
 

Accurate and Privacy Preserving Cough Sensing using a 
Low-Cost Microphone 

Eric C. Larson
1
, TienJui Lee

1
, Sean Liu

2
, Margaret Rosenfeld

3
, Shwetak N. Patel

1,2
 

1
Electrical Engineering, 

2
Computer Science & Engineering, 

DUB Institute, University of Washington  

Seattle, WA 98195  

{eclarson, tienlee, sysliu, shwetak }@uw.edu 

3
Seattle Children’s Hospital 

Center for Clinical and Translational Research 

4800 Sand Point Way NE 

Seattle, WA 98105 

margaret.rosenfeld@seattlechildrens.org 
 

ABSTRACT 

Audio-based cough detection has become more pervasive in 

recent years because of its utility in evaluating treatments 

and the potential to impact the quality of life for individuals 

with chronic cough. We critically examine the current state 

of the art in cough detection, concluding that existing ap-

proaches expose private audio recordings of users and bys-

tanders. We present a novel algorithm for detecting coughs 

from the audio stream of a mobile phone. Our system al-

lows cough sounds to be reconstructed from the feature set, 

but prevents speech from being reconstructed intelligibly. 

We evaluate our algorithm on data collected in the wild and 

report an average true positive rate of 92% and false posi-
tive rate of 0.5%. We also present the results of two psy-

choacoustic experiments which characterize the tradeoff 

between the fidelity of reconstructed cough sounds and the 

intelligibility of reconstructed speech.  

Author Keywords 

Cough detection, health, mobile phones, signal processing, 

sensing, privacy. 

ACM Classification Keywords 

H5.m. Information interfaces and presentation (e.g., HCI): 

Miscellaneous.  

General Terms 

Algorithms, Experimentation, Performance, Security. 

INTRODUCTION 

Coughing is a common, distressing symptom that results in 

significant health care costs, medical consultations, and 

medication use [15]. According to the U.S. Department of 

Health and Human Services, coughing is the most frequent 

symptom mentioned by people when seeking medical ad-

vice [7, 19, 38]. Although the importance of diagnosing and 

managing cough is well recognized [15, 20], evaluation is 

limited by the lack of objective measures of ambulatory 
cough frequency and severity [40]. Efforts to develop ob-

jective cough monitoring systems date to the 1950s [3], but 

have intensified in recent years due to technological ad-

vances [40]. As such, the medical community has setup 

guidelines for objective cough monitoring systems [14, 20, 

30]. They recommend using systems that have automated 
cough recognition, can distinguish cough from other 

sounds, permit 24-hour recording, and provide digital 

processing of cough recordings; other critical and desirable 

features include privacy preservation, mobility, compact-

ness, and unobtrusiveness. Although recent advances in 

audio cough monitoring have begun to make the process 

more automated [2, 4 26], current systems do not meet all 

of these requirements. Most worryingly, current audio 

based methods expose private information about users’ 

speech.  

In this paper, we describe our mobile phone-based solution 
for detecting and counting personal coughs. Our system 

attempts to meet all of the requirements for objective cough 

monitoring as outlined by the medical community. Our ap-

proach reliably detects cough sounds while preserving the 

audio privacy of the patient and bystanders. We show our 

method to have three unique contributions to the research 

community: (1) it advances the current state of the art in 

audio cough classification (with average true positive rate 

of 92% and false positive rate of 0.5%) and allows for clas-

sification of individual cough sounds within a coughing 

episode, (2) it also allows for cough sounds to be recon-

structed with good fidelity so that they can be assessed by a 
physician or to further remove false positives, and (3) it 

simultaneously prevents other sounds from being recon-

structed with useful fidelity (i.e., speech sounds are unintel-

ligible). Our methodology can be used as a general frame-
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Figure 1. (Left) Participants carrying the mobile phone in 

their shirt pocket or using a neck strap. (Right) The built-in 

microphone facing up in the direction of the mouth. 

 



 

 

 

work for other audio-based UbiComp sensing applications 

that need to reconstruct sounds of interest while simulta-

neously suppressing private audio, such as speech.  

Our approach uses principal components analysis (PCA) of 

the audio spectrogram for classification and for the preven-

tion of speech reconstruction. We found that using 10 com-
ponents was sufficient for classification. For reconstructing 

cough sounds, we found that 25 components produces a 

―good‖ fidelity cough sound while simultaneously disguis-

ing 84% of spoken words.  

The remainder of the paper is organized as follows: We first 

motivate our work, highlighting the privacy vulnerabilities 

of existing audio-based health sensing classification me-

thods. Second, we review and summarize related bodies of 

work. We then introduce our methodology using eigenvec-

tor projections of the audio spectrogram. Finally, we 

present the results of two experiments: the first evaluates 

the accuracy of our classifier on real world audio data col-
lected from mobile phones for 17 subjects experiencing 

cough episodes. The second uses subjective ratings and 

speech dictations to characterize the tradeoff between clari-

ty of reconstructed coughs and the intelligibility of speech.  

MOTIVATION 

Ambulatory cough sensing combined with the capabilities 

of modern smart phones is a particularly interesting Ubi-

Comp application. The integration can allow individuals to 

keep a baseline cough frequency on their digital health 

record and help increase compliance and effectiveness of 

treatment regimens. Moreover, using mobile phones as 

sensing platforms could enable large-scale epidemiological 

studies, such as using cough frequency across cities to iden-
tify and track influenza outbreaks. Finally, because of the 

relatively low cost of commodity phones, this approach 

may be of particular interest in developing countries where 

physicians have limited resources to track coughing and 

lung function (e.g., preventing suffocation fatalities from 

complications of pneumonia [45]). 

Value of Ambulatory and Objective Cough Sensing 

Self-report of cough frequency and severity is notoriously 

unreliable, particularly in patients with chronic respiratory 

conditions [14, 22, 31]. Thus, objective ambulatory moni-

toring of cough frequency has the potential for substantial 

clinical benefits. First, it would allow early detection of 

respiratory exacerbations in patients with chronic respirato-

ry diseases such as asthma, cystic fibrosis, and chronic ob-
structive pulmonary disease (COPD)—allowing earlier and 

therefore more effective treatment. Early intervention in 

exacerbations of these conditions has been shown to de-

crease hospitalization rates and improve long-term out-

comes, including survival [29, 37, 39, 41]. For example, a 

potential correlation may exist between cough frequency 

throughout a daily period and the severity of asthma in pa-

tients, even before other warning signs are present [8]. Se-

condly, objective cough monitoring would allow improved 

evaluation of treatment efficacy in many diseases, including 

tuberculosis, pneumonia, bronchiolitis, asthma, cystic fibro-

sis and COPD, with the associated ability to change treat-

ment algorithms as needed. Finally, there is great interest in 

developing cough monitors as sensitive endpoints for clini-

cal trials of therapies in patients with many of these diseas-

es [21]. Cough patterns have been used as a metric to eva-

luate various treatments regimens, in conditions such as 
gastro esophageal reflux and COPD [17, 40].  

The potential utility of ambulatory cough quantification, 

however, has been limited to date by the cumbersome and 

expensive monitoring systems available. Formative re-

search on the benefits of cough detection is in its infancy—

better tools for automatic cough detection are sorely needed 

in order to establish larger, more conclusive studies. Cur-

rent studies, for example, can only recruit 15-20 partici-

pants because of the overhead in extracting cough events 

reliably [27, 40]. 

Challenges with Existing Cough Sensing Approaches 

Researchers have recently created systems that use machine 

learning to automatically detect coughs from recorded au-

dio streams [2, 4, 13, 26, 27]. The most limiting criterion of 
audio approaches is robustness to outside noise sources. 

Because continuous audio streams are high data rate, the 

specificity of the systems must be extremely high. Other-

wise the number of false positives may exceed the actual 

cough rate of the individual. To gain such high specificity, 

these systems do not use one model for cough classifica-

tion—in the case of one algorithm, they need hundreds of 

models [4, 26]—or require models to be adjusted for each 

user. This is a common limitation of audio based classifica-

tion methods: while the feature extraction may be able to 

run on a mobile device, the classification may be better 
suited to reside on a server somewhere in the cloud or data-

base, where these algorithms and models can be continually 

updated. Moreover, some of the existing algorithms opt to 

be semi-automated to reduce the false positive rate. A 

trained annotator cleans the dataset by listening to segments 

of audio where the algorithm thinks a cough occurred.  

In this way, data transfer, cloud computing, and semi-

automation can all compromise the privacy of recorded 

audio. Audio based cough detection systems, however, have 

historically not focused on maintaining the privacy of an 

individual’s recordings. As such, little work has been done 

on optimizing the tradeoffs between privacy vulnerabilities 
and algorithmic methods. Table 1 outlines several classifi-

cation architectures and the tradeoffs for each. Architec-

tures which use non-invertible transforms, for example, do 

not provide audio for the physician to evaluate, nor do they 

provide a mechanism for semi-automation to reduce false 

positives. Architectures which use ubiquitous speech fea-

tures, such as mel-frequency Cepstral coefficients 

(MFCCs), potentially expose a wide range of private speech 

information including content, identity, and prosody [46].  

The advantages of our approach are four-fold:  

(1) The features that are transmitted correspond to the 
weights of components, and the actual components 



 

needed to reconstruct the audio only exist on the phone 

and the server. 

(2) These features generalize across subjects so that no 

initial calibration is needed. 

(3)  Once the weights arrive at the server, they can be used 
to reconstruct the cough event with good quality, al-

lowing physicians to listen to and diagnose the cough 

sounds, in addition to allowing the system to be semi-

automated to further reduce false positives, if needed. 

(4)  The patient need not worry about health professionals 

inadvertently hearing private conversations since 

speech is wholly disguised. 

RELATED WORK 

Our related work falls into five categories: (1) mobile 

phone-based health applications, (2) general cough detec-

tion, (3) audio-based cough detection, (4) audio privacy, 

and (5) eigenvector feature selection in machine learning.  

Mobile Phone-based Health Applications 

Many ubicomp researchers have investigated the possible 

use of mobile phones as a sensing and/or feedback platform 

to enhance people’s health conditions. Chiu et al. created a 
mobile phone-based system called the Playful bottle [10]. 

They used the phone’s built-in camera and accelerometer to 

detect how much water people consume during a day and 

persuade them to drink healthy quantities of water using 

hydration games. Consolvo et al. proposed a UbiFit garden 

system that employs a pager-size sensor called MSP (Mo-

bile Sensing Platform) to recognize people’s activity levels 

and provide feedback using a garden display on their mo-

bile phone [12]. AsthmaMD is an iPhone application that 

allows people to quickly and easily log their asthma activi-

ty, medication, and causes of an asthma attack in the form 
of a diary [1]. This aggregated, anonymous data is sent to 

the cloud, providing researchers with information regarding 

the causes and external variables contributing to asthma and 

other illnesses. We share similar goals with these research 

projects and applications–using a commodity mobile phone 

as the sensing platform for collecting and distributing data 

to health professionals and, in doing so, increasing people’s 

awareness of their own health conditions. 

General Cough Detection 

The most common technique for estimating cough frequen-

cy is to have patients self report using numeric scoring (0-5) 

or Visual Analog Scoring (VAS) [36]. However, numerous 

studies have shown self-report to be highly inaccurate, in-

cluding the study presented in this paper (see [40] for a 

summary). The number of coughs a patient self-reports, for 

instance, has been shown to be significantly influenced by 

the placebo effect and the patient’s perception of their 

cough severity [40]. Moreover, patients cannot accurately 
track trends in their cough frequency from hour to hour, or 

when they are asleep. For these reasons, more objective 

methods have been developed for counting coughs. Many 

require expensive, cumbersome equipment (e.g., the chest 

wall device in [25]) or require paid annotators to listen to 

recordings and manually annotate cough sounds [40].  

There are a number of sensing systems that automatically 

assess cough frequency. Dating back to the 1950s, re-

searchers developed methods of measuring thoracic pres-

sure changes (airflow from the mouth) in order to obtain 

unbiased measures of cough frequency [3]. Semi-
autonomous methods exist that require individuals to parse 

through a pre-segmented list of possible cough sounds. The 

―Overnight Cough Monitoring System‖ is such a system, 

which attached an air-coupled microphone to the chest wall 

or over the trachea when the participant is sleeping [16]. 

Kraman et al. created another accelerometer-based system 

that placed an accelerometer at the participant’s chest wall 

[25], but required researchers to manually count coughs 

based on the visualization of the accelerometer data. 

The VivoMetrics Lifeshirt [13] is a commercial product that 

incorporates various physiological sensors to monitor 

breathing rate, heart rate, activity, posture, and skin temper-
ature. It can be used to detect coughs with an extra throat 

microphone and the existing sensor array. The reported true 

positive rate is 78.2% and the false positive rate is 0.4%. 

VitaloJAK [27] is another commercial product that uses a 

piezoelectric sensor attached to the chest wall to detect 

coughs. The reported true positive rate was 91.3-99.5% 

after an initial calibration. Each method suffers from the 

same paradigm: users must wear specialized sensors on the 

chest wall or around their body, which adds expense, is 

cumbersome, and limits the system in ambulatory settings. 

Audio Based Cough Detection 

Audio based systems, on the other hand, are easy to deploy 

in an ambulatory setting and can be made extremely low 

cost. These systems have become more accurate and lower 
cost over recent years. Barry et al. created a system called 

the Hull Automated Cough Counter (HACC) [2], using a 

lapel microphone and wearable recording device. The fea-

ture set used was motivated by speech recognition; namely, 

mel-frequency cepstral coefficients (MFCCs) and linear 

Architecture Privacy Tradeoffs Clinical Tradeoffs 

Send raw audio to classification server 
 (-)Health professionals have access to private 

audio 

(+)Physician can listen to cough sounds 

(+)Reviewer can remove false positives 

Send non-invertible features (like 

MFCC’s) 

 (-)MFCCs are ubiquitous to speech recognition 

and carry information about speech content  

(-)Physician cannot listen to cough sounds 

(-)False positives cannot be removed 

Send unique, non-invertible features  
(+)Private audio is protected 

 

(-)Physician cannot listen to cough sounds 

(-)False positives cannot be removed 

Our algorithm 
(+)Speech is unintelligible 

  

(+)Physician can listen to cough sounds 

(+)Reviewer can remove false positives  

Table 1. Tradeoffs between different audio cough sensing system architectures. 



 

 

 

predictive cepstral coefficients (LPCC). They applied a 

Neural Network classifier and achieved an 80% (55-100%) 

true positive rate and 4% (2-8%) false positive rate. How-

ever, they recorded audio signals in an outpatient clinic for 

only one hour per person, which is a relatively controlled 

and noise-reduced environment.  

Similarly, Matos et al. created a system called the Leicester 

Cough Monitor (LCM) [26], which uses a lapel microphone 
with a portable audio recorder. They used MFCCs (with 

derivatives) as features to a Hidden-Markov Model 

(HMM). Their average true positive rate was 71% (50% -

99%) and a false alarm rate of 13 cough events per hour 

(false positive rate not reported). After applying an energy 

threshold to discard low intensity coughs, the average true 

positive rate for LCM could be boosted to 82% and false 

alarms reduced to 2.5 events per hour. However, the tra-

deoff was to discard on average 29% (6-72%) of the cough 

events for each subject, and the energy thresholds were 

required to be computed per individual. Recently, LCM has 
reported a true positive rate of 91% and false positive rate 

~1% [4]. However, this has received unfavorable criticism 

by the medical community [28], who point out that their 

most recent publications are not forthcoming about whether 

the true positives are reported with or without the energy 

threshold and the system is only evaluated on a small subset 

of their audio data. They also point out that to get such a 

low false positive rate, the system requires hired annotators 

to listen to the low confidence coughs and the annotators 

must provide a portion of hand segmented cough examples 

in order to prime the algorithm. As such, the system should 

actually be coined as semi-automated.   

Our system uses principal components analysis (PCA) and 

a random forest classifier. It has comparable accuracies to 

existing detection algorithms (92% mean true positive rate), 

but does not require any automation in order to prime or 

retrain the models. We note that a direct comparison be-

tween our approach and HACC or LCM is impossible. 

Many of these systems consider their algorithms as proprie-

ty, so there is limited information on many of the actual 

details. Instead, we must opt to compare algorithms on the 

published accuracies, albeit different datasets. Table 2 

summarizes and compares the classification rate of ambula-
tory cough detection algorithms. 

Audio Privacy 

Prior work in audio privacy has largely dealt with hiding 

certain cues about the speakers and conversations around 

them so that a machine learning algorithm cannot recon-

struct valuable information from the feature sets. It is gen-

erally accepted that MFCCs are poor features for maintain-

ing privacy, as they reveal not only speech, but also inflec-

tion, and prosody [46]. As such Wyatt et al. have devised 

audio features that can successfully hide speech intelligi-

bility, while simultaneously providing cues for prosody and 
recognition of conversations [46]. Most of the related audio 

privacy work attempts to preserve certain quantities while 

providing poor features for modern speech recognizers [32]. 

Chen et al., on the other hand, use linear prediction to re-

place vowels in speech, while keeping environmental noises 

such as cars and running water intelligible to subjects [9]. 

Our work in this paper, similar to [9], attempts to make the 

speech unintelligible, but also make it possible to recon-

struct cough sounds. Our methodologies however, are quite 

different.  

Eigenvector Feature Selection 

The most common application of eigenvectors in machine 

learning is called principal components analysis (PCA). 

PCA uses orthogonal components (i.e., eigenvectors) of a 
particular feature space to reduce dimensionality. Compo-

nents can be sorted in terms of their corresponding Eigen-

value, which ranks the components by how much variation 

they can explain in the data. Traditional PCA is limited by 

the assumptions that the optimal transformation of the fea-

ture space is linear and orthogonal, which is not true in gen-

eral. Even so, PCA has been successfully applied in many 

domains, the best known of which is face recognition (i.e., 

Eigenfaces [42]) and gene mapping dimensionality reduc-

tion [23]. The use of PCA on audio spectrograms is not 

new. Pinkowski successfully used PCA to develop a model 
of the spectrogram for different English vowels sounds 

[35]. Our work also uses PCA on spectrograms, except our 

model is made for coughing sounds. 

PHYSIOLOGY OF COUGHING 

This section provides a background on the physiology be-

hind the cough reflex and the generation of cough sounds. 

We also discuss how coughs manifest in an audio stream 

using spectrograms, motivating the design of our model.  

Algorithm 

(Author) 
Sensing Subjects 

Recording 

Environment 
Automation 

Initial 

Calibration? 

Mean True 

Positive Rate 

Mean False 

Positive Rate 

Mean False 

Alarms / Hr 

LifeShirt 
Throat Mic. 

+sensor array 
N=8 Lab, 24 hours Automatic Yes 78% 0.4% Not reported 

VitaloJak Piezo Sensor N=10 Lab, 24 hours Automatic Yes 97.5% 2.3% Not reported 

HACC Lapel Mic. N=15 Clinic, 1 hour Semi Yes 80% 4% Not reported 

LCM 

(Matos) 
Lapel Mic. N=19 

In Wild, 

6 hours 
Semi Yes 71-82% Not reported 13 

LCM 

(Birring) 
Lapel Mic. N=19 

In Wild, 

2-6 hours 
Semi Yes 91% * <1% 2.5

ǂ
  

Our 

algorithm 

Phone Mic. 

on necklace 
N=17 

In Wild, 

2-6 hours 
Automatic No 92% 0.5% 17 

Table 2. Summary of related work in audio based cough detection. *It is not clear if these rates are reported with or without a 

95% energy threshold. 
ǂ
These rates are reported after review by an annotator. 



 

Cough Reflex 

The irritation of afferent cough receptors in the airways 

triggers the cough reflex. Once triggered, the cough reflex 

consists of four phases: (1) an initial deep inspiration and 
glottal closure, (2) contraction of the expiratory muscles 

against the closed glottis, (3) a sudden glottis opening with 

an explosive expiration, (4) a wheeze or ―voiced‖ sound 

[24, 40]. During the initial inspiration, the glottis temporari-

ly narrows and closes. Previous studies show that the glottis 

closure and expulsive phase can be repeated several times 

without any inspiration [34].  

Audio Analysis 

The third and fourth phases of the cough reflex manifest 

audibly as a cough sound. All cough sounds share common 

attributes: relatively loud intensity, a quick burst of sound, 

and a predictable duration and falloff. These are illustrated 

in Figure 2, where it is easy to identify the cough sound 

from the audio spectrogram. Notice the overall energy is 
very strong relative to the surrounding environment and that 

the initial burst of air causes significant energy well into the 

15 kHz range. Despite these common aspects, previous 

studies [40] show that the pathological processes in the 

lungs can determine the characteristics of coughing sounds, 

depending on how lung tissue and vocal resonances are 

affected. This is why people with different pathological 

conditions can have different cough sounds.  

Figure 2 also shows a close-up of the cough spectrogram. 

Notice the substantial amount of high frequency content 

after the burst of sound. This is due to the fourth stage of 

the cough reflex in which the remaining air from the initial 
impulse is pushed out of the vocal tract [24, 40]. The differ-

ences in cough sounds between different people are largely 

isolated to the segment of time during this fourth stage. 

Lastly, notice the cough duration is approximately 300 ms. 

Empirical measures show coughs range in duration from 

300-500 ms [24]. In our approach we leverage the fact that 

the first 150 ms of a cough sound corresponds only to the 

explosive phase of the cough reflex and is generally consis-

tent across observers. We only model this explosive stage 
of the cough reflex so that our model can generalize across 

observers. 

Quantifying Coughs 

According to the European Respiratory Society [30], 

coughing can be quantified in four different ways: 

(1) Explosive cough sounds: the number of characteristic 

explosive cough impulses. (2) Cough seconds: the number 

of seconds per hour containing at least one explosive cough 

sound. (3) Cough breaths: the number of breaths containing 

at least one cough. (4) Cough epochs: the number conti-

nuous cough sounds where each cough is separated by no 

more than two seconds. The effectiveness of any one of 

these metrics over the other is still ongoing research. We 

focus on explosive cough sounds because the other three 
measures can be inferred from this quantity. 

DATA COLLECTION AND ANNOTATION 

We now turn our attention to creating a labeled audio cor-

pus for evaluating our approach. Participants experiencing 

coughing episodes were recruited and told to wear a mobile 

phone (either in shirt pocket or around the neck) that conti-

nually recorded their surrounding audio throughout their 

normal day. These audio streams were manually annotated, 

labeling all events as one of nine categories, described be-

low in detail.  

Data Collection 

Seventeen participants, symptomatic of cough before 

enrollment, were recruited from a local health center. Par-

ticipants ranged in age from 18 to 60 years old, and 7 of 

them were females. Their causes of cough include common 

cold (n=8), asthma (n=3), allergies (n=1) and chronic cough 
(n=5) due to various reasons including smoking. Table 3 

shows these demographic details.  

The participants first came to the lab and we explained the 

recording process. We provided each with an Android G1 

mobile phone and asked them to carry the mobile phone 
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Figure 2. (left) An example cough spectrogram. (top right) An example spectrogram of cough and non-cough audio sounds.  

(bottom left)  An example of the reconstructed spectrogram using principal components analysis. 
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Subject Demographics and Dataset 

# Subjects 17 7 Female,10 male 

Age Range 18 – 60, µ.=27, mode=25 

Diagnosis 
3 Asthma, 5 Chronic,  

8 Cold, 1 Allergy 

Audio Recorded per Subject 3 – 6.5 hrs µ =4.2, mode=3 

Coughs per Subject 33 – 894, µ =150, mode=79 

Coughs/Hour 10 – 178, µ =33, mode=15 

Difference from Self Report 6 – 139 cough/hr µ =22.8, mode=20 

Total Coughs 2558 coughs 1016 epochs 

Table 3. Demographic information and number of coughs 

collected of all the participants.  

 

around their neck or in their shirt pocket and continue their 

daily routines. The audio recording software was turned on 

to record all of the sounds around the participants at 32 kHz 

using 16 bits. Figure 1 shows our experimental set-up. In 

all, 72 hours of audio were recorded, resulting in 2,558 

cough sounds which occur inside 1,016 coughing episodes. 
This cough dataset is comparable in size to the datasets 

used in prior work, however our dataset incorporates a more 

diverse set of cough events [2, 13, 27]. See Table 2 for a 

summary of other dataset used in prior work.  

Annotation 

In order to obtain accurate annotations of the 72 hours of 

audio recordings, we recruited 6 linguistic students to ma-

nually annotate the audio recordings using Praat [5], a 

scientific software tool for analyzing phonetic sounds and 

annotate them. The linguists were asked to annotate all 

sounds with one of the following nine labels: cough 

(n=2558, 12.2 min), speech (n=5404, 15.8 hr), laughter 

(n=819, 14 min), breathing (n=522, 11.2 min), throat-

clearing (n=1210, 10.23 min), sneezing (n=53, 35 sec), 
sniffing (n=1289, 9.2 min), other people’s cough (n=901, 

5.66 min), and environmental noise (n=7296, 28.5 hr). A 

total of 278 hours were spent completing the annotation of 

the 72 hours of audio recordings. It took almost 3.9 hours to 

annotate each hour of audio recording because 62% of the 

recordings contained ambiguous audio activity which often 

required the annotators to listen to the clip multiple times. 

In addition, some ambiguous sounds required discussion 

among the annotators, researchers, and experts before it was 

classified into one of the nine categories. If a conclusion 

could not be made, the event was labeled as unknown and 
excluded from further analysis. After a sound was labeled 

by an annotator, it was then verified by a researcher for 

accuracy. This careful attention was taken to ensure that the 

annotations were as accurate as possible. 

Self Report  

We also explicitly asked subjects to keep track of how 

many times they coughed during the recording process and 

report this to us after they returned. No correlation existed 

between self report and the annotated number of coughs. As 

shown in Table 3, when comparing self report with the an-

notations, the average difference was 22.8 cough sounds per 

hour with a standard deviation of 33 cough sounds per hour 

(i.e., most subjects severely underreported their cough oc-

currences). The minimum difference was 6 cough sounds 
per hour while the maximum difference was 149 cough 

sounds per hour. This highlights the inherent inaccuracy of 

self report even when patients are primed to monitor their 

cough for part of the day. 

ALGORITHM METHODOLOGY 

We use our cough event corpus to inform the design of our 

cough detection algorithm. Recall that our design objectives 

were to create an accurate classifier that used features 

which could also be used to reconstruct the cough sounds, 

but could not be used to reconstruct other sounds, such as 

speech. A key element of the design is to retain the fidelity 

of coughs so that a physician can asses them for diagnosis, 

and so that false positives can be removed audibly, if 

needed. During evaluation, we divide the corpus into five 

folds across the participants. Each fold contains all of the 

audio data for three or four participants.  

The algorithm can be divided into four parts: (1) cough 

model generation, (2) event extraction, (3) cough classifica-

tion, and (4) cough reconstruction. Before any processing 

we remove all audio data from the corpus for participants in 
a given fold. In subsequent discussion we refer to the re-

moved data as the test fold and the remaining data as the 

training fold. In this way, the cough detection for a single 

participant’s coughs was not trained upon using any audio 

data from that participant. 

Cough Model Generation 

During this step of the algorithm we create a cough model 

for the training fold using PCA on the audio spectrogram 

[18]. Recall that our audio is recorded at a 32 kHz sampling 

rate. We first take the magnitude spectrogram of the entire 

audio sequence (using a hamming window size of 16 ms, 

50% overlap, and 512 point FFT). We then select, at ran-

dom, 40 annotated coughs from each participant in the 
training fold. For each cough we place the first 150 ms of 

cough into a single column vector and normalize the vector. 

We then concatenate each column vector to create a matrix 

of cough spectrograms, X. PCA is run on X, yielding a ma-

trix of eigenvectors (components). We save the N compo-

nents with the largest eigenvalues. This becomes our cough 

model,      where the subscript, N, denotes the number of 
components in the model. This is similar to the approach 

used in the face recognition algorithm called ―Eigenfaces‖ 

[42]; the components in our cough model are analogous to 

―Eigenface‖ components.  

We then reconstruct the training data spectrograms from 

     saving the projection weights used for reconstruction, 
along with the residual error of the reconstructed spectro-

gram (11 features). In addition, we also calculate three 

energy measures of the spectrogram. Namely, the mean 

decibel energy of the entire FFT, the mean decibel energy 

of the FFT coefficients above 16 kHz, and below 16 kHz. 

The energy values, component weights, and residual error 

are hereafter referred to as our feature set (14 features). For 

classification of the cough sounds, we found that our model 

only needed 10 components for reliable classification. 



 

However, the fidelity of the reconstructed coughs can be 

increased by using a larger number of components, at the 

expense of making speech more intelligible. We quantify 

this tradeoff later.  

Event Extraction 

We use the feature set of our training fold to create a simple 

extraction algorithm based on thresholds. The algorithm 

prunes the audio stream, searching for potential events. For 

each feature, we calculate the threshold at which 98% of the 
coughs in the training fold are retained regardless of the 

false positives. We then select five features (out of all 14) 

with the lowest false positive rates on the training fold. The 

thresholds of these five features are saved so that they can 

be used in pruning the audio of the test fold during evalua-

tion. On average, the event extraction retained 96% of the 

coughs in the training fold, while letting between 5% and 

16% of other audio through.  

Cough Classification 

After event extraction, we train a random forest (RF) clas-

sifier [6] on the feature set of extracted events in the train-

ing fold. All features are used to train the classifier. The RF 

classifier is set to weight cough errors more during the 
building of the forest, and the majority voting threshold for 

the cough class is set three times lower than non-cough 

sounds. The max number of trees was set to 500 (as over 

fitting is rarely a problem in RF classifiers). These parame-

ters, however, were not investigated extensively because of 

the prohibitive time involved in training and evaluating the 

models. We ran a few variations on a small subset of the 

data (about two hours of audio from two participants) and 

found these parameters to work well. Many different clas-

sifiers could be used—we use a RF classifier because it has 

empirically been shown to work as well as support vector 

machines and neural networks, but is less sensitive to para-
meter variation [6]. 

Cough Sound Reconstruction 

For audio reconstruction (if the actual cough sound needs to 

be replayed), we use the optimal PCA reconstruction me-

thod, designed to minimize mean-squared error between the 

reconstruction and vector of interest [33]. That is, for a giv-

en spectrogram, we stack 150 ms of adjacent columns into a 

normalized column vector, a. The reconstruction is 

         

 
          

where    is the mean of a and    

 
       are the projection 

weights (an N element row vector). This provides us with 

an estimate of the overall spectrogram magnitude for a 

150 ms segment of audio. We then remove the stacking and 

normalization, and reapply the phase of the original spec-
trogram. We then convert the spectrogram back to the time 

domain signal by: (1) performing the inverse short time 

Fourier transform (ISTFT) and (2) applying an inverse 

hamming window. Figure 2 shows an example reconstruc-

tion. We note that to perform reconstruction a mobile plat-

form must send the mean,   , normalization constant, and 

phase of the spectrogram in addition to the projection 

weights. These quantities do not increase the privacy vulne-

rabilities of the system because phase and mean have his-
torically been found to have little use in speech or speaker 

recognition. In fact, most recognition algorithms ignore 

phase or only use it in conjunction with the magnitude [e.g., 

32, 45]. 

CLASSIFICATION PERFORMANCE  

We evaluate our random forest classification method using 

five-fold cross-validation, across subjects, as discussed pre-

viously. We obtain receiver operating characteristic (ROC) 

curves for each test fold by varying parameters of the RF 

models. This results in changes to the false positive rate and 

true positive rate that can be plotted to show the tradeoffs in 

adjusting each RF model. Figure 3 shows the tradeoff in 

performance for each fold. We define a true positive to be 

any explosive cough sound that contains at least two con-
secutive classifier identifications in the same 300 ms win-

dow (this is the finest resolution we can achieve as dictated 

by our PCA and spectrogram implementations). We define 

a false positive to be any consecutive classifier identifica-

tions that do not occur within 10 seconds of an actual ex-

plosive cough sound. This is divided by the total number of 

overlapping 10 second windows in our test folds. This is a 

standard measure of false positives used in cough detection 

[4, 26]. Notice that all but one fold rapidly approaches a 

90% true positive rate while false positives are below 1%. 

Also note that we report true and false positive rates using 

all audio from the database, not just events that are pruned 
from the ―event extraction‖ phase. 

Detection Rate and False Alarms 

If we take the ―best‖ performance of each classifier to be 

the highest true positive rate achieved while simultaneously 

having a false positive rate less than 1% we achieve sensi-

tivities of 85%, 89%, 91%, 96%, and 99% for each fold 

with a mean of 92%. The respective false positive rates are 

0.3%, 0.6%, 0.3%, 0.5%, and 0.8% with a mean of 0.5%. 

These points are marked in Figure 3 with a circle and 

graphed across each fold, A-E. When comparing to other 

cough detection algorithms, however, the false positive 

rates cannot be directly compared. This is because each 

algorithm uses a slightly varied sampling window of the 
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Figure 3.  Receiver operating characteristic (ROC) for models 

trained on five folds of our dataset. “Good” tradeoff points in 

the ROC are also graphed to the right in column form.  



 

 

 

audio data. Instead, the false alarms per hour are a better 

indication of the number of falsely classified sounds one 

can expect. The respective number of false alarms per hour 

for each fold is 7, 20, 17, 29, and 12 with a mean of 17. We 

also note that one can reduce this value by trading off mod-

el parameters. For instance, the mean false alarms per hour 
can be reduced to 10.7 by trading off a mean true positive 

rate of 82%, which is comparable to the state of the art in 

automated cough detection [4, 26, 27]. Alternatively, a 

trained annotator can review the collected events and dis-

card false positive sounds, as is done with some of the ex-

isting cough detection systems. For our dataset this would 

require reviewing, on average, 1.4 minutes of audio per 

hour of recording. This time could be further reduced by 

having the annotator only review identifications that had 

low confidences from the classifier.  

Confusions 

An analysis of the false positives in the dataset reveals that 

coughs are most often confused for ―noise‖ labels (56% of 

the actual false positive) and for ―speech‖ labels (43% of 
the false positives). The remaining 1% of false positives are 

distributed among ―breathing‖ and ―laughter‖ events. This 

further stresses the importance of disguising or suppressing 

the audio for false positives. Roughly half of the false posi-

tives to be reviewed would be speech that the wearer never 

intended to be heard, even by a medical professional. 

PRIVACY AND FIDELITY CHARACTERIZATION 

We now turn our discussion to assessing how well the com-

ponents actually disguise speech, while also preserving the 

fidelity of received coughs. We designed two psychoacous-

tic experiments aimed at quantifying each design goal. Al-

though our classifier only required 10 bases for high preci-

sion, we used 5, 10, 15, 25, and 50 bases in the reconstruc-

tion to fully characterize the privacy/fidelity tradeoff.  

Experiment 1: Speech Intelligibility  

During the first experiment, listeners were asked to dictate 
the words in 8 segments of speech from our audio corpus. 

Each segment was 5 seconds long and contained a different 

speaker (4 male, 4 female). The complication of the speech 

audio ranged from 4 words up to 21, in various environ-

mental settings from study group conversations, people 

walking and talking, to quiet settings with almost no envi-

ronmental noises. Listeners performed the test using a cus-

tom interface. They were allowed to listen to the speech 

segment as many times as they wanted and review and 

change their dictations at any time. Listeners were also en-

couraged to give their best guess at the speech, even if they 

felt it was not wholly intelligible. For instance, if they could 
only spot a few keywords, they were asked to write those 

dictations in and any words that they could possibly discern 

from the context of the keyword.  

Each listener heard either a clean version of the speech 

segment (baseline) or one of five reconstructed versions 

using 5, 10, 15, 25 or 50 components. 24 observers dictated 

the speech with, on average, each degraded recording being 

listened to by 4 listeners. Each listener reported that they 

were English speakers (n=20) or fluent in the English lan-

guage (n=4). After completion, two reviewers (one author, 
one third-party) analyzed all the dictations assessing the 

number of words that listener’s dictated incorrectly. There 

was good agreement between reviewers; out of the 1,932 

words looked at by each reviewer there were only 32 dis-

crepancies. 

Intelligibility Results 

Figure 4 shows the results of the word error rate as a func-

tion of the number of eigenvectors used in reconstruction. 

The privacy of speech is well protected when using 15 or 

less components (i.e., >95% of the words are unintelligi-

ble). At 25 components, the word error rate begins to drop. 

However, even at 50 components, the listener’s are still 

only able to spot keywords in the phrases for a total word 

error rate of 76%. We found on average, that longer speech 
segments were more difficult to reconstruct. Even at 50 

components, if the number of words in the phrase was 

greater than 15, one can expect a word error rate of about 

92%. The shorter phrases (less than 7 words) can some-

times be guessed by spotting keywords and inferring sur-

rounding words, with error rates of about 65% using 50 

components.  

Experiment 2: Assessing Cough Fidelity 

In the second experiment users performed a single stimulus 

two-alternate forced choice (2-AFC) task in which they 

were presented with two cough sounds. One was a clean 

version of the original cough sound, and the other was a 

reconstructed version of the same cough sound. The order 

of the cough sounds was randomized. Users where given 
two tasks: (1) they were asked to judge which cough 

sounded more natural, and (2) they were asked to rate the 

similarity of the coughs in terms of fidelity on a five point 

Figure 4. (Top) Word error rate plotted versus the number of 

model components. (Bottom) Similarity scores (z-scores) of re-

constructed cough sounds; error bars are the interquartile range. 
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scale which ranged from ―very different,‖ ―somewhat dif-

ferent,‖ ―somewhat similar,‖ ―very similar,‖ to ―same 

cough sound.‖ If they decided the coughs were the same, 

their judgment of which cough sounded more natural was 

discarded. Preferences were entered using radio buttons that 

defaulted to a position of ―not set‖ for each 2-AFC trial. 
The listeners could go back and forth between tests (the 

interface remembers and displays their answers as they go 

backwards and forwards through each forced choice) and 

they could listen to any trial as many times as they wished 

even as they reviewed their responses. The listeners were 

informed that the cough sounds were of the same recording, 

but with varying degrees of distortion. For some trials the 

listener was presented with two reference cough sounds.  

A total of 12 cough recordings were chosen for the experi-

ment (6 male, 6 female) which occurred in a variety of en-

vironments from conference rooms and atriums to outdoor 

settings. The length of the audio segments ranged from 1-2 
seconds. Half of the sounds were chosen at random from 

the corpus and half were selected by hand to be sure a wide 

range of cough types were chosen. Each cough sound was 

reconstructed using 5, 10, 15, 25, and 50 components, re-

sulting in 60 different cough recordings in addition to the 

12 original. One reason we chose a small, but diverse num-

ber of cough sounds was so we could investigate whether 

any particular cough is always reconstructed with high or 

poor fidelity using a relatively small number of listeners. 

Each listener reviewed 30 cough sounds per session. After 

the experiment, we converted each observer’s similarity 
selections into z-scores. We removed the first five res-

ponses from each listener to account for any learning curve 

the listener may have had. In all, 27 listeners participated 

for a total of 810 subjective ratings. On average, each de-

graded cough sound was rated by 13 listeners. 

Fidelity Results 

Figure 4 shows the results of the second experiment. The 

mean similarity (z-score) is plotted versus the number of 

components used in the reconstruction. Error bars are 

shown around the 25th and 75th percentiles of the z-scores. 

In all cases the participants could distinguish which cough 

sounds had been reconstructed and which were natural (i.e., 

no cough sound was rated as indistinguishable). This result 

is not wholly surprising. Manipulating the spectrogram of-
ten results in audible artifacts that are easy for the listener 

to cue in upon [32, 46]. The degree of similarity, then, be-

comes the quantity of interest. 

The threshold of similarity was found to be about 15 com-

ponents. Coughs reconstructed with less than 15 compo-

nents were found to almost always be rated as dissimilar. 

Coughs with 25 to 50 components were found to almost 

always be rated similar or very similar. A Wilcoxon rank 

test [43] can be used to validate when there is a significant 

jump in the median similarity score (at 95% confidence). 

The test reveals that there is a significant difference in the 
median scores for using 5-10 components versus 25-50. 

There is also a significant difference for cough sounds with 

5-25 versus 50 components. All other comparisons reveal 

the null hypothesis cannot be rejected with high confidence.  

These findings reveal, at 15 components, one can expect 

about half the coughs to have ―good‖ fidelity while simul-

taneously making almost all speech unintelligible. Higher 

similarities can be achieved, however, if one is willing to 
sacrifice the privacy of some keywords in their conversa-

tions. At 50 components, for example, the resulting cough 

will almost always be ―similar‖ or ―very similar,‖ while 

making only certain words intelligible. It is likely that the 

context of the conversation will remain hidden to a listener. 

This is in contrast to the cough event detection, which only 

required 10 components.  

DISCUSSION AND LIMITATIONS  

It is of note that the classifier never confused a bystander’s 

cough for a cough of the subject. This is likely because of 

the mobile phone placement. One of the reasons we chose 

to deploy the mobile phone around our participants’ neck or 

in the shirt pocket is because these positions provide a short 

distance between the microphone and subject’s mouth and 
should receive the best audio quality. However, they might 

not be the best positions in terms of comfort. According to 

our participants, the best positions in terms of comfort 

would be the pants pocket or in bags/purses. Audio signals 

recorded at these positions will likely require the use of a 

lapel microphone or Bluetooth headset. 

One limitation of this study is that we only look at the de-

tails of a cough detection algorithm, without a complete 

system. We are currently porting our feature extraction al-

gorithm over to a T-Mobile G1 mobile phone platform (ra-

ther than an offline calculation). Our initial cough extrac-
tion is threshold based and should easily run on a mobile 

device. This simple extraction algorithm prevents us from 

sending frivolous features to our server for classification. 

However, this does not account for battery life of the phone, 

only the real time aspects. We are currently looking at 

hardware accelerations and algorithmic approximations that 

can extend the battery life of a system running our algo-

rithm. Additionally, we are exploring using our algorithm 

on phones as they charge overnight to assess the cough fre-

quency patterns of subjects while they sleep. Traditionally, 

listening devices in the bedroom or at home have been con-

sidered invasive, but our algorithm, because it preserves 
speech privacy, may mitigate these concerns.  

This last point brings up an interesting opportunity for fu-

ture work. Our algorithm has been shown to preserve 

speech privacy, but there are other forms of private audio 

information that may still be vulnerable. For instance, envi-

ronmental noises may still be intelligible, exposing location 

or activities. Also, it is unclear whether our algorithm can 

hide who is speaking in an audio stream and the gender of 

speakers. These are important avenues for future research. 

Although we were able to show that subjective listening 

tests reveal increasing sound similarity, our work is largely 
informed by working with pulmonologist. More work is 



 

 

 

still needed to find the effective tradeoff for cough quality 

from the medical community. It is important to quantify the 

number of components that can capture key features of the 

cough that physicians consider important for diagnosis.  

CONCLUSION 

In this paper, we present a mobile phone-based sensing and 

inference technique for detecting and counting individual 

coughs using a commodity mobile phone’s built-in micro-

phone in a real world environment. We implement PCA on 
audio spectrograms for classification and for retaining 

cough fidelity, while simultaneously disguising and sup-

pressing speech sounds. Our system attempts to address all 

of the design goals for an objective cough monitoring sys-

tem as outlined by the medical community: accuracy, low 

false positives, privacy preservation, mobility, compact-

ness, and unobtrusiveness [14, 20, 30]. 
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