the algorithm in (27) to remove
these additive terms. Such a modification results in a natural
gradient procedure that is different from that in [4] with poten-
tially-different convergence properties. Define the coefficient
autocorrelation matrix as

...
. . .

...
(28)

Unlike in (26), the matrix is symmetric, and it is
guaranteed to be positive definite because is from a valid
FIR autocorrelation function. Define the vector

(29)

(25)

...
. . .

. . .
...

(26)
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Fig. 4. Inverse system identification task.

Then, the proposed algorithm update in vector form is

(30)

We can make several comments regarding the proposed algo-
rithm in (30).

1) If one applies the natural gradient modification originally
derived in [4] to the coefficient updates in (19), one ob-
tains the procedure given by

(31)

Comparing (30) with (31), we see that these two
updates differ in that when

is as defined in (16)–(17). Equivalently, since
is symmetric and Toeplitz, we can state that

,
where is the time-re-
versed coefficient vector. What then is the meaning
of ?

As described in [19], the coefficient vector
is the mean-square error solution to the inverse system
identification task shown in Fig. 4, where is a sta-
tionary sequence of uncorrelated random variables with
zero mean and finite variance, is the estimation error,
and is the time index. Therefore, the algorithm in (30) is
a natural gradient procedure in which a time-reversed ver-
sion of replaces in the first term within
the coefficient updates of (31).

2) The term that appears with the co-
efficient updates is consistent with the derivation of the
original natural gradient blind deconvolution algorithm
in [4]. The difference is in the way truncation is used
within the derivation. In [4], the doubly-infinite input se-
quence is filtered by
the system , after which it is truncated to
finite length to obtain
for the coefficient updates. In (30), the input sequence is
truncated to a finite -sample length, filtered by
the system , and finally truncated to fi-
nite length again to obtain in

for the coefficient updates. This extra truncation step
guarantees that the coefficient updates depend only on the
input signal samples that appear in the cost function of
(10).

3) The truncation issue that motivates the use of (30) in
place of (27) for inverse filtering tasks is different than
the windowing issues facing designers of frequency-do-
main single- and multichannel blind deconvolution and
source separation procedures [5], [9]. For these other

methods, signal windowing is employed to reduce or
eliminate errors caused by replacing linear convolutions
with FFT-based circular convolutions and/or to partially
mitigate the permutation ambiguities associated with
the frequency-bin-by-frequency-bin processing of the
signals when decoupled separation procedures for each
input signal frequency are used. See [20] for a discussion
of how signal windowing affects the performance of
one such frequency-domain convolutive blind source
separation method.

4) The proposed method is causal in its operation. Hence,
delay need not be introduced into the algorithm updates.
It is known that introducing delay into stochastic gradient
update terms generally reduces their performance, e.g., by
slowing their convergence speeds, limiting the range of
stable step sizes, and the like. We can expect that the pro-
posed method will achieve a more-accurate steady-state
solution than the method in [4] for identical step sizes,
filter lengths, and numbers of iterations. Simulations ap-
pear to indicate this fact as well.

C. Efficient Implementation

The main drawback of the proposed method is its compu-
tational complexity. It requires forming the matrix from

by calculating the autocorrelation function of the equal-
izer and then multiplying by . Calculating re-
quires approximately multiply/adds, whereas
multiplying by requires multiply/adds. We
would prefer a procedure whose computational complexity in
numbers of multiply/adds is proportional to the equalizer length.
In what follows, we develop suitable modifications to our pro-
posed approach to obtain this order of complexity. Such approx-
imations are similar to those that were used to reduce the com-
plexity of the original natural gradient procedure in (20) and
(21) to one that is proportional to the equalizer length.

In most deconvolution and equalization tasks, the non-
quadratic nature of the cost function limits the range of step
sizes that can be used to adjust the equalizer coefficients. As
such, convergence is not very fast, and the coefficients do not
change much from one time instant to the next. Based on this
fact, we propose to update at every time instants
as opposed to every time instant. Thus, when is a positive
integer, we set

(32)

In such a scheme, the per-sample computational load of calcu-
lating is reduced to approximately
multiply/adds at each time instant.

To develop a procedure for updating , assume for the
moment that does not change with time, such that

has elements . Define a -element
vector as

(33)

Authorized licensed use limited to: SOUTHERN METHODIST UNIV. Downloaded on October 31, 2008 at 17:40 from IEEE Xplore.  Restrictions apply.



DOUGLAS et al.: NATURAL GRADIENT MULTICHANNEL BLIND DECONVOLUTION 97

where

p L

(34)

Clearly, for when does
not change with time. The vector contains the convolu-
tion of the -element sequence with the sequence

which has been padded by
zeros on the right. The vector is quite similar to and
only differs from it through the addition of terms that depend on

and the subtraction of terms that depend on .
It can be shown that

if
if

if
(35)

The update in (35) requires multiply/adds at each time
instant to implement, which is much fewer than the
multiply/adds needed to implement the product .

We now show how to combine the above two approxima-
tions to obtain a numerically-stable implementation. Since (35)
assumes that the autocorrelation sequence is fixed, letting

will introduce errors into these sliding-window cal-
culations, such that the last elements of will no longer
be accurate. We could use a restart procedure to zero-out the er-
rors every samples, but there is in fact a more ingenious
solution. We propose to synchronize the calculation of the
sequence with the updating of the values. Specifically,
we propose to use in place of in (30), such that
the algorithm becomes, as shown in (36)–(38) at the bottom of
the page. and satisfies the block constraint in (32). No-
tice that the last term on the last elements of depends on
elements within . It can be shown that this pro-
cedure produces exactly whenever

. Thus, the error associated with using both
and to update is “zeroed-out” every
samples. For , the last elements of do
not match or exactly, but the differences
between these values is of . Thus, they have a negligible
effect on the overall performance of the scheme.

Equations (7) and (36)–(38) define the final form of the sim-
plified blind deconvolution algorithm, where the autocorrela-
tion sequence is updated every time instants. The
overall complexity of this approach on a per-sample basis is

multiply/adds. Since the original procedure

in (7)–(9) uses multiply/adds, the new approach uses
approximately 63% more multiply/adds than the original ap-
proach.

D. Illustrative Numerical Simulations

The algorithm we have derived in the single-channel case in-
volves some claims as to its performance, namely the following.

• The proposed algorithm is purported to have less bias in
its converged solution than that produced by the original
algorithm in (7)–(9).

• The proposed algorithm is purported to perform better
than the original algorithm when equalizer truncation is
an issue.

• The simplified update in (36)–(38) is purported to perform
similarly to the more-complicated update in (29) and (30)
on which it is based.

It is challenging to justify these claims theoretically, because a
full statistical analysis of the algorithm’s convergence behavior
is difficult to obtain. Instead, we investigate the behaviors of
these approaches through numerical simulations. The results ob-
served in these simple single-channel examples will serve to
motivate an extension and use of the algorithm in the multi-
channel case in later sections. In these simulations, is
generated as a pseudo-random sequence of i.i.d. samples uni-
formly-distributed in the range . In each case, we com-
pute the ensemble average of the inter-symbol interference (ISI)
defined as

ISI (39)

where is the convolution of and the channel impulse
response. The parameters and values chosen for all algorithms
are , and . We compare the
performances of the four following algorithms:

1) preliminary approach in (30) with ;
2) proposed final algorithm update in (36) with ;
3) original natural gradient update in (9) with ;
4) original natural gradient update in (9) with corre-

sponding to an update whose complexity is similar to that
of (36) with .

For each equalizer, “center-spike” initialization was used, such
that or depending on the equal-
izer filter length. One hundred simulations have been run and
the results averaged in each case. The first example we explore
involves a simple autoregressive channel model of the form

(40)

(36)

(37)

if
if
if

(38)
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Fig. 5. Evolution of the ensemble-averaged inter-symbol interferences
for a simple minimum-phase autoregressive channel model and
uniformly-distributed source signals.

This autoregressive channel can be exactly equalized using an
FIR filter of length having two consecutive nonzero
taps equal to . Shown in Fig. 5 are the evolutions of

for the four different algorithm scenarios. As can be
seen, the original algorithm has the best performance, achieving
a steady-state ISI of approximately dB and dB for

and , respectively. The two new methods do not
perform as well as the original approach, which is to be expected
given that an FIR equalizer is adequate for this deconvolution
task. Signal windowing and filter truncation is unlikely to im-
prove the performance of the original algorithm, which already
works quite well in this parsimonious case.

Our second example involves an FIR channel model of the
form

(41)

This channel is maximum phase, meaning that an infinitely-non-
causal equalizer is required to perfectly equalize it. Any FIR
equalizer for this task will exhibit a nonzero residual ISI. Shown
in Fig. 6 are the evolutions of for the four scenarios.
In this case, the behaviors are markedly different. Both new al-
gorithms converge to an ISI level of about dB in approx-
imately 3000 iterations. In contrast, the original method with

initially converges like the new algorithms, but it then
diverges to a steady-state ISI of about 2 dB. This divergence
is slow and deliberate, suggesting a systematic bias in the co-
efficient updates. We suspect that the culprit is the addition of
the input signal terms outside the interval
within the original algorithm’s coefficient updates. The perfor-
mance of the original method with is better, since the
equalizer is 60% longer; however, the proposed method still out-
performs this procedure by about 1 dB.

While these simulations are single-channel ones involving
synthetic signals, they support the claims made regarding the be-
havior of the proposed method. It is expected that the proposed
algorithm’s robust convergence behavior in situations where a

Fig. 6. Evolution of the ensemble-averaged intersymbol interferences for a
simple maximum-phase FIR channel model and uniformly-distributed source
signals.

channel inverse is impossible will translate to improved sepa-
ration performance in multichannel acoustic source separation
scenarios.

III. CAUSAL NATURAL GRADIENT ALGORITHMS

FOR MULTICHANNEL SYSTEMS

A. Multichannel Extension

We now extend the approaches described in the previous sec-
tion to the multichannel case. These extensions are straightfor-
ward so long as careful notational similarities are maintained.
Define the -element input signal vector

(42)

where is the -element vector con-
taining measurements of the mixtures from all sensors at time

. Similarly, define the coefficient matrix

(43)

where is the tap matrix of the multichannel FIR
filter at the th lag value. Then, we can represent the output
signals at time using the vector notation

(44)

(45)

We first give the multichannel extension of the updates in
(29)–(30). Define the -element vector and
matrix as

(46)

if

if

(47)
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These quantities are analogous to and in the single-
channel case. Define the matrix
and the -element vector as

...
...

(48)

(49)

respectively. Then, it can be shown that

(50)

The coefficient update for the multichannel extension of (30) is
given by

(51)

where .
The calculation of in (50) involves mul-

tiply/adds, making it prohibitive for large filter lengths. As such,
we look to extend the simplified approach in (36)–(38) to the
multichannel case as well. This approach make use of the block
Toeplitz structure of to recursively update the vector

(52)

whose last entries contained in the vector are ap-
proximately equal to . The recursive update for the vector
elements of is shown in (53)–(54) at the bottom of the page.
The sequence is only updated at the time
instants , where is an integer. Then, the coeffi-
cients are updated as

(55)

Equations (45) and (53)–(55) define the coefficient updates
of the proposed multichannel blind deconvolution and source
separation procedure employing causal filters. The complexity
of the algorithm is approximately 6.5 multiply/adds per adaptive
filter coefficient per time instant, making it approximately 63%
more complex than the original multichannel algorithm in (2),
(5), and (6).

B. Fast Implementation

In some multichannel blind deconvolution or convolutive
BSS tasks, a larger separation filter length value may be re-
quired for adequate performance. In such cases, the complexity
of the sample-by-sample iterative update in (45) and (53)–(55)
may become prohibitive. In this subsection, we present a fast

TABLE I
FAST BLOCK IMPLEMENTATION OF THE PROPOSED ALGORITHM FOR A BLOCK

SIZE OF L + 1 SAMPLES

block-based implementation of this procedure, in which (55) is
replaced by the -sample block update

(56)

This implementation assumes the computationally-efficient
block size choice of , although the extension of
the algorithm to other block sizes is straightforward. For this
implementation, define the time-reversed row signal vectors

(57)

(58)

(59)

(60)

Furthermore, let FFT and IFFT denote the FFT and in-
verse FFT, respectively, of a -element row vector ,
and define as the point-by-point complex multiplication of
two vectors and , such that

(61)

Then, Table I lists the fast FFT-based implementation of the
proposed algorithm. In this algorithm, corresponds to an

-element vector of “do not care” values to be discarded. The
notation used here closely follows that used to describe more-

(53)

if
if

if
(54)
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traditional block-based adaptive filtering techniques employing
fast convolution techniques [22].

The complexity of the proposed algorithm is now consid-
ered. For most practical situations in which , the
FFT calculations of a block-based convolutive BSS procedure
dominate the system’s overall complexity. Our proposed pro-
cedure requires FFTs of length for every

output samples. Thus, the complexity of the algorithm
is per time sample instant as compared to the

complexity of the method in (45) and (53)–(55). For
an additional comparison, consider the FDMCBD-I algorithm
with 75% overlap described in [23], which is a block-based
version of the original time-domain natural gradient convolu-
tive BSS procedure derived in [4]. The FDMCBD-I algorithm
requires FFTs of length for every
output samples. Since an -element FFT requires
complex-valued operations, the two algorithms have a similar
complexity to first order. Considering the number of vector
dot-multiplies (e.g., the symbol in Table I), the proposed
method has such operations, whereas, the
FDMCBD-I algorithm has such operations. Considering
each algorithm as a whole, the proposed method will be sim-
ilar in complexity to the FDMCBD-I algorithm except for
situations in which the number of sensors or sources is
much larger than two and the filter or block length is
correspondingly small.

For typical step sizes, the algorithm in Table I performs
similarly to the procedure in (45) and (53)–(55). Moreover, it
appears to be more robust than the FDMCBD-I algorithm in
acoustic source separation applications where signal correla-
tions require an overly long filter length for the latter approach
to work properly. Simulations illustrating this issue can be
found in [21].

C. Illustrative Numerical Simulations

We now explore the behavior of the proposed multichannel
blind deconvolution and source separation procedure in Sec-
tion III-A via numerical simulations. All but the last example
in this section use the same two-input, two-output impulse re-
sponse depicted in Fig. 1. This impulse response was generated
from an acoustic laboratory setup consisting of a pair of om-
nidirectional lapel microphones space 4 cm apart and mounted
in a V-configuration approximately 1.5 m from the floor in the
center of a 4.45 m x 3.55 m x 2.50 m room. The reverberation
time of this room is 130 ms. A pair of loudspeakers located 1.2 m
away from the microphones at and from the on-axis
direction of the V-configuration microphone array were used as
the acoustic sources. Bandlimited white noise played through
these loudspeakers was then used to characterize the individual
impulse responses of the loudspeaker-to-microphone acoustic
paths using standard linear estimation techniques. We then gen-
erate the source signal mixtures by filtering recorded signals
using these impulse responses digitally. While not exactly iden-
tical to real-world acoustic mixtures, these signals allow us to
accurately observe and characterize the impulse response dis-
tortions due to FIR filter and signal truncation through the com-
bined system impulse responses. These distortions are generally

Fig. 7. Combined system impulse responses for the proposed natural gradient
multichannel blind deconvolution procedure for i.i.d. binary source signals.

unobservable when looking at the separation system coefficients
alone, as shall be indicated. All signals are sampled at 8 kHz.

Our first experiment tests the ability of the algorithms to both
separate and deconvolve i.i.d. sources mixed by the acoustic
channel. These sources were chosen to be i.i.d. binary-
-distributed. The sources were mixed by the acoustic channel to
produce the signal sequences and . Both the orig-
inal natural gradient procedure in (5) and the proposed proce-
dure in (55) were applied to this data, where

, and , respectively. Shown
in Fig. 2 is the combined impulse responses given by

(62)

at iteration for the original procedure. As noted in
the introduction, the “spikes” present near and
are troublesome and prevent an adequate equalization result to
be achieved. Fig. 3 shows the results of a similar simulation
using the original procedure, except that has been
chosen such that the original procedure has a similar complexity
to that of the proposed procedure. Again, the “spikes” present
near and are problematic. Shown in Fig. 7
are the combined impulse responses for the proposed method
at iteration on the same data. As can be seen,
the separation and deconvolution performance is nearly perfect,
with ideal delta-function responses in and and
nearly-zero responses in and , respectively.

The performance difference between these three cases cannot
be easily gleaned from the separation system impulse responses.
Shown in Fig. 8 are the separation system impulse responses

through for all three adaptive systems. Although
the solutions are different from each other, it is not clear which
impulse response set yields the preferable result. We believe that
the lack of an observable performance marker in the separation
system impulse responses is the reason as to why signal trunca-
tion remained an illusive issue for natural gradient multichannel
blind deconvolution procedures in the past. Shown in Fig. 9 are
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Fig. 8. Estimated separation impulse responses in the multichannel blind
deconvolution task: dashed-original method,L = 250; dotted-original method,
L = 407; solid-proposed method.

Fig. 9. Evolutions of the joint inter-symbol and inter-channel interferences for
the algorithms applied to i.i.d. binary source signals.

the per-channel combined inter-symbol and inter-channel inter-
ferences (ISICIs) for the -tap subfilter deconvolution
procedures, computed as

ISICI (63)

for , respectively, during their respective convergence
periods. As can be seen, the original natural gradient approach
fail to accurately deconvolve the acoustic channel, whereas, the
proposed method is quite effective at reducing the ISICI.

We now turn to examples involving acoustic sources. In this
case, we replace the two random uniform sources with two 7-s
isolated recordings of a single male speaker from a radio news-
cast. These signals were repeated six times before being filtered
by the acoustic channel to create a pair of signal mixtures with
a length of at least 300 000 samples. Both the original and pro-
posed natural gradient algorithms were applied to these signals,
where , ,

Fig. 10. Combined system impulse responses for the original natural gradient
convolutive BSS procedure for speech mixtures, L = 100.

Fig. 11. Combined system impulse responses for the original natural gradient
convolutive BSS procedure for speech mixtures, L = 164.

and , respectively. In this case, we have chosen a
shorter separation filter length than in the previous multichannel
blind deconvolution task as the system cannot deconvolve the
speech signal mixtures in this case. In addition, we applied the
original natural gradient algorithm with and

, corresponding to a procedure whose complexity is
nearly-identical to that of the proposed method with .
Shown in Figs. 10–12, are the combined impulse responses for
these three methods on this data set. As can be seen, both ver-
sions of the original natural gradient algorithm fail to provide
any degree of separation with these parameter choices, and large
“spikes” can be seen in the sequences. In contrast, the
proposed method does achieve a reasonable separation solu-
tion, as the values of and are smaller than those of

and , respectively. The nonimpulsive shape of
and is due to the spectral flattening that all multichannel
blind deconvolution procedures impose on the extracted source
signals. Using these impulse responses, we compute the overall
signal-to-interference ratio (SIR) of Channels 1 and 2 for this
coefficient solution and chosen speech signals to be 9.9 and 7.5
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Fig. 12. Combined system impulse responses for the proposed natural gradient
convolutive BSS procedure for speech mixtures. L = 100.

dB, respectively. The original mixtures had nearly equal SIRs
of and 0.2 dB, respectively.

Because of its ability to work for shorter filter lengths, the
proposed multichannel blind deconvolution procedure has a
potential benefit largely unexplored in the convolutive signal
separation literature: the ability to select extremely short filters
within the separation system. The use of short multichannel
FIR filters is quite common for other acoustic signal processing
tasks such as adaptive beamforming [24]. To our knowledge,
however, they have not been used extensively for convolutive
BSS tasks. The capabilities of such short-filter systems are
obviously limited to situations where the room reverbera-
tion time is short, the microphone array has closely-spaced
sensors, and the task is separation as opposed to deconvolu-
tion-and-separation. The complexity and memory requirements
of the overall scheme, however, are much reduced, making it
amenable to implementation on a low-cost, low-memory pro-
grammable DSP chip. In addition, the separation performance
of the scheme can even be better than systems with longer
filter lengths in some scenarios. As an example, we applied
the proposed separation scheme to the speech mixtures used
in the previous example, where filter lengths of and

were chosen, representing impulse response lengths
of 6.25 and 3 ms, respectively, and “center-spike” coefficient
initialization was used. Such filter lengths are unheard of in
most convolutive BSS approaches, where filters with hundreds
or even thousands of taps per channel are often used. After
300 000 iterations, the first system achieved SIRs of 15.5 and
9.5 dB, respectively, and the second system achieved SIRs
of 13.8 and 9.8 dB, respectively. These results are extremely
promising for practical acoustic source separation in offices
and other small-room environments. In contrast, simulations
of the original natural gradient procedure on this data for filter
lengths of , and (not shown)
failed to provide any level of separation for this data set.

We now demonstrate the performance of the proposed
method for separating a more-challenging source signal mix-
ture in which the source loudspeakers are located at

Fig. 13. Impulse responses for the more-channeling acoustic channel in a
multichannel simulation experiment.

Fig. 14. Combined system impulse responses for the proposed natural gradient
convolutive BSS procedure for a more-challenging speech mixture, L = 63.

and from the on-axis direction of the V-configuration
microphone array in the same acoustic room and speech signals
as before. In this case, the initial signal-to-interference ratios
for the mixtures are 0.07 dB and dB, such that one of the
sources is louder than the other source within both mixtures.
Shown in Fig. 13 are the impulse responses for this configura-
tion. The proposed algorithm was applied to this data, where

, and , respectively.
Shown in Fig. 14 are the combined impulse responses for the
proposed method after convergence. The final signal-to-inter-
ference ratios for the separated sources are 11.3 and 6.7 dB,
respectively.

While the reasons for the better performance of the proposed
scheme for shorter filter lengths on this data set is not entirely
clear at the present time, we conjecture that the careful use
of time-domain signal truncation with the algorithm makes the
proposed method less sensitive to residual output signal corre-
lation at convergence.
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IV. CONCLUSION

In this paper, we have identified a critical issue associated
with a well-known algorithm for multichannel blind deconvo-
lution and convolutive blind source separation tasks. We have
demonstrated through argument and simulation that the natural
gradient procedure derived in [4] and other variants of this ap-
proach [5]–[7] can achieve a biased result when the channel to
be inverted is not minimum phase and/or the separation filter
length is too short. We then propose a new natural gradient pro-
cedure that does not exhibit the detrimental effects of the former
approach in these situations. The complexity of the new algo-
rithm, while somewhat greater than the original approach, is
still proportional to the number of parameters in the separation
system, and it uses only multiplies and adds in its operation. We
have demonstrated its accurate capabilities both in multichannel
blind deconvolution tasks involving synthetic signals as well as
convolutive BSS tasks involving speech signals. Moreover, the
algorithm functions in a reasonable manner even when the filter
lengths chosen are much shorter than would be required for an
accurate channel inverse.

The causality issues that we have identified in the natural gra-
dient algorithm are likely to be similar in other filtered-gradient
schemes for equalization, source separation, phase modeling,
and paraunitary filter bank design. Causal implementations of
these other approaches are the subject of current work.
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