
Performance-Analysis-Based Acceleration of Image Quality Assessment

Thien Phan∗, Sohum Sohoni†, Damon M. Chandler∗,1
∗Laboratory of Computational Perception and Image Quality

†Laboratory of Computer Architecture Education, Simulation, and Research
School of Electrical and Computer Engineering

Oklahoma State University
Stillwater, OK 74078 USA

(thien.phan,sohum.sohoni,damon.chandler)@okstate.edu

Eric C. Larson
DUB Group

Department of Electrical Engineering
University of Washington
Seattle, WA 98195 USA

eclarson@uw.edu

Abstract—Two stages are commonly employed in modern
algorithms of image/video quality assessment (QA): (1) a local
frequency-based decomposition, and (2) block-based statistical
comparisons between the frequency coefficients of the reference
and distorted images. This paper presents a performance
analysis of and techniques for accelerating these stages. We
specifically analyze and accelerate one representative QA algo-
rithm recently developed by the authors (Larson and Chandler,
2010). We identify the bottlenecks from the abovementioned
stages, and we present methods of acceleration using integral
images, inline expansion, a GPGPU implementation, and other
code modifications. We show how a combination of these
approaches can yield a speedup of 47x.

Keywords-Image quality, video quality, integral image,
GPGPU, acceleration, code optimization.

I. I NTRODUCTION

Image and video quality assessment (QA) have begun to
play important roles in the design, operation, and validation
of numerous systems. However, as QA moves from the
research community into more mainstream applications, the
bottlenecks of current algorithms are starting to prevent
widespread adoption. Indeed, modern image QA algorithms
such as VIF [1], MS-SSIM [2], and MAD [3] are quite
effective at QA, but they require a relatively large run-time—
on the order of seconds. As these algorithms are adapted to
process frames of video (e.g., MOVIE [4], ST-MAD [5]),
run-time issues become of greater importance.

The bulk of computation and run-time of QA algorithms
occurs in two stages: (1) local frequency-based decomposi-
tions of the reference and distorted images; and (2) statistical
comparisons between the local frequency coefficients, typi-
cally implemented in a block-based fashion. For example, in
MS-SSIM an image is decomposed into different scales and
local image statistics are compared in a moving window.
In VIF, wavelet subband covariances are computed and
can be compared via a sliding window approach. While
acceleration of local frequency decompositions has received

1This material is based upon work supported by, or in part by, the
National Science Foundation Award #1054612, and by the U.S.Army Re-
search Laboratory (USARL) and the U.S. Army Research Office (USARO)
under contract/grant number W911NF-10-1-0015.

considerable attention as a general image processing tool
(e.g., [6], [7]), the acceleration and parallelization of local
statistical comparisons has largely been ignored.

In this paper, we present a performance analysis of and
methods for accelerating a representative QA algorithm
recently developed by the authors, MAD [3]. MAD employs
a log-Gabor decomposition and a comparison of local statis-
tical differences between blocks of log-Gabor coefficientsof
the reference and distorted images; it is thus an appropriate
representative algorithm for the stages performed in QA.

We identify the bottlenecks in MAD, and we present four
methods for accelerating the algorithm: (1) Using integral
images for the statistical computations; (2) using proce-
dure expansion and strength reduction; (3) using a general-
purpose-GPU (GPGPU) implementation of the log-Gabor
decomposition; and (4) precomputation and caching of the
log-Gabor filters. As we will show, a combination of these
approaches can result in a nearly 47x speed increase. While
our implementation is specific to MAD, our methodology is
straightforward to apply to a variety of QA algorithms; the
analysis and results presented here can also provide insight
into how other related algorithms might be accelerated.

II. MAD: D ESCRIPTION ANDPERFORMANCEANALYSIS

A. Description of the MAD Algorithm

The MAD algorithm consists of two assessment stages:
(1) a detection-based stage, which estimates quality based
on the extent to which thedistortions are visible; and (2) an
appearance-based stage, which estimates quality based on
the extent to which theimage is recognizable.

Due to space limitations, we refer readers to [3] for further
details of the detection-based stage. Our main focus in this
paper is on the appearance-based stage, which employs a
computational neural model using a log-Gabor filterbank
with both even-symmetric and odd-symmetric filters applied
using the FFT [8]. The even and odd filter outputs are
combined to yield magnitude-only subband values. The
variance, skewness, and kurtosis computed for each16×16
block (with 75% overlap between blocks) of each subband
of the original image are compared to corresponding values



Table I
SYSTEM 1 WAS USED FOR THE MAIN PERFORMANCE ANALYSIS;

SYSTEMS 2 AND 3 WERE USED FOR THE ADDITIONAL TIMING RESULTS

SHOWN IN TABLE II).

CPU and RAM OS and Matlab

System 1 Intel Core 2 Quad Q9400 2.66 GHz Win. 7, 64-bit
(Desktop) 8 GB 1333-MHz DDR3 Matlab 2011a

System 2 Intel Core 2 Duo T6400 2 GHz Win. 7, 32-bit
(Laptop) 4 GB 1333-MHz DDR3 Matlab 2009a

System 3 Two Intel Xeon 5050 3 GHz Win. Server 2003
(Server) 5 GB 667-MHz DDR2 Matlab 2009a

computed for the distorted image. The differences between
these statistics are then collapsed via a 2-norm to yield a
scalar output corresponding to appearance-based differences.

B. Performance Analysis

The original version of MAD was implemented in Matlab,
with C++ MEX files used for computation of the block-
based statistics. To identify bottlenecks, we performed a
timing analysis using the profiler in Matlab. The MEX
files were compiled using Microsoft Visual C++ 2008 using
Matlab’s default optimization flags/O2 /Oy-.

The performance analysis was executed on a Dell
Inspiron 580 desktop, and for verification on two ad-
ditional systems. Table I lists the specifications of
these systems (additional details can be found here:
http://vision.okstate.edu/MAD/Acceleration/).

We ran MAD on 180,512 × 512-pixel images from the
CSIQ database [9]. Figure 1 shows the average results from
this analysis for System 1 (similar distributions of time were
observed on all three systems); the average total execution
time per image is 55.85 seconds. As shown in Figure 1(a),
over 98% of this time is spent in the appearance-based
stage. This stage consists of three sub-stages: a log-Gabor
decomposition, computation of block-based statistics of the
log-Gabor subbands to generate statistical difference maps,
and combining/collapsing the maps into a final scalar output.
As shown in Figure 1(b), computation of the statistical
difference maps alone consumes over 93% of MAD’s to-
tal execution time. Thus, performance improvement should
focus on this part of the algorithm.

III. I NTEGRAL IMAGES AND INLINE EXPANSION

A. Integral Images

To accelerate the computation of the statistical difference
maps, we employ and build upon a technique calledintegral
images originally developed in the context of computer
graphics [10]. The integral image, which is also known as the
summed area table, is an algorithm for quickly computing
the sum of values within any block of an image.

Let I denote an image (or subband) for which one needs
to compute block-based sums. The integral imageM has the

Load images and 

convert to 

grayscale 

≈ 0.01% 

Compute 

Detection-Based 

Difference Map 

1.53% 

Compute 

Appearance-Based 

Difference Map 

98.46% 

Combine two 

maps and 

collapse 

≈ 0.01% 

Log-Gabor filters with 

5 scales, 4 orientations 

Compute 20 statistical 

difference maps 

Combine 20 

maps 

(a) 

(b) 4.62% 93.32% 0.52% 

Figure 1. (a) Profiling analysis showing average execution time in each
stage for System 1; the average total execution time per image is 55.85
seconds. (b) Breakdown of the bottleneck, the appearance-based stage.

same dimensions asI, but with each pixel value at position
(x, y) given by:

M(x, y) =

y
∑

y′=1

x
∑

x′=1

I(x′, y′). (1)

Given M as defined above, the sums of all pixel values
located in the rectangle (x1,y1), (x2,y2) is given by

s = M(x2, y2)+M(x1, y1)−M(x1, y2)−M(x2, y1). (2)

A further reduction in computation can be achieved by
capitalizing on the fact that MAD does not need to compute
the statistics ofevery block. MAD calculates the statistical
maps using blocks of size16 × 16 pixels, with 12 pixels
of overlap between neighboring blocks. Accordingly, we do
not need the entire integral image, just subsets of it required
to support the computation of the statistics within these
particular blocks. In this case, the integral imageM has
dimensions 1/4 of the size ofI, and is given as follows:

M(x, y) =
∑

y′≤4y

∑

x′≤4x

I(x′, y′). (3)

Unfortunately, integral images were designed to compute
a block’s sum, whereas MAD requires standard deviation,
skewness, and kurtosis. Specifically, letb denote aN1×N2

block of I. The standard deviation, skewness, and kurtosis
of b are given by

σb =

√

1

N1N2

∑

i

(

bi − b̄

)2

, (4)

ςb =
1

N1N2σ
3

b

∑

i

(

bi − b̄

)3

, (5)

κb =
1

N1N2σ
4

b

∑

i

(

bi − b̄

)4

, (6)

wherebi and b̄ denote theith pixel and mean ofb.
We developed an extension of the integral image al-

gorithm to accelerate the computation of Equations (4)-
(6). This modification requires computing integral images
for the image and powers of the image up to power 4.



Table II
TIMING RESULTS OF VARIOUS MODIFICATIONS. THE FIRST AND

SECOND COLUMNS FOR EACH SYSTEM SHOW RUN-TIME IN SECONDS

AND SPEEDUP, RESPECTIVELY. II = I NTEGRAL IMAGE; IE = INLINE

EXPANSION OF POW .

Mod. System 1 System 2 System 3 Average
None 55.8 1.0x 56.42 1.0x 62.23 1.0x 58.15 1.0x

II 6.77 8.2x 8.84 6.4x 10.98 5.7x 8.86 6.6x
IE 3.77 14.8x 7.90 7.1x 9.45 6.6x 7.04 8.3x

II + IE 3.21 17.4x 5.46 10.3x 7.38 8.4x 5.35 10.9x

Specifically, letM1, M2, M3, andM4 denote the integral
image computed forI, I2, I3, andI4, respectively. Lets1,
s2, s3, and s4 denote sums of the values (over the same
coordinates as blockb) in I, I2, I3, andI4, respectively.

To compute the standard deviation, we manipulate Equa-
tion (4) as follows:

σb =

√

1

N1N2

∑

i

(

b2

i
− 2bib̄+ b̄2

)

,

=

√

√

√

√

1

N1N2

(

∑

i

b2

i
− 2
∑

i

bib̄+N1N2b̄
2

)

,

=

√

1

N1N2

(

s2 − 2s1
s1

N1N2

+N1N2

(

s1

N1N2

)2
)

,

=

√

1

N1N2

(

s2 −
s2
1

N1N2

)

.

Similar manipulation of Equations (5) and (6) result in the
following formulas forςb andκb.

ςb =
1

N1N2σ
3

b

(

s3 − 3
s1s2

N1N2

+ 2
s31

(N1N2)
2

)

,

κb =
1

N1N2σ
4

b

(

s4 − 4
s1s3

N1N2

+ 6
s2s

2

1

(N1N2)
2
− 3

s41

(N1N2)
3

)

,

The results of applying this modification will be presented
shortly (see Section III-C).

B. Procedure Inlining and Strength Reduction

In the original implementation of MAD, Equations (4),
(5), and (6) are implemented using thepow function from
the Standard C++ Library. Another avenue for accelerating
the computation of the statistics is to replace the function
call with a direct multiplication.

We therefore replaced the calls topow with an inline
expansion involving a direct multiplication (e.g.,pow(x,3)
was replaced withx*x*x). This modification not only saves
the overhead related to the procedure call, but also offers
strength reduction.

C. Results

The timing results of these modifications are shown in
Table II. Both approaches clearly provide a significant
acceleration. However, it is important to note that the integral

Load images and 

convert to 

grayscale 

≈ 0.1% 

Compute 

Detection-Based 

Difference Map 

26.74% 

Compute 

Appearance-Based 

Difference Map 

73.16% 

Combine two 

maps and 

collapse 

≈ 0.1% 

Log-Gabor filters with 

5 scales, 4 orientations 

55.27% 

Compute 20 statistical 

difference maps 

7.60% 

Combine 20 

maps 

10.29% 

(a) 

(b) 

Figure 2. Updated version of Figure 1; the average total run-time per image
is 3.21 secs (System 1). The log-Gabor filtering is now the bottleneck.

image (II) and inline expansion (IE) offer different forms of
acceleration. The II aims to minimize the number of power
computations, whereas the IE aims to make each power
computation faster. Thus, even though the results shown
in Table II indicate that the IE offers more acceleration,
the II can offer more acceleration when the block size or
number of blocks increases.1 It is therefore prudent to use
both approaches. Indeed, as shown in Table II, when both
modifications are employed, MAD is accelerated by nearly
11x on average (17x for System 1).

Figure 2 shows an updated version of Figure 1, indicating
the distribution of time required by each portion of MAD
when using II+IE. These latter results indicate that the
bottleneck is no longer in the computation of the statistics,
but is rather in the computation of the log-Gabor decompo-
sition. In the following section, we describe a GPGPU-based
acceleration of the log-Gabor decomposition.

IV. GPGPUAND OTHER CODE OPTIMIZATIONS

MAD’s log-Gabor decomposition is performed for both
the original image and the distorted image using twenty log-
Gabor filters which span five scales and four orientations;
the filtering results in 40 total subbands (20 subbands each
for the original and distorted image). This process is well
suited to a parallel implementation because each subband
can be computed separately from all other subbands.

In MAD, the log-Gabor decomposition is implemented
entirely in Matlab. To parallelize this decomposition, we
employed Matlab’s GPGPU (CUDA) facilities. MATLAB
treats the functions used in the log-Gabor code as GPU
functions. Because the GPGPU implementation requires
specific hardware, only System 1 was tested. This system
used an NVIDIA GeForce GTX 560 Ti with 1 GB of RAM
with Version 8.17.12.8026 of NVIDIA’s driver.

Table III shows the results of the GPGPU implementation
(second row) along with two additional code modifications.

1For example, when using16×16 blocks with 14 pixels (rather than 12
pixels) of overlap between neighboring blocks, the time required for the II
approach increases by approximately 10%, while the time required for the
IE approach increases by approximately 190%.



Table III
TIMING RESULTS OFGPGPUAND OTHER CODE MODIFICATIONS

(SYSTEM 1 ONLY). CO = CODE OPTIMIZATION ; IE-DT = INLINE

EXPANSION OF POW IN MAD’ S DETECTION-BASED STAGE

Modification
Run-time
in secs.

Speedup
vs. Orig.

Speedup
vs. II+IE

II + IE (repeated from Table II) 3.21 17.4x 1.0x
II + IE + GPGPU 2.04 27.3x 1.6x

II + IE + GPGPU + CO 1.75 31.9x 1.8x
II + IE + GPGPU + CO + IE-DT 1.19 47.0x 2.7x

Load images and 

convert to 

grayscale 

≈ 0.1% 

Compute 

Detection-Based 

Difference Map 

47.68% 

Compute 

Appearance-Based 

Difference Map 

52.07% 

Combine two 

maps and 

collapse 

≈ 0.2% 

Log-Gabor filters with 

5 scales, 4 orientations 

22.32% 

Compute 20 statistical 

difference maps 

12.68% 

Combine 20 

maps 

17.07% 

(a) 

(b) 

Figure 3. Updated version of Figure 2 using all accelerationtechniques;
the average total execution time per image is 1.19 seconds. Thelog-Gabor
decomposition has reduced to 22% of the total time (previously55%).

The third row shows the results when the log-Gabor code
is further optimized by precomputing the filters and caching
them in RAM. The last row shows the results of applying
inline expansion of thepow function to all parts of MAD
(including the preprocessing and detection-based stages).
When all of these acceleration techniques are employed,
MAD’s run-time is accelerated by 47x.

When combined with II+IE, the GPGPU implementation
provides a lower-than-expected 1.6x speedup over II+IE
alone. The GPGPU implementation required copying the
images to the GPU, and then copying the resulting log-Gabor
subbands from GPU back to the CPU for the statistical
computations. We suspect that the overhead involved with
these memory transfers reduced the overall performance
gain. This finding is consistent with our previous study on
CUDA [11], which revealed that the memory bandwidth
between the system and the GPU can create a bottleneck
that reduces the potential gains.

Figure 3 shows an updated version of Figure 2, indicating
the new distribution of times. Notice that the log-Gabor
decomposition has been reduced from its previous value
of approximately 55% to the new value of 22%. The
appearance-based and detection-based stages of MAD now
consume a more balanced share of the execution time.

V. CONCLUSION

This paper presented techniques for accelerating the two
most computationally expensive stages employed in many
QA algorithms: local frequency-based decomposition, and

local statistical comparisons between the frequency coeffi-
cients of the reference and distorted images. We specifically
analyzed and accelerated one representative QA algorithm,
MAD [3]. The results of our performance analysis showed
that the bottlenecks stem from these stages, and we presented
four methods of acceleration. Although this study focused
on one specific algorithm, our methodology and acceleration
techniques are applicable to a variety of QA algorithms.

We are currently in the process of extending this work
through the use of performance counters and other profiling
techniques. Such an analysis will yield further insight into
the hardware resource usage of the different stages. Another
avenue for acceleration that we are currently investigating is
to change the algorithm in an effort to reduce its computa-
tional complexity (e.g., reducing the number of the filters
used in the decomposition, or simplifying the statistical
computations used to compare the coefficients). These latter
approaches are likely to change the output of the algorithm;
however, it is possible to still achieve a reasonable tradeoff
between predictive performance and overall run-time.

REFERENCES

[1] H. R. Sheikh and A. C. Bovik, “Image information and visual
quality,” IEEE Transactions on Image Processing, vol. 15, no.
2, pp. 430–444, 2006.

[2] Z Wang, E P Simoncelli, and A C Bovik, “Multiscale
structural similarity for image quality assessment,” inProc
37th Asilomar Conf on Signals, Systems and Computers,
Pacific Grove, CA, Nov 9-12 2003, vol. 2, pp. 1398–1402,
IEEE Computer Society.

[3] E. C. Larson and D. M. Chandler, “Most apparent distor-
tion: full-reference image quality assessment and the role of
strategy,”Journal of Electronic Imaging, vol. 19, no. 1, 2010.

[4] K. Seshadrinathan and A.C. Bovik, “Motion tuned spatio-
temporal quality assessment of natural videos,”Image Pro-
cessing, IEEE Transactions on, vol. 19, no. 2, pp. 335 –350,
Feb 2010.

[5] C. Vu and D. M. Chandler, “Main subject detection via
adaptive feature refinement,”Journal of Electronic Imaging,
vol. 20, no. 1, March 2011.

[6] Nikolaus Voßand B̈arbel Mertsching, “Design and implemen-
tation of an accelerated gabor filter bank using parallel hard-
ware,” inProceedings of the 11th International Conference on
Field-Programmable Logic and Applications, London, UK,
2001, FPL ’01, pp. 451–460, Springer-Verlag.

[7] I.T. Young, L.J. van Vliet, and M. van Ginkel, “Recursive
gabor filtering,” Signal Processing, IEEE Transactions on,
vol. 50, no. 11, pp. 2798 – 2805, nov 2002.

[8] P. D. Kovesi, “MATLAB and Octave functions for
computer vision and image processing,” Centre for Ex-
ploration Targeting, School of Earth and Environment,
The University of Western Australia, Available from:
<http://www.csse.uwa.edu.au/∼pk/research/matlabfns/>.

[9] E. C. Larson and D. M. Chandler, “Categorical image quality
(csiq) database,” Online, http://vision.okstate.edu/csiq/.

[10] Franklin C. Crow, “Summed-area tables for texture mapping,”
SIGGRAPH Comput. Graph., vol. 18, pp. 207–212, Jan 1984.

[11] B. Gordon, S. Sohoni, and D. Chandler, “Data handling ineffi-
ciencies between cuda, 3d rendering, and system memory,” in
Workload Characterization (IISWC), 2010 IEEE International
Symposium on, dec. 2010, pp. 1 –10.


