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The capability of measuring human performance objectively is hard to overstate, especially in the context of the instructor
and student relationship within the process of learning. In this work, we investigate the automated classification of cognitive
load leveraging the aviation domain as a surrogate for complex task workload induction. We use a mixed virtual and physical
flight environment, given a suite of biometric sensors utilizing the HTC Vive Pro Eye and the E4 Empatica. We create and
evaluate multiple models. And we have taken advantage of advancements in deep learning such as generative learning,
multi-modal learning, multi-task learning, and x-vector architectures to classify multiple tasks across 40 subjects inclusive of
three subject types — pilots, operators, and novices. Our cognitive load model can automate the evaluation of cognitive load
agnostic to subject, subject type, and flight maneuver (task) with an accuracy of over 80%. Further, this approach is validated
with real-flight data from five test pilots collected over two test and evaluation flights on a C-17 aircraft.
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1 INTRODUCTION AND MOTIVATION
Context-aware computing is an operative force that facilitates ubiquitous computing. Through context, a machine
can be rendered capable of response, projection, and adjustment in support of the human-in-the-loop, which
increases the “[informational] bandwidth” [26] of an interaction between a human and a machine. Within the
UbiComp community Yvonne Rogers highlighted augmented learning environments as a key application area
within the UbiComp community, further describing the classroom is an under-explored area in UbiComp research
[80]. Moreover, objectively measuring internal states such as cognitive load has “significant implications for
adaptive automation” [17], such as adaptive aiding or adaptive task allocation [84]. Haapalainen et al. pointed out
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the value in understanding and measuring such latent human metrics in order to discern the best opportunity to
“proactively and seamlessly [provide] the right information at the right time” [41]. This motivates the need for
context related research in the UbiComp community that focuses on specific application areas, where context
can be defined more concretely or in areas where context has a stricter definition. In this research, we focus on
the application area of aviation.

In aviation, context- or situation-aware avionics — capable of assisting either the flight instructor or the aviator
in understanding the human-machine state [15] in real-time— is highly sought after. Instructors seek to understand
the internal context of students while they learn. This is important in assessing their development of many
diverse skills. Performance of aviators is currently assessed through instructor observation and review. Through
this observation instructors can intuit the internal context of aviators while they learn. While understanding
this latent context is considered a key (but challenging) assessment, the automated sensing of this context has
not fully materialized. By inferring context related to learning automatically, instructors and trainees can more
easily determine when mastery of a particular skill is achieved, expediting the learning process and, potentially,
improving the overall quality of learner understanding.
To this end, a way of objectively measuring cognitive load is needed. There are many works that have

endeavored to provide a solution to this problem. Until now no one has shown significant classification accuracy
across all subjects [1, 4, 17, 31, 41, 57, 64, 78]. Our contribution is a cognitive load classification model that
works inter-subject and across aviation tasks, and we provide evidence that ourmodelmay generalize
to new aviation scenarios outside the training and simulation environment.

In this research we use the aviation domain for inducing and evaluating cognitive workload. The methods and
applications used within this research are applicable to, and may be replicated within, an array of other domains
or tasks such as driving an automobile. The activities of this research involve the collection of physiological
measures relevant to aviators as they undergo simulated flight scenarios for both low and high levels of induced
workload. We propose two versions of a new method for cognitive load classification: one with fixed-width input,
and the other variable-width input. The basic structure of these models take shape through the use of x-vector
like architectures and deep, multi-modal, multi-task, and generative learning. Multiple time series modalities
from physiological sensors are encoded into a latent space. Statistics layers are calculated and passed through to
the bottleneck, and finally through to multiple task layers. The task labels are derived from subjective rating
scales — both NASA-TLX and Bedford workload were collected. Data are collected in a mixed-reality training
environment using a physical flight simulator, a virtual reality environment, and a gaze-tracking sensor for
collecting pupillometry and a wrist-worn sensor suite for capturing photoplethysmography, wrist acceleration,
peripheral skin temperature, and electrodermal activity. From these devices the multiple synchronized data
streams are classified into cognitive load. These results are compared to a more traditional classifier — random
forests. We detail our work as follows:

• We designed and carried out a human subjects experiment for aviators in a variety of flight scenarios,
discussed in Section 4.

• We introduce a methodology for aligning subjective labels in the context of cognitive load theory using
established statistical techniques.

• We investigate three competing architectures, a random forest and two deep learning classifiers, and we
show accuracy across subject, subject-type, and maneuver.

• We present our method’s generalizability through test and evaluation of the models with real-flight data
using five test pilot subjects.

Understanding the internal context of an aviator during a simulation are important aspects of the learning
experience. With an objective cognizance of human cognition, it may be possible to personalize the learning
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experience for students, expediting the educational effectiveness by maximally challenging the learner without
overloading them.

2 BACKGROUND
Because cognitive load has been explored by a number of diverse communities, our work relates to numerous
research works. We therefore divide our discussion into three key areas: (1) cognitive load, (2) measures of
cognitive load, and (3) cognitive load in aviation. We note that these research communities are not mutually
exclusive, but this categorization provides sufficient differences to motivate the various implications of our work.

2.1 Cognitive Load
There are mixed views on what cognitive load or workload is — note that these two terms are often used
interchangeably. In the context of aviation, Cooper and Harper defined workload as “the amount of effort and
attention, both physical and mental, that a pilot must provide to attain a given level of performance” [22]. Where
physical workload is described as the “effort expended by the pilot in moving or imposing forces on the controls
during a specified piloting task” [22]. Mental workload, being much harder to quantify and separate, was described
in the amount of mental compensation required by a pilot to complete a task [22]. Roscoe and Ellis found that 80%
of military and commercial pilots view workload “in terms of effort.” They found that when pilots rate the amount
of workload they assess it from the perspective of “spare capacity.” Therefore, they redefined workload as “the
integrated physical and mental effort generated by the perceived demands of a specified piloting task” [83]. Their
Bedford Workload scale emphasizes the available human resources as it pertains to workload. The creators of
NASA Task Load Index (NASA-TLX), Hart and Staveland, defined workload in terms of “a hypothetical construct
that represents the cost of accomplishing mission requirements for the human operator” [45, 46]. In Hart’s paper,
titled NASA TLX; 20 years later, she pointed out a prevailing theme with workload in the psychological literature.
Workload in literature has many interpretations and it is a “testament to the complexity of the construct” [45].
One such definition: cognitive load can be described as the load that a task or activity places on an individual’s
working memory [7, 17, 52]. Therefore, given the disagreements amongst subject matter experts, it is no surprise
that test subjects would have similar and yet diverse thoughts and opinions about how they perceive workload
[45]. Thus, in attempting to build a classifier that works across subjects, this can present an obstacle.
As with cognitive load, working memory has varying definitions of its own. Still, it can be thought of as a

cognitive system centered around short-term memory and the mental processes involved — “holding information
in [the] mind and mentally working with it” [27]. Baddeley et al. describes working memory as “multiple
specialized components of cognition that allow humans to comprehend and mentally represent their immediate
environment, to retain information about their immediate past experience, to support the acquisition of new
knowledge, to solve problems, and formulate, relate, and act on current goals” [6]. Fuster describes working
memory in the context of neuroscience and phenomenology as “sustained attention focused on an executive
cognit for the processing of prospective action” [33]. That is, working memory can be thought of as “attention
focused on an internal representation” [33]. The limitations of working memory have been heavily explored
[3, 5, 7, 16, 21, 24, 52]. The idea of a limited working memory can be traced back to George A. Miller [66].
Miller suggested that, in general, the human processing capability is limited to near seven elements. That is, it is
estimated that humans can recall up to seven numbers in their immediate, respective memories before loss. It has
been shown that working memory capacity can refer to either short-term memory limitations, mental processing
power, or both [19, 20, 24, 58, 68, 69, 87, 104] — therefore it is more apt to refer to memory capacity as the mental
bandwidth of working memory.
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2.2 Measures of Cognitive Load
There are two key ways to measure or approximate cognitive load, subjectively and objectively. We discuss each
in turn as it relates to our research approach.

2.2.1 Subjective Measures. These measures often vary. Because subjective measures are rating scales, they
are based on the assumption that people can, to a certain degree, reliably self-evaluate and report the mental
effort required to complete a task [71]. Pass et al. notes that this has been demonstrated on several occasions
[17, 45, 46, 72]. Moreover, subjective rating methods used most often target overall workload as these techniques
usually involve a questionnaire that is delineated by one or more semantically separable scales. In our research,
we also adopt the idea that there are semantically separable scales for aviators reporting their workload via
questionnaire. Pass et al. further noted that while most scales are multi-dimensional, using variables such as
“mental effort, fatigue, and frustration” [71], single-dimension scales have been shown to be sensitive, valid, and
reliable [34, 74]. In this work, we utilize both the NASA-TLX (multi-dimensional) and the Bedford Workload
(uni-dimensional) scales to measure the overall workload. NASA-TLX defined a weighting scheme that can
be applied, which was intended as a method to reduce subject variability and increase sensitivity. A common
modification is to not use this weighting scheme at all — calling it Raw TLX (RTLX). Interestingly, there have
been mixed results with the use of the weighting scheme [45], showing evidence the that scheme works [47],
or that it doesn’t work [63], or that it has no effect [10]. In this research we have chosen to use RTLX for
time considerations—reducing the intrusion of the rating on the ongoing experiment and reducing the time
commitment for participants.

2.2.2 Objective Measures. Like their subjective counterpart, these methods also vary. They are evaluated in
two fundamental ways: (1) by utilizing performance data with primary and, sometimes, secondary tasks and (2)
through the use of physiological or biometric measures. Performance-based measures come in two flavors: (1)
primary task only — based on primary task performance; or (2) primary and secondary tasks — where evaluation
is concerned with the performance of the secondary task as an indicator of load induced by the primary task. In
other words, the evaluation is looking at the “spare capacity” to conduct the secondary task, given the primary
task. Typically, the secondary task is simple in nature, requiring sustained attention, but it differs from the
primary task [71]. In our initial, 10 subject, feasibility study, we looked at a secondary task as a way to drive up
the workload, but ultimately decided against it. As Pass et al. observed, “it can interfere considerably with the
primary task” [71] and, in our case, the biometric data we collected was contaminated by the secondary task.
That is, certain biometric measures would sync in time with the pilot attending to the secondary task, which is
not a realistic observation of what we would expect from the biometric data in a normal flight environment.
Physiological or biometric measures are based on the idea that evidence of cognitive or mental function is

present in psychological or biometric responses [71] — measures like heart rate variability (HRV), pupil dilation,
and galvanic skin response. These physiological markers are then evaluated as a measure of cognitive load
[9, 14, 42, 49, 73, 77, 105, 108]. Of note, Ursin and Ursin observed that such physiological measures do not measure
“imposed load,” but instead, they inform how the subject themselves perceives load, and in particular, how they
“cope with” such workload [105], which is, ideally, what we want to capture [42]. Indeed, it is possible to have
two subjects achieve the same task performance while expending discernibly different amounts of mental effort
[71]. The use of physiological measures for classification of cognitive load is a key goal of this research. Given
the previous research discussed here we can now properly formulate the following research question:

Can we accurately and reliably use multiple physiological/biometric modalities to objectively evaluate cognitive
load as latent context across subjects and across tasks?
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2.3 Cognitive Load in Aviation
Previous research in cognitive load for aviators and operators has established a relationship among cognitive
workload and various performances. In the late 1980’s a study was conducted using electroencephalogram (EEG),
heart rate (HR), and eye blinks of pilots flying 90 minute missions, a “four ship formation” [96]. Each pilot flew
the same mission in both actual flight and in the simulator. They correlated the more difficult portion of the
mission with higher HR, fewer eye blinks, and increased EEG activity for both the simulator and the aircraft, an
A7. This same pattern of correlation was found irrespective of wing position (pilot lead vs wing-man positions
within the formation). However, the amplitude of this pattern was reduced within the simulator, as the lowest
HRs and highest blinks were recorded. “These data [validates] the fact that physiological measures are useful
indices of pilot workload in actual flight conditions, and can be used to compare flight vs simulator missions”
[108].
During the first decade of the twenty-first century, cognitive load in personalization systems for operators

and aviators had been investigated through a number of efforts. DARPA’s vision for the AugCog program was
to develop a “robust, noninvasive, real-time, cognitive state detection technology for measuring the cognitive
processing state of the user” [89]. And through the Integrated Intelligent Flight Deck (IIFD) Project, NASA sought
a “future flight deck system [that] is aware of the vehicle, operator, and airspace system state.” They envisioned
a system that could sense and adapt to “internal and external hazards...providing key information to facilitate
timely and appropriate responses” [67]. Unfortunately, the equipment, at this time was considered too bulky,
and much of the processing was conducted offline or post-task. For modern hardware, new low-cost, wearable
devices and the pervasiveness of hardware-accelerated machine learning systems on mobile devices mitigate
these concerns. While many research experiments have been carried out showing the ideas to be promising, none
of this research has resulted in a truly robust implementation.
Salden et al. [86] validated the hypothesis that dynamic task selection leads to more efficient training. They

evaluated the differential effects of four-task selection methods on training of air traffic control trainees. They
reviewed one non-dynamic condition where learning tasks were presented in a fixed order, as well as three
dynamic conditions where presentation order was based on performance, mental effort, or both, showing that
dynamic task selection leads to more efficient training. While air traffic controls are not aircrew, they are excellent
proxies given their level of task saturation and position in the aviation domain.
A number of studies utilized electroencephalogram (EEG) and eye tracking sensors [28, 30, 60, 92]. However,

other sensors have also been evaluated including speech prosody [48], functional near-infrared spectroscopy
(fNIRS) [44], electrocardiogram (ECG), galvanic skin response (GSR), heart rate, and respiration [90], pulse
oximetry [93], and thermal Imaging [101]. The results of these works are mixed. Most works are only proof of
concept, collecting preliminary physiological data and showing that the sensor data is high fidelity, even in the
context of flight. A number of studies make broad, non-specific conclusions about the physiological signals such
as “there exist[s] significant differences in the extracted features among different subjects” [60].
Operator Performance Laboratory (OPL) has published several papers on the successes of specific sensors

[30, 60, 90, 93]. Their sensor suite consists of eye and head tracking, ECG, EEG, Electromyography (EMG), GSR,
respiration, oxygen saturation (𝑆𝑝𝑂2), facial thermography, pulse wave, and fNIRS. In [91], they sought to assess
workload with a tool that works to unify flight data with physiological measures into a single framework, in flight
and in real-time. They released a demonstration paper about their capabilities under a training task example [93].

More recently, OPL participated in the Objective Measures of Pilot Workload study, at Edwards AFB [64]. Using
data collected from seven test pilots over five real world flights in a C-17 military cargo aircraft and a simulator.
Martin et al. found they could measure intra-subject relative workload using an ECG sensor that appears to follow
the trends of workload. They use and an algorithm they call a chaotic physiological classifier, the foundation
for which is based in chaos theory [31, 64]. Because this was a workload measure relative to the subject, this
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metric needed to be normalized for each pilot’s physiological response. During flight they used ‘organic evolution’
where they scaled the workload metric by taking “the minimum and the maximum observed values of” a subset
of a pilot’s maneuvers defined by high and low workload apriori “into a 1..10 range.” Given the limited data set,
only so many conclusions can be made.

Despite the broad research completed in the areas of cognition and aviation, we must ultimately conclude that
no one has succeeded at a statistically sensitive, task-agnostic, and subject-agnostic objective pilot workload
classifier.

3 SENSING MODALITIES
In this research, we use a number of sensing modalities including photoplethysmography (PPG), electrodermal
activity (EDA), peripheral skin temperature, and wrist acceleration in conjunction with gaze metrics including
pupillary response and eye blinks. We hypothesize that combining these modalities could help provide insights
into the cognitive load of an individual more reliably than previous works. In order to keep the form factor for the
biometric measurements less intrusive, mobile, and compact, an all-in-one, wrist-worn device, the Empatica E4
wrist band, was selected. The device was issued with FDA approval for monitoring seizures, but the research-based
device is simply used as a data collection instrument. We also employ the use of the HTC VIVE Pro Eye, which
contains an integrated Tobii eye tracker that provides eye-tracking and pupillary response measurements.
We enumerate a subset of the modalities used in our study, with brief motivations for the inclusion of each

where the connection to cognitive load might not be obvious. Photoplethysmography: A number of measurements
can be inferred directly from a continuous PPG signal, including heart rate, heart rate variability (HRV), and
inter-beat interval (IBI). Kahneman showed that heart rate can be used for precise tracking of mental effort
during performance of a mental task [53]. Further, heart rate in aviators has been shown to increase with levels
of workload while in flight [81, 82, 97] and in simulators [61, 62, 70]. Electro-dermal Activity (also known as
galvanic skin response): The EDA complex can be broken down into two main components: tonic and phasic.
The tonic component is the smooth underlying, slowly changing, and continuous physiological response. The
phasic component is the rapidly changing or high frequency portion of the EDA signal. We use both in our
analyses. The gaze metrics included both pupillary response and eye blinks. Eye blink studies have demonstrated
there is a correlation among tasks that require attention and fewer eye blinks and/or shorter duration blinks
[8, 35, 102, 108]. Wrist Acceleration is used for assessing movements of the wrist in all three-axes on the throttle
hand of the pilot. The wrist acceleration can be a proxy for a number of pilot actions in the flight scenario, as it
may capture nuanced indications of activity or aircraft control. For example, Gray showed that the ’effort’ that
a pilot puts into manipulating an aircraft can be observed through the concept of inceptor pilot workload [38].
Where an inceptor is just the control inputs such as the stick. This workload is measured through a combination
of two independent variables duty cycle and aggressiveness, and they can be evaluated from the origin of the plot
between these two variables.
We build upon research for measuring cognitive workload and methods for acquisition of physiological

measures during longer duration tasks in order to make them more appropriate for learners during simulated
flight. In particular, we investigate methods of combining these modalities using deep learning techniques and
convolution, which may be able to more properly fuse the sensor information for use in a cognitive load classifier.

4 DATA COLLECTION
In order to inform the design and evaluate our cognitive load classifier, we designed a human subjects experiment
(approved by the University IRB). The overall objective was to collect a large dataset made up of various subject
physiological responses with various simulator maneuvers. This section discusses the procedures and equipment
used to collect the data needed for modeling.
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Fig. 1. BBXR mixed-reality simulator [43]

4.1 Sensors and Equipment
For the test/experiment we used a prototype simulator that was provided by L3Harris — the Blue Boxer eXtended
Reality Simulator (BBXR) [43]. The Blue Boxer is a portable, mixed reality system that uses virtual reality
(VR) and high-precision hand tracking to simulate aircraft flight characteristics for training. The BBXR system
amalgamates physical and virtual mission equipment to achieve the simulated flight environment. In addition
to the high-precision hand tracking, a key component of this system is the HTC VIVE Pro Eye VR Headset for
eye-tracking measurements. The Tobii eye tracker integrated within the HTC VIVE. It can be worn with eye
glasses and is robust to head movements because it is affixed inside the VR helmet. Using the HTC Vive Pro, we
collected gaze fixations and pupillometry at a rate of 90Hz; this included the left and right pupil diameter and
gaze convergence position. Also collected were head position and orientation, relative to the cockpit. To collect
photoplethysmography (PPG), electro-dermal activity (EDA), skin surface temperature, and wrist acceleration the
Empatica E4 was used (as previously discussed). Data from the simulator including video, gaze, and pupillometry
information were recorded. That is, it was possible to review the exact actions and viewpoint taken by the
participant while they used the BBXR.

4.2 Boundary Avoidance Tracking
In order to classify cognitive load, maneuvers of varying mental load (characteristic) are required to induce
multiple levels of load in test subjects while flying. Anecdotally, most any pilot will tell you the amount of load
on a pilot in a simulator compared to actual flight differs significantly. There are some things simulators cannot
replicate — for example, the response given the fear of hitting the ground when landing. In order to induce
pilot workload in a simulator, full engagement and buy-in are required. Therefore, we induced high levels of

Proc. ACM Interact. Mob. Wearable Ubiquitous Technol., Vol. 5, No. 1, Article 40. Publication date: March 2021.



40:8 • Justin C. Wilson, Suku Nair, Sandro Scielzo, and Eric C. Larson

workload through the use of Boundary Avoidance Tracking (BAT) theory [39], which originates from the flight
test community.
A flight test technique (FTT) is a methodology founded in engineering principles and used in flight test to

determine the characteristics of an aircraft. The test data gleaned from these techniques are typically used when
evaluating an aircraft to ensure it meets a specific pre-existing requirement [39]. Boundary avoidance tracking is
a flight test technique used to understand the “pilot-in-the-loop handling qualities” [39] such as pilot-induced
oscillation (PIO). PIO occurs when a pilot drives the “pilot/aircraft system into instability,” which can occur when
the pilot input is out-of-phase with the aircraft [37, 39]. BAT is founded in the concept of avoiding boundaries;
this occurs when a “pilot controls an aircraft to avoid a condition rather than maintain a condition” [38]. The key
here is that the pilot is tracking the aircraft state in order to avoid a condition, not maintain one. By reducing
the boundaries in a buildup manner, heavy workload can be induced as a consequence. Gray showed that as
the boundaries collapse, the allowable error decreases, and actual error decreases with increasing performance.
However, this only happens to an extent. Once the allowable error is sufficiently small, instabilities occur, and
“workload...increase[s] until the pilot can no longer accomplish the task” [39]. Gray likened this to riding a bike
across a beam or an elevated narrow path at an unsafe height. If this path is progressively made "narrower and
narrower" further along the path, the “rider will clearly increase his [or her] effort to stay” in the center of
that path. Once this path becomes narrow enough, the rider can no longer remain stable and “oscillates off the”
path [39].
The BAT workload buildup technique is defined as a process where the tolerance for error or boundary is

reduced in a step-wise manner — driving up the difficulty with each step. The pilots are expected to ‘role-play’ as
if the boundaries are safety-critical. In our studies, we have sought to drive maximal load. If a test subject found
themselves in a pilot-induced oscillation, prior to completion of the maneuver. We asked them to stay in the PIO
as long as possible until they can no longer fly the maneuver as this is a high cognitive load state.

4.3 Methodology
The data collection effort consisted of a repeated measures experiment. Each flight maneuver was flown at least
twice. The experiments were approved by the Southern Methodist University IRB, protocol H18-105-LARE. The
forty test subjects consisted of twenty-one pilots, nine operators, and ten novices. The individuals within pilot
group represented diverse flight backgrounds, all had flying experience in heavy, rotary, and/or fighter-type
aircraft. Some individuals within the pilot group had commercial flying experience. Operators included naval
flight officers (NFOs), combat systems officers (CSOs), remotely piloted aircraft (RPA) sensor operators, and
avionics technicians; all with some flight or simulation experience. Novices consisted of those who had no aircraft
experience at all. Gaze data and screen capture video were recorded for each maneuver.
The maneuvers flown during this experiment are listed as follows:

• Cruise Maneuver : the subject was instructed to fly straight and level maintaining 12,500 ft and 350 knots-
indicated airspeed (KIAS) with tolerances of ±100 ft and ±15 KIAS for five minutes.

• Normal Takeoff : the subject was positioned on the centerline of the runway 13R at (simulated) Falon Naval
Air Station (NAS) KNFL. The subject was asked to smoothly apply max power, rotate at 140 KIAS, and
pitch between seven and ten degrees nose high – climbing 3,000 ft and leveling off. Tolerances included:
±1◦, ±10 ft centerline, and ±2 deg runway heading.

• Normal Landing: the subject was positioned on final to runway 13R at Falon NAS. At decision height, 500 ft
above ground level (AGL), the subject initiated a full-stop landing. The subject was instructed to verbalize
his or her desired touchdown point upon nearing the runway. Tolerances included the nose-wheel within
10 feet of centerline.
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• Boundary Avoidance Tracking — Longitudinal Axis: the subject was positioned behind a target aircraft that
moved periodically, at random, in the vertical axis. As the target aircraft moved, the subject was asked to
keep their aircraft’s crosshair inside of a defined boundary about the target’s longitudinal cross-section.
With the progression of the maneuver, in a build up manner, the task difficulty was increased by reducing
the boundary spacing.

• Boundary Avoidance Tracking — Lateral Axis: the subject joined on a target aircraft’s right-wing. The target
moved periodically and at random intervals in the vertical axis. As the target aircraft moved, the subject
was asked to keep their aircraft’s wing or canopy handle inside of a defined boundary about the target’s
lateral cross-section. With the progression of the maneuver, in a build up manner, the task difficulty was
increased by reducing the boundary spacing.

• Air Intercept: the subject begin flying straight and level. The subject obtained a radar lock on the bandit
aircraft. They offset his/her aircraft 30◦ left or right and descend 10◦ nose low to the bandit’s altitude.
At level-off, the pilot accelerated to greater than 400 KIAS, and executed an intercept/escort profile. The
subject closed for visual identification (VID) and verification of the aircraft markings (fin flash).

For both boundary avoidance tracking (BAT) tasks, when the subject overshot a boundary, they were asked
to rapidly recover and place the aircraft back into position and continue the maneuver. The BAT tasks were
designed to increase the required pilot workload to complete the maneuver. To this end, the simulator operator
had the ability to manipulate the pitch control laws to increase/decrease the overall response of the aircraft. The
operator altered the control laws in such a manner as to ensure the subject was stabilized before stepping to the
next adjustment in a buildup manner. In practice, this ability proved more useful in compensating for inceptor
input (stick) deadband than inducing workload. The subject flew each BAT maneuver for a minimum of five
minutes.

Each subject was given five minutes to familiarize themselves with the aircraft prior to data collection. During
this time any questions were answered. The Novices were shown how to use the stick, throttle, rudder pedals,
and the heads-up-display (HUD) visuals were explained. For each maneuver, the subject was asked to perform
the maneuver as he or she normally would. Novices were asked to execute the maneuver as best they could.
Each subject was given the opportunity to practice the air intercept maneuver once, as it is a more complicated
maneuver, this data was also captured.
The full study was conducted during 2019. The data were collected from June 2019 to September 2019. All

the tasks in this experiment took approximately two hours to complete per subject. The temperature in the
simulator room was set to a constant 68𝑜 for each subject’s data collection. We built a data set covering all forty
subjects including twenty-one pilots, nine operators, and ten novices. Over forty hours of physiological data
were collected inclusive of the time between maneuvers. On average each subject performed twelve maneuvers.
The average maneuver length was 4 minutes long, with a median of 5 minutes, and a standard deviation of 1.6
minutes — a minimum length of 1.4 minutes and maximum length of 9.8 minutes.

4.4 Participant Demographics
Table 1 lists the subject demographic information over forty test subjects. This includes the sample mean, standard
deviation, min and max values for subject age, flight hours, and number of aircraft flown. Further the percentages
for type of flight experience are listed. Note that the flight experience is not exclusive to military or civilian, a
subject can have both. Therefore flight experience can add up to greater than 100%.

5 DATA REDUCTION
Despite the careful design of our human subjects tests, a number of noise sources are unavoidable. To mitigate
the effects of noise (both intra- and inter-subject) the workload labels were manipulated in three ways: (1)
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Table 1. Subject Demographics

Age Hours Aircraft Flown Flight Experience
Subjects 𝑥 𝜎 Min Max 𝑥 𝜎 Min Max 𝑥 𝜎 Min Max Civilian Military

All Subjects 42.0 10.7 22 61 2816.0 2876.6 0.0 13000.0 4.2 3.7 0 12 25.0% 72.5%
Pilots 47.4 7.3 35 61 4631.8 2739.3 1700.0 13000.0 6.5 2.6 3 12 42.9% 100.0%

Operators a 37.9 20.0 23 43 1910.0 1550.0 0.0 4500.0 3.9 3.9 0 9 11.1% 88.9%
Novices 34.8 22.8 22 53 0.0 0.0 0.0 0.0 0.0 0.0 0 0 0.0% 0.0%

aFor operators, operator time and pilot time, if applicable, are reported combined.

inter-subject alignment, (2) label correction, and (3) label imputation. We explain the reasoning and methods
of correction for each of the three methods in the following sections. We consider our method of inter-subject
alignment to be an important contribution of this work and, therefore, elaborate on this method in detail. Finally,
we conclude this section with discussion of preprocessing and standardization of the sensor data so that it is
appropriate for use in a classification model.

5.1 Inter-subject Alignment
A key issue with the classification of cognitive load is proper labeling. An absolute inter-subject scale does not
exist, but is the ultimate goal of many cognitive load studies. The use of the assumed cognitive demand of the
task, the mental load characteristic [71], (e.g., the estimated difficulty of a task) is problematic. Any two subjects
can potentially accomplish the same task with the same level of performance using varying levels of requisite
cognitive load [71, 105]. This is often dependent on some level of their skill at a task, especially for learned
(automated) schemas that bypasses working memory like playing an instrument [18, 71, 103]. Chen et al. [17],
provided an example of the variance of subjective labels when compared to the validated task difficulty (mental
load characteristic), finding the subjective labels to be the best discriminator. But this only works intra-subject;
it breaks when we attempt to generalize the method to be inter-subject. Haapalainen et al. and Appel et al.
attempted such a feat, but Haapalainen et al. did not succeed and Appel et al. was left with mixed results [4, 41].

There is a fundamental problem with using the task difficulty as the label. For example, let us assume that an
absolute scale for cognitive workload exists — a scale from one to ten. We can define a workload inducing task
with two levels, where the second level is more difficult than the first. Two subjects participate in a repeated
measures experiment. Subject one reports an average absolute cognitive load of one on the first level and an
average absolute cognitive load of six on the second level. Subject two reports an average absolute cognitive load
of six on the first task, and an average absolute cognitive load of nine on the second level. Both completed the tasks
with equal performance. Clearly, subject two required more workload to attain the same level of performance
for both levels of the task. Assuming enough quality physiological data were collected, a binary intra-subject
classifier can be built for each subject using the task difficulty as labels. However, if an inter-subject attempt is
made, subject data for task one — a one and six on the absolute cognitive load scale — are passed to the model
during training among similar difficulty-labeled samples. And for task two, a six and nine. Thus, this presents a
conflict. This is compounded by the fact that the subjective reported cognitive load from each subject, in real life,
is not absolute (one subject reporting a cognitive load of “one” could be another subject’s “two”). Because the
subjective labels are not absolute, we must find a way to align them between subjects.
In this research we used both Bedford and NASA-TLX rating scales[46, 83]. It is important to note that the

Bedford workload scale was intended to be used as a subject- and task-relative workload measure. And it has
a tendency towards less sensitivity at the low end of workload ratings. Further, Hart and Staveland did not
intend NASA-TLX for “absolute judgments or comparisons across different types of tasks,” finding them not very
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meaningful given subjects are not likely to remember specific instances of low, medium, or high workload [46].
This could explain the observed phenomenon in Chen et al.’s work [17], where workload comparisons at finer
resolution than three levels were no longer in relative agreement. In our effort to align the subjective labels,
we made a critical assumption. We bounded our data by assuming we had achieved minimum and maximum
cognitive load for each subject. Our experiment was designed to acquire both minimally and maximally loaded
data from the subjects. Therefore, we conclude any errors from this assumption are sufficiently mitigated. While
this assumption helps to bound the upper and lower cognitive load scores, intra-subject, it does not inform how
to transform scores within the bounds for each subject. Therefore, we conducted a non-linear transformation
to align the subjective ratings cross-subjects. In the statistics literature, this method is often referred to as
quantile transformation [32]. In our experiments, we use this transformation method, bounded by the intra-subject
extrema, to align labels for each classification task. For each classification task, a subjective rating’s corresponding
quantile was used as the task label for categorical and binary classes. That is, binary tasks used two quantiles and
multi-class tasks used the number of classes. The transformed values from 10 quantiles were used for the ordinal
regression task.
One limitation of our alignment procedure is that it does not account for different subjective ratings across

flight maneuvers. Hart and Staveland’s observed a lack of meaning in subjective ratings across tasks [46]. While
one method for addressing this may be made to bound within a flight task, it is not clear if each flight maneuver
constitutes a sufficiently different task (as defined by Hart and Staveland). In our analyses, however, we did not
find that such a task-specific bounding was needed to create a reliable classifier. This could be because these
tasks were flown within the same time period for a given subject and the subject perceived their load along the
same scale. Or rather, one can surmise that it is just a layer of noise within the subjective ratings for a given
subject. We also note that this noise can be partially mitigated for pilots through proper training. For example,
someone professionally trained, such as a test pilot, may offer a less variable set of ratings because the methods
of self-assessment and subjective rating is included in their instruction.

The level of correction needed in our analyses highlights the critical need for an objective workload measure.
Additionally, it was evident with our data that we were dealing with “overall workload” for the flight maneuver,
rather than more fine grained measures such as turning or elevating the plane [71]. Any attempts to divide our
data into smaller time segments with the same workload rating yielded a divergent model during training. This
is understandable given the test methodology and standard practices of collecting cognitive load, subjectively.
Workload labeling is an open research problem that needs further investigation. Even so, we argue that our
proposed alignment procedure sufficiently aligns the data inter-subject so that overall workload for the flight
maneuver may be assessed.

5.2 Label Correction
Once a method for aligning inter-subject was settled upon, an effort was made to address the intra-subject noise.
That is, the noise given the subjectivity of human-subjects and their abilities to discern relative levels of cognitive
load. Hart and Staveland had found subjects’ abilities to remember specific instances of low, medium, or high
workload fleeting [46]. While we did conduct the experiment within roughly a two-hour period for a given
subject, there is likely still noise within the data. Anecdotally, the pilot population is particularly susceptible to
“under-reporting” cognitive load—reporting a scenario as easier than it truly was for the pilot. To assist with this
issue, we adjusted some labels based upon expert review of the maneuver. In order to inform label adjustment,
several additional resources of information were captured including screen-capture video of the pilot performing
the maneuver (i.e., what the pilot saw) and the annotations from the researcher conducting the experiment. Post
data collection, the data for the specific maneuver was analyzed and the recording was reviewed. Given the test
conductor’s notes and the screen-capture video, if warranted, the label was adjusted. Data collection, review, and
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adjustment were completed by the same researcher — a USAF Test Pilot School graduate and instructor. The
criteria for adjustment was that something in the observed rating and maneuver was “at odds” with previous
observations for the same pilot. This was conducted before any model construction (to avoid bias). Using expert
opinion to correct observed subjective ratings is common practice in a number of fields including management
[25], user experience [2], and military [23], among many others.
As an example, subject 18’s second lateral BAT maneuver resulted in a modification. The subject’s raw

labels included 90-mental demand, 90-physical demand, 90-temporal demand, 50-performance, 90-effort, and
80-frustration for NASA-TLX, where each sub-scale was based on a 100 point scale, and a Bedford workload rating
of four. The subject was visibly overloaded, struggled to fly the task, had a significant change in skin conductance
level, numerous skin conductance responses, many significant 15-20 second pupillary swings, and a low blink
count. Given these observations, the subject’s Bedford workload rating was changed to a nine in accordance with
the Bedford description — “Extremely high workload. No spare capacity. Serious doubts on ability to maintain
level of effort” [83]. In the data collected, only the Bedford rating or Mental Demand sub-scale were adjusted. In
total, 57 labels were adjusted from a total of 446 ratings (about 12% of ratings). All label correction was complete
prior to any machine learning modeling and was based solely on observations (including observing sensor data
from EDA and pupillary response) and recommendations from the researcher conducting the experiment. We
further note that the sensor data observed was not used to select ratings for change. Rather, these measures were
used to help verify the reviewer’s opinion (based on observation, experiment notes, and participant video) that
the subject reported load inaccurately.

5.3 Label Imputation
In the collected data, there were missing subjective ratings for two different maneuvers flown by two different
subjects. The ratings were missing due to transcription errors. As with label correction the physiological data,
test conductor notes, and video recordings were reviewed by an expert. Taking this into account we imputed
the labels using other maneuver ratings. In both cases the Bedford rating for the maneuver was present, but the
NASA-TLX ratings were missing. After expert review, the mental demand sub-scale rating was imputed a rating
of 50 because the Bedford rating was five (halfway for either scale). The remaining sub-scales were copied from a
similar maneuver.

5.4 Rating Domains
Ultimately we chose to classify three subjective ratings or rating domains. Because the semantic meanings behind
each is different, it is useful to inform which rating domain works best for classification. Specifically, we classify
the average or equal weight NASA-TLX ratings (RTLX), the mental demand sub-scale of NASA-TLX, and Bedford
Workload ratings. Four classifier tasks were utilized from each rating domain, including: (1) binary, (2) two-class
categorical, (3) three-class categorical, and (4) regression. Note that the difference between binary and two-class
categorical is only relevant in the context of our deep learning architecture. That is, our binary classifier regresses
to a single output value which can be above or below a threshold, and the two-class categorical model regresses
to two probabilistic outputs which are compared for deciding if the prediction is one class or another.

5.5 Modality Preprocessing and Standardization
5.5.1 Preprocessing. Preprocessing was conducted on both EDA and pupillometry prior to use. For EDA, the
tonic and phasic components were separated from the original EDA waveform by using a finite impulse response
(FIR) filter. We use a butterworth low pass filter with [13] with two Hz cutoff. The coefficients were applied
forward and backward to intensify the effect as well as remove any delay from the filtering process [40].
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Fig. 2. Label distributions for classifier tasks

For pupillometry it is necessary to reduce the noise of the signal by eliminating high frequencies and removing
the trend line. We again used zero phase filtering [40] and filter out the very high frequencies. Next we detrended,
removing the nonzeromean and other linear trend terms [109]. The trend was calculated by using a Savitsky-Golay
filter as a high pass filter[88]. In our case, we use a filter length of 11 and third order polynomial approximation.
The trend was then subtracted from the filtered signal, yielding the detrended signal. After these modalities were
filtered, all data were standardized.

5.5.2 Standardization. For all three models the modalities were standardized to a zero mean and a standard
deviation of one with respect to the segment width of the sample input. For the random forest and variable input
deep learning models the segment width and sample width are always the same. However, for the fixed-length
architecture, the sample was decomposed into a number of fixed width segments. Standardizing in this way for all
models increases the dynamic range and flexibility of the model, enabling a more accurate classifier. Moreover, by
standardizing across input segments before being analyzed by the model, the model is more sensitive to relative
changes as compared to absolute measurements. As with temperature rate of change, this may “ameliorate the
effect of individual difference inherent in all physiological parameters” [42]. While this is a subtle change, doing
this in lieu of standardizing over the whole dataset (or even across each subject) yielded a significant increase in
performance. Thus, we stress the importance of this standardization technique for processing biometric data
such as ours—the absolute changes in the signal are not as usable for classification as the relative changes when
employing a deep learning architecture.
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5.6 Engineered Features
While we relied heavily on deep learning for feature extraction, we also engineered more traditional features that
capture specific properties of certain modalities. Moreover, these features provide a baseline for comparing the
more automated feature extraction used by convolutional networks. For each signal, we calculate the minimum,
maximum, standard deviation, and mean. We perform this calculation for the raw EDA signal, peripheral skin
temperature, acceleration magnitude, skin conductance response (SCR), interbeat interval, and left and right
pupillary response, resulting in (7 signals) x (4 aggregations) = 28 features. These aggregations were calculated in
order to “snapshot” the signal’s characteristics in a way that is easily analyzed by a traditional machine learning
approach, such as a random forest. Furthermore, we captured more signal specific measures that are common in
the biometric analysis community. Specifically, we measured SDRR, pNN50, SCR count, left and right blink, and
average blink rate (6 additional features). The pNN50 and SDRR were calculated according to [94]. Specifically,
SDRR is the standard deviation of RR intervals, and pNN50 is the percentage of successive RR intervals that are
different by more than 50ms. Where “RR intervals [are] interbeat intervals between all successive heartbeats” [94].
Ultimately, all engineered features were normalized across the dataset between 0 and 1. Finally, most engineered
features employed a sliding window approach, whereby peaks and troughs were calculated within each window,
and then as estimates for a number of features such as blinks.
With regards to pupillary response, the minimum, maximum, standard deviation, and mean were taken.

Specifically pupillary response was calculated from the detrended signal as a difference from the peak to an
estimated baseline point, where the peak was found with a 20-second sliding window. Because the exact start of
an external stimuli is unknown, we found the preceding two troughs and took the average. This baseline was
a minimum of 20-seconds, which is much larger than what Wangwiwattana et al. [106] used — a five seconds
baseline. Wangwiwattana et al. knew where the stimulus began in their experiments, but we cannot ascertain
stimuli specifically because multiple stimuli may occur in one maneuver. Because troughs are easy to find, we
posited that the average over the two preceding troughs would arrive much closer to the true baseline then just
using the preceding trough as the start point. Also, we did not use the percentage of the pupillary response —
(𝑝𝑒𝑎𝑘𝑣𝑎𝑙𝑢𝑒 − 𝑏𝑎𝑠𝑒𝑙𝑖𝑛𝑒)/𝑏𝑎𝑠𝑒𝑙𝑖𝑛𝑒 — as with [56] nor a correction factor for lighting [76, 106]. The advantages of
a percentage pupillary change are understood as providing a standardization regardless of a unit measurement or
original baseline size. However we found it beneficial to just take the minimum, maximum, standard deviation, and
mean of the papillary responses, followed by a normalization, between 0 and 1, for the whole dataset. However,
this approach may not generalize outside of our application, as we benefited from not needing to use a correction
factor as the lighting within the HTC VIVE Pro Headset was relatively constant.
For blinks, a window size of 500 milliseconds was used to capture the high frequency troughs from the

unmodified pupil diameter data. This is common practice for extracting blinks from pupillary diameter [106].
Moreover, if the left or right eye differed significantly (with one eye providing unrealistic results), the other eye
was utilized in place of this eye blink data (a threshold of 3mm on the pupil diameter was employed for judging
‘realistic’ pupil size). This problem most often occurred with subjects wearing glasses, where the eye tracker
would report anomalous pupil diameter due to spectral reflections from the wearer’s glasses.

Skin conductance responses were measured through the use of a 3.25 second sliding window. First, the peak
of the conductance is found; then the preceding trough 3 seconds prior is found. If the difference is greater than
.01 `𝑆 , the SCR was recorded and associated statistics calculated. Each sample was normalized between 0 and 1.
This was done due to the characteristics of EDA as observed from [11, 14], discussed in Section 3. Ultimately we
seek to observe the relative changes in and intensity of SCRs between both samples in lieu of absolute measures.
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6 ARCHITECTURE
In this research three architectures were used to classify cognitive load. Specifically, we used a more traditional
random forest model, which served as a comparison for the other two models. We used two variants of a novel
architecture we coined as Biometric Multi-Modal, Multi-Task, X-Vector architecture or 𝐵𝑀3𝑇𝑋 . We propose two
versions of a new method for cognitive load classification: one with fixed-length input, and the other variable-
length input. The basic structure of these models take shape through the use of x-vector-inspired architectures and
deep, multi-modal, multi-task, and generative learning. As an overview, multiple 1-Dmodalities from physiological
sensors are encoded into a latent space using a variational auto-encoder’s encoder for each modality. Then, taking
inspiration from x-vectors [99], statistics pooling layers are calculated and passed onto the bottleneck (the layers
directly following the pooling), and finally through to multiple task layers. In this section, we discuss the random
forests model, the necessary deep learning background, the generative models — variational auto-encoders
architectures — used in both versions of the 𝐵𝑀3𝑇𝑋 architecture, and finally fixed-length and variable-length
input architectures.

6.1 Random Forests
As a baseline, a random forests classifier [12] was built for each task using only the engineered features, as
discussed in Section 5.6. We assume the reader is familiar with the basic concepts of random forests, and we list
the relevant parameters used in training. For each model, we employed bootstrapping with sampling preference
proportional to mis-classified training samples, randomized bagging of features based on

√
𝑁𝑓 , balanced class

weights (inversely proportional to frequency in training set), and 1,000 trees. The split criterion for both the
binary and two-class categorical classifiers used the gini impurity [12], while the regressor versions used mean
squared error.

6.2 Training
Generically, training was conducted in the same manner for all three architectures. Cross-subject, k-fold cross-
validation was utilized and folds were stratified across participant background: novice, operator, and pilot. Because
there were only nine operators, the lowest subject count (Section 4.3), the stratification of folds across subject
type was organized with two pilots, one operator, and one novice. This left a tenth grouping of one novice and
three pilots for the test dataset. Practically, this means that each validation fold had at least one example of a
novice, operator, and pilot. It is important to note that by using cross-subject, k-fold cross validation, we ensure
that the model is built assuming no calibration biometric data for the test participants are available. For the
random forests classifier each task was trained as a separate model.

6.3 Machine Learning Background
Both versions of the 𝐵𝑀3𝑇𝑋 architectures are similar in that they follow the basic structure through the use
of multiple modality variational encoders, statistics layers, bottleneck layers, and multi-task layers. They take
advantage of several key concepts from within machine learning: (1) multi-task learning [75, 85], (2) multi-
modal learning [59, 79], (3) variational autoencoders [55], and (4) x-vectors. Further, the variable-length input
version takes advantage of transfer learning [51, 75]. A discussion of each methodology in the context of deep
learning is beyond the scope of this paper. However, we do expand on the usage of x-vectors for our architecture.
In our discussion of neural networks, we adopt the terminology of “dense layers” to refer to fully connected
layers followed by a non-linear activation function and convolutional layers denote 1-D temporal convolutions.
Moreover, we use the term “separable convolution” to denote convolutional layers where each channel is separated
and convolved with a different filter before it is convolved with a second filter that weights the outputs of each
filter. This differs slightly from the definitions of “separable convolution” used in the signal processing community,
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where a higher dimensional convolution can be carried out by multiple chained lower dimensional convolutions
(though in practice, the separable convolution can approximate this behavior). Finally, the use of the term
“multi-task” in our application refers only to the concept of learning multiple classification tasks. These tasks are
not cross-domain tasks—they are all in the context of aviation and all are in the context of the same experiment.

6.3.1 X-Vector Inspiration. Our architecture borrows key concepts from the x-vector training architecture
commonly employed in speaker verification systems [98]. X-vectors are fixed-dimensional embeddings trained,
given a deep neural network, on variable-length speech utterances. They are instrumental within the domain of
speaker recognition as they create embeddings to capture speaker characteristics over the entire utterance and
generalize well to other speakers [98, 99]. More specifically, the core architecture uses time-delay neural networks
at its frame-level layers. The features learned are aggregated within a statistics pooling layer, where mean and
standard deviation are taken across the temporal dimension of final frame-level output. At the segment-level, this
pooling layer’s output is passed to two additional dense hidden layers before reaching the final softmax output
layer. The dense learned features at either dense layer are then extracted and used for speaker recognition [98].
The key aspect of this architecture is its ability to learn latent features which capture the speaker characteristics
from variable-length utterances. While our architectures are end-to-end, we borrow key aspects from the x-vector
architecture, including (1) the statistical pooling layer that enables ‘segment-level’ classification (in our case,
across the entire observation), and (2) the hierarchical learning of latent features, where each dimension is an
abstraction of the input observation. While they utilize time-delay neural networks, we use more traditional 1-D
convolutions and separable convolutions.

6.4 Modality Specific Variational Autoencoders
Variational auto-encoding, a generative method, is used to reduce dimensionality and facilitate feature extraction.
Variational autoencoders (VAE) with convolutional layers are used to “encode” our 1-D modality data streams.
We use VAEs as a preprocessing step in encoding each modality because they can be trained in an unsupervised
manner. That is, we built six VAEmodels (one for each modality) - PPG, temperature, wrist acceleration magnitude,
raw EDA, the tonic component of EDA, and detrended pupillary response. An attempt was made to build a VAE
for the phasic component of the raw EDA signal, but the model was unable to find the gradient (despite numerous
attempts using gradient stabilization techniques). The hyperparameters for each model can be found in Table 2.
These parameters were chosen because they produced the best loss functions on held out sets (that is, the lowest
reconstruction errors and most normally distributed latent space samples).

6.4.1 VAE Training. For training each VAE and for a given modality, the data for each subject were combined
and then segmented into the specific input lengths given in Table 3, with a 20% overlap from the previous
segment. Before training, we randomly separated 10% of the modality data for a final test set. We used the ADAM
stochastic optimization method [54] with a learning rate of .0001 for all modalities except for EDA and tonic,
which were .01. Standard beta values were used with gradient clipping range of 0.01 to 0.5. We chose the best
hyper parameters based on the test results because we were trying to reconstruct the best modality segment
irrespective of the subject. With batch sizes of 64 to 16,384 samples, each model was trained for roughly 800
to 2600 epochs, given early stopping criteria on the held out set. Table 3 reports the test dataset results. While
all modalities are different—especially with respect to their dynamic ranges—they all have a strong correlation
coefficient of no less than .68. As such, we concluded that the VAE architectures were sufficiently trained and
could be used for further processing.
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Table 2. VAE Architecture: The VAE configurations for each modality. A layer’s parameters are denoted as ‘Layer Type
<Kernel Size>-<Strides>-<Filters>-[Activation Type (ReLU if not noted)].’

Photoplethysmography Wrist Acceleration Peripheral Skin Temperature Raw EDA Tonic Pupillary Response

Input Length
98 32 98 98 98 2205

Encoder
Conv1D 3-1-128 Conv1D 3-1-128 Conv1D 3-1-128 Conv1D 3-1-128 Conv1D 3-1-128 Conv1D 3-1-128
SepConv1D 3-2-64 SepConv1D 3-1-64 SepConv1D 3-2-64 SepConv1D 3-2-64 SepConv1D 3-2-64 SepConv1D 3-2-64
SepConv1D 3-2-32 SepConv1D 3-1-32-tanh SepConv1D 3-2-32 SepConv1D 3-2-32 SepConv1D 3-2-32 SepConv1D 3-2-32

SepConv1D 3-2-16-tanh Weighted Suma SepConv1D 3-2-16-tanh SepConv1D 3-2-16-tanh SepConv1D 3-1-16-tanh SepConv1D 3-2-16-tanh
Weighted Suma Weighted Suma Weighted Suma Weighted Suma Weighted Suma

Latent Dimensions (Mean and Std. Dev. - Dense Layers)
9 16 9 9 9 9

Decoder
Dense-224 Dense-320 Dense-224 Dense-224 Dense-224 Dense-70,656

2 x UpSampling 2 x UpSampling 2 x UpSampling 2 x UpSampling 2 x UpSampling 2 x UpSampling
SepConv1D 3-1-16 SepConv1D 3-1-16 SepConv1D 3-1-16 SepConv1D 3-1-16 SepConv1D 3-1-16 SepConv1D 3-4-16
2 x UpSampling 2 x UpSampling 2 x UpSampling 2 x UpSampling 2 x UpSampling 2 x UpSampling

SepConv1D 3-1-32 SepConv1D 3-1-32 SepConv1D 3-1-32 SepConv1D 3-1-32 SepConv1D 3-1-32 SepConv1D 3-2-32
2 x UpSampling SepConv1D 3-1-64 2 x UpSampling 2 x UpSampling 2 x UpSampling 2 x UpSampling

SepConv1D 3-1-64 Conv1D 3-1-1-linear SepConv1D 3-1-64 SepConv1D 3-1-64 SepConv1D 3-1-64 SepConv1D 3-1-64
Conv1D 3-1-1-linear Conv1D 3-1-1-linear Conv1D 3-1-1-linear Conv1D 3-1-1-linear 2 x UpSampling

SepConv1D 3-1-32
Conv1D 3-1-1-linear

Output Length
98 32 98 98 98 2205

aA weighted sum across filters i.e. SepConv1D 1-1-1
(BOLD) Pruning location for variable-length 𝐵𝑀3𝑇𝑋 architecture.

6.5 Fixed-Length Input 𝐵𝑀3𝑇𝑋

The fundamental difference between the two versions of 𝐵𝑀3𝑇𝑋 focuses on how the modality data is input
into the model and processed at the merge layer. Specifically with fixed-length input, the data is segmented to
the input size of each modality’s VAE, and passed through their respective VAE (encoder only). Theses latent
vectors from the VAEs are then stacked temporally before passing through a statistics pooling layer where mean,
standard deviation, minimum, and maximum along the temporal dimension are calculated. It follows that the
input modality data must be aligned. In this way, the same coverage of time for each modality is passed through,
regardless of sampling rate. We note that the term “fixed-length” refers to the fact that fixed length VAE outputs
are aggregated. The model can process variable length inputs, but does so by stacking overlapping VAE output
windows.

6.5.1 Modality Data Alignment. To accomplish the needed sample rate alignment a basic unit of time was selected
that both covered a sufficiently large amount of time (given a maneuver with overall workload), and one that was
divisible by all sampling rates for even coverage of all modalities. In this regard, we chose windows that were 49
seconds in length. Because we actively attempted to induce high workload through a build-up approach, it is
assumed that the highest amount of cognitive load is captured towards the end of the data sequence. Therefore,

Table 3. VAE training test dataset results

Photoplethysmography Wrist Acceleration Peripheral Skin Temperature Raw EDA Tonic Pupillary Response

𝑟 − 𝑣𝑎𝑙𝑢𝑒 .96 .73 .68 .70 .85 .79
𝑀𝑆𝐸 .12 .46 .56 .68 .30 .39
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we right justify (temporally) the maneuver data in 49-second chunks, starting at the end of the maneuver and
dropping the first several seconds, [0 𝑡𝑜 49) 𝑠𝑒𝑐𝑜𝑛𝑑𝑠 , of data at the onset of the maneuver. Table 4 provides a
description of the alignment parameters given a modality.

Table 4. Modality Alignment Parameters

Modality Segment Length Sampling Rate Segment Samples VAE Input Length Latent Vectors per Segment

Photoplethysmography 49 Seconds 64 3136 98 32
Wrist Acceleration 49 Seconds 32 1568 32 49
Peripheral Skin Temperature 49 Seconds 4 196 98 2
Raw EDA 49 Seconds 4 196 98 2
Tonic 49 Seconds 4 196 98 2
Pupillary Response 49 Seconds 90 4410 2205 2

Table 5. 𝐵𝑀3𝑇𝑋 Architectures: A layer’s parameters are denoted as ‘<Dense Nodes>-[Activation Type (ReLu if not noted)].’

Fixed-Length Input 𝐵𝑀3𝑇𝑋 Variable-Length Input 𝐵𝑀3𝑇𝑋

Combinations of Modality Variational Encoders Combinations of Modality Pruned VAE Filter Outputs
Stacked VAE Latent Vectors See Table 2
Statistics Layer — Mean, Standard Deviation, Minimum, and Maximum; Flattened

Bottle Neck Dense Layers
64 64
128 32
256

Multi-Task Dense Layers
512 512 512 512 32 32 32 32
256 256 256 256 16 16 16 16

Output Layers
1-Sigmoid 2-Softmax 3-Softmax 1-MSE 1-Sigmoid 2-Softmax 3-Softmax 1-MSE

6.5.2 Fixed-Length Input 𝐵𝑀3𝑇𝑋 Architecture. Fixed-Length Input 𝐵𝑀3𝑇𝑋 architecture consists of the modality,
variational encoders, a statistics pooling layer that calculated the mean, standard deviation, minimum, and
maximum of the stacked latent vectors. These statistics are then concatenated together and passed through a
bottleneck of three dense layers that increase in size — 64, 128, and 256. The bottleneck connected to four separate
tasks, where each task contained two task layers, of size 512 and 256, and an output layer. Specifically, binary,
two-class categorical, three-class categorical, and regression were used for each rating domain, see Table 5. To
help mitigate over fitting, each task layer used a dropout rate of 0.5 [100].

6.5.3 Fixed-Length 𝐵𝑀3𝑇𝑋 Training. Training consisted of cross-subject, folded cross-validation where each
fold was stratified across subject type. This equated to nine folds, leaving a tenth for the test dataset. The fold
count was driven by the fact that only nine operators participated in the experiment. It is important to note that
during training it became apparent several local minima existed throughout the gradient. In some cases, training
would end with a poor result. Therefore, for each fold the best of five training runs was taken to help mitigate
the influence of local minima.
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Training was conducted in three phases. First, the VAEs were trained as discussed in Section 6.4.1. Second, the
modality data was passed through the modality encoders and the corresponding statistics were pooled for each
subject’s maneuver. This transformed dataset was then parsed into folds for training and testing. The remaining
portion of the architecture, from the merge layer through task output, was trained using the ADAM stochastic
optimization method [54] with a learning rate of .0001. Standard beta values were used with gradient clipping of
1.0. L1 and L2 regularization were used each with _ = .001. We employed a batch size of 64 samples. The models
were trained for roughly 250 epochs, given early stopping. Our training results are described in Section 7. We
choose the best hyper-parameters, given our results through stratified, across-subject, folded training.

6.6 Variable-Length Input 𝐵𝑀3𝑇𝑋

Ideally, our goal is a model that can handle variable-length input without the need for windowing from the fixed
length VAEs. To this end we took advantage of the inherent ability of convolutions within each VAE (given that
they can be applied to any size input). That is, we apply the learned convolutional kernel across the entire input
data length — scaling the output with the length of the input [36]. Because convolutions both use parameter
sharing and learn equivariant representations, convolutions provide “a means of working with inputs of variable
size” [36]. Where parameter sharing is the use of the same parameter for more than one function within a model
— the kernel.

In a convolutional neural network the kernel is used at nearly every position of the input. Thus, a convolutional
layer learns a set of parameters for all locations regardless of input length. Because of this, the layer has the
equivariance property; that is, the layer is equivariant to translation. Equivariance means, “if the input changes,
the output changes in the same way” — where 𝑓 (𝑔(𝑥)) = 𝑔(𝑓 (𝑥)) [36]. Goodfellow et al. provide an example
for time-series data. Specifically, a convolution captures different learned features that appear within the input.
Should a similar feature appear later in time, that representation will manifest within the output. Therefore,
convolutions are robust to translations and are independent of input length, which is exactly what we require
given variable length maneuver data. “Convolution[s for] the processing [of] variably sized inputs makes sense
only for inputs that have variable size because they contain varying amounts of observation of the same kind of
thing — different lengths of recordings over time” [36]. With convolutions, input length is a free parameter.
With the promising results of fixed-length 𝐵𝑀3𝑇𝑋 , we evolved the architecture by eliminating the weighted

summation and dense layers of the trained VAE, focusing only on the encoding convolutional filters. In the same
fashion as with x-vectors, Section 6.3.1, we apply a statistics pooling layer directly to the outputs of the filters
from the dimensionality reducing convolutional neural network of the VAE (encoder only). The statistic layer
computes the mean, standard deviation, min, and max across the filters, for each modality. With the statistics
pooling layer directly attached to the filter output of the convolutional layers, the convolutions are decoupled
from the requirement of a global input length. This is because the statistics layer will always produce the same
output size, giving the dense bottleneck network a fixed-length input size. However, there is a caveat, which
depends on the implementation and optimizations of a given deep learning API, in our case Keras. Each sample in
a batch must be the same length therefore we used a batch size of one (which can dramatically increase training
time because it reduces parallelism in the feed-forward and back propagation protocols).

The new variable-length input 𝐵𝑀3𝑇𝑋 architecture thus consists of the modality variational encoders which
were pruned just before the separable convolutional layer with the hyperbolic tangent activation. Moreover, the
filters were not frozen during training to allow finetuning. Therefore, the VAE training provided a starting point
for the full optimization. The pruning location is highlighted on Table 2 in bold. The statistics pooling layer is
calculated across each filter output, thus “aggregat[ing...across] the time dimension” [99], and concatenated. Two
bottleneck layers are used, with 64 and 32 nodes. The bottleneck connects to four separate tasks, where each
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task contained two task layers, of size 32 and 16, with an output layer. Specifically, binary, two-class categorical,
three-class categorically, and regression were used for a given rating domain, see Table 5.

6.6.1 Variable-Length 𝐵𝑀3𝑇𝑋 Training. As with fixed-length 𝐵𝑀3𝑇𝑋 training consisted of a cross-subject, folded
cross-validation where each fold was stratified across subject type. This equated to nine folds, leaving a tenth for
the test dataset. The local minima issue plaguing the fixed-length version continued with this architecture. It was
apparent several local minima exist throughout the gradient. In some cases, training would end with poor results.
Again, the best of five training runs was taken.

Training was conducted end-to-end with the entire sample passed as a single batch. This architecture was
trained using the ADAM stochastic optimization method [54] with a learning rate of .001. Standard beta values
were used with gradient clipping of 1.0. The models were trained for roughly 50 epochs. Section 7 provides our
training results. The best hyper-parameters were chosen given our results through stratified across-subject folded
training.

6.6.2 Model Training Discussion. Beyond hyper-parameter tuning, there were several forms of regularization
attempted to improve the performance of this architecture, including L1, L2, and dropout. L1, L2, and L1 mixed
with L2 regularization did not significantly improve the generalization performance and were, therefore, removed.
Interestingly, when dropout [100] was attempted a vanishing gradient or an exploding gradient instability would
consistently occur. Similarly, if the data are split into temporally smaller segments to augment the dataset size,
the model diverges. As discussed in Section 5.1, we hypothesize this is because the subjective ratings reflects the
entire maneuver, not smaller segmented time windows. That is, half a maneuver might be subjectively rated as a
potentially different level of load, which invalidates this style of data augmentation for our application. While
we did trim the maneuver for the fixed-length 𝐵𝑀3𝑇𝑋 architecture, Section 6.5, the trimming resulted in no
more than one segment of sample maneuver data being discarded, and, thus, it was representative of the whole
maneuver.
Finally, we focus on a discussion of the use transfer learning. In our final version of the architecture we use

all layers up to the layers preceding the hyperbolic tangent activated convolutional layer for transfer learning.
However, we do not freeze these transferred layers because this flexibility yielded the best performance; albeit it
will train a quality model if these transferred layers are frozen. More interestingly, this architecture will train
with a truncated normal set of randomized weights in lieu of the learned weights from the variation encoder.
However, this is done with some effort, and it does not perform as well. The learning rate must be greatly reduced,
and even then, there is a high probability of an exploding gradient during training. Clipping does not seem to
mitigate this divergence. Ultimately, the learned representations from the modality variational encoders were
utilized to better inform and accelerate training, while improving accuracy. However, given these layers were left
unfrozen after transfer, the property of a learned latent space with an approximate diagonal covariance is no
longer assured because the VAE loss is no longer optimized once the layers are transferred.

7 RESULTS
There are several ways to configure each architecture while training. For example, architectures can employ a
selection of modalities, subsets of tasks and auxiliary tasks, inclusion of subjective rating domain choices, or
trained on subsets of similar participants (such as flight experience). Once these design decisions are made, the
specific training for each architecture can commence, as discussed in Section 6. However, to train models while
varying every possible subset and hyper parameter combination is intractable. Instead, we guide the selection
of training subsets and parameters by the research question we wish to elucidate. More specifically, we first
investigate research questions about the use of multiple domains and multiple tasks, then proceed to answer
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questions regarding the methods of training, and finally investigate the importance of different modalities and
specificity of the model to pilots with differing flight experience.

7.1 Initial Models - Multiple Ratings Domain

Table 6. Architecture fold metrics for each subjective ratings domain — single model

Binary 2-Class 3-Class Regression
Architecture Acc. TPR Prec. AUC Acc. TPR Prec. AUC Acc. TPR Prec. AUC 𝑟 MAE MSE Exp. Var.

Random Forests 70.4% 70.4% 70.2% .782 - - - - 53.3% 53.3% 52.1% .725 .486 .08 .23 .236
Fixed-Length 𝐵𝑀3𝑇𝑋 79.6% 79.6% 79.6% .861 79.6% 79.6% 79.6% .861 58.9% 59.6% 57.2% .747 .638 .066 .207 .388

Variable-Length 𝐵𝑀3𝑇𝑋 78.9% 78.9% 79.4% .86 80.0% 80.0% 80.5% .855 50.4% 50.4% 47.0% .733 .657 .06 .202 .425

(a) RTLX

Binary 2-Class 3-Class Regression
Architecture Acc. TPR Prec. AUC Acc. TPR Prec. AUC Acc. TPR Prec. AUC 𝑟 MAE MSE Exp. Var.

Random Forests 69.0% 69.0% 68.9% .762 - - - - 50.0% 50.0% 47.7% .674 .46 .093 .255 .211
Fixed-Length 𝐵𝑀3𝑇𝑋 79.6% 79.6% 79.8% .861 81.1% 81.1% 81.1% .873 58.1% 58.1% 56.6% .758 .614 .078 .219 .354

Variable-Length 𝐵𝑀3𝑇𝑋 80.4% 80.4% 80.5% .867 80.0% 80.0% 80.2% .866 57.0% 57.0% 52.9% .759 .636 .072 .218 .397

(b) Mental Demand

Binary 2-Class 3-Class Regression
Architecture Acc. TPR Prec. AUC Acc. TPR Prec. AUC Acc. TPR Prec. AUC 𝑟 MAE MSE Exp. Var.

Random Forests 66.7% 66.7% 66.9% .758 - - - - 55.6% 55.6% 52.4% .701 .465 .1 .262 .216
Fixed-Length 𝐵𝑀3𝑇𝑋 80.7% 80.7% 80.7% .863 81.1% 81.1% 81.1% .868 62.2% 62.2% 72.4% .787 .626 .082 .232 .374

Variable-Length 𝐵𝑀3𝑇𝑋 80.7% 80.7% 80.8% .861 81.9% 81.9% 81.9% .867 63.7% 63.7% 60.1% .793 .647 .076 .226 .411

(c) Bedford Workload

The first question we ask is: Is there an advantage to using our multi-task architectures compared to random
forests? To answer this, we firstly compare performance of random forests against the fixed- and variable-length
𝐵𝑀3𝑇𝑋 models, with all modalities employed and all participants included. Table 6 lists the performance of
each architecture configured with all five modalities including the engineered features. While random forests
consist of a model for each task, the two multi-task deep learning models each have a set of tasks that are trained
for each ratings domain; specifically, binary, 2-class and 3-class categorical, and regression. The 2-class, 3-class,
and regression tasks are intended as auxiliary tasks which boost training for both 𝐵𝑀3𝑇𝑋 architectures. The
3-class and regression models were built using individual RFs for comparison. For each task the table lists model
accuracy (Acc.), true positive rate (TPR, also known as recall or sensitivity), precision (Prec.), and the area under
the curve (AUC) of the receiver operating characteristic, which provides a good estimate of the trade-off between
TPR and false positive rate (FPR). For regression the correlation coefficient (r-value), mean squared error (MSE),
mean absolute error (MAE), and explanation of variance are used.

The random forest classifier sets a baseline of ≈70% inter-subject accuracy (RTLX) with near matching TPR and
precision — this trend continues with the other models. Both 𝐵𝑀3𝑇𝑋 architectures achieve ≈ 80% inter-subject
accuracy. In all cases the AUC is high respective to accuracy, TPR, and precision. These AUC values — representing
a trade-off between TPR and FPR — signify a strong model regardless of threshold.

In the case of the fixed-length 𝐵𝑀3𝑇𝑋 architecture, the 2-class categorical task out-performed the binary task.
For clarity, the 2-class categorical task has a two-node, softmax output in lieu of the more traditional single node,
sigmoid binary output. Because a sigmoid is just a special case of the multi-class softmax, the difference is in the
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architecture, the flexibility provided by two output nodes and accompanying weights vs one, and the stochastic
nature during the training of the model — this makes the 2-class categorical task an acceptable auxiliary task.
Should it outperform the binary variant, there is no reason not to use the 2-class categorical task for classification,
as it would behave operationally the same.

The 3-class and regression tasks did not perform strongly. However, they may have provided a useful service
as auxiliary tasks during each architecture’s multi-modal, multi-task training (we explore this more in a later
comparison). Figure 3, provides Bland–Altman plots for regression. On average, across the nine models of nine
folds there is a tendency to be within 0.5 (raw confusions). The mean is close to zero, an indication of low bias,
but it may have a slightly biased homoskedasticy, as indicated by the unequal variance across values. Clearly
there is tighter variance near the extrema. Unfortunately the 95% CI is rather high. However, most points fall
within the second and third quartile, and they are less than ±0.22. The test set and single fold validation set
examples are also interesting. They are more homoskedastic, displaying a slightly smaller CI of nearly .38, and
the majority of the points are within ±0.2.
Thus we conclude that the 𝐵𝑀3𝑇𝑋 model performs superior to random forests, and that this performance is

meaningful for binary and 2-class categorical classification of CL measures. However, we also conclude that the
performance of 3-class and regression for CL is not sufficiently strong to operationalize into a tool or interface.
Even so, it is still unclear if 3-class and regression for CL provide advantages as auxiliary tasks for enhancing the
performance of the binary classification. To help understand this, we now focus on methods for enhancing binary
classification and investigate if there are advantages to the multi-domain and multi-class training employed.

7.2 Multiple Domain vs Single Domain Models
Because of the complexity of these deep learning models, given the number of tasks for each ratings domain, it is
reasonable to ask: Is there an advantage to using more than one ratings domain? To investigate this question, we
train models with and without knowledge from other domains. Table 7, lists the results for the variable-length
𝐵𝑀3𝑇𝑋 trained on only one, single ratings domain — RTLX, mental demand (MD), or Bedford workload (BED),
respectively — with all modalities and hand-engineered features. Exploring these results, regression performance
improved and binary performance increased slightly, all > 81.0%, which were attained for all three models. When
visually compared to the multi-domain models, there is an apparent improvement. But is there a significant
difference between single domain and multi domain models?

To answer this question we use the McNemar’s test [65], or more specifically, the continuity corrected version
[29]. We aggregated every fold of the single domain variable-length 𝐵𝑀3𝑇𝑋 models, Table 7, and the multi-domain
model, Table 6, both of which used all modalities as input training features. From these groups, we compared
them statistically to understand if there is a significant benefit to using multiple domains for training or training
within each domain. We compare multi-domain training to single domain training using a McNemar test of
the binary classification outputs and conclude that the difference is not significant (RTLX:Ndg=36, RTLX:p=.24;
MD:Ndg=34, p=.61; BED:Ndg=42, p=.88) (where Ndg is the number of off-diagonal elements of the McNemar
contingency table). We further employ the use of an F-test of equal variance to the residuals of the regression
output with similar conclusions (N=270, RTLX:p=.17, MD:p=.13, BED:p=.90) (although the Bedford output data
is not sufficiently distributed normally according to a Shapiro-Wilkes test [95], which limits the power of the
F-test of residual variance for this output). Because the performance difference is not significant in training all
domains versus a single domain, we conclude that there is no need to employ effort in synchronizing data for a
multi-domain model. With the more simplified single-domain models, it is then reasonable to ask the question: Is
there a performance difference between a single-task model and a multi-task model within the same ratings domain?
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(a)

(b) (c)

Fig. 3. Variable-Length 𝐵𝑀3𝑇𝑋 : Bland–Altman plot for regression, including (a) all nine folds, (b) test set, and (c) one fold

Table 7. Architecture fold metrics for variable-length 𝐵𝑀3𝑇𝑋 — a separate model for each subjective ratings domain

Binary 2-Class 3-Class Regression
Ratings Domain Acc. TPR Prec. AUC Acc. TPR Prec. AUC Acc. TPR Prec. AUC 𝑟 MAE MSE Exp. Var.

RTLX 81.9% 81.9% 82.6% .864 80.7% 80.7% 81.5% .867 58.5% 58.5% 57.1% .782 .716 .051 .181 .513
Mental Demand 81.9% 81.9% 82.0% .88% 82.2% 82.2% 82.3% .883% 59.3% 59.3% 53.7% .765% .707 .059 .196 .499
Bedford Workload 81.5% 81.5% 81.5% .859 80.7% 80.7% 80.8% .852 60.4% 60.4% 55.4% .756% .648 .074 .222 .420

7.3 Multi-Task vs Single Task Models
To answer the question of the necessity for multiple tasks within a single domain, we trained several models,
given the power-set of the five modalities, with either a single binary task or four tasks (binary, 2-class and 3-class
categorical, and regression). That is, excluding the null set, we trained 31 combinations. We further included two
more variants for a total of 33 models per ratings domain and task training type (single- or multi-task). The two
variants were the four modalities of the Empatica E4 and the combination of all modalities, i.e., the addition of
pupillary response. We combined these two versions with their corresponding engineered features that are paired
with their respective modalities. We call these sets a ratings domain family of models. In all, 192 models were built
and trained, half single-task and half multi-task. By taking the average accuracy across each domain family of
models and plotting, there is a clear difference between single-task and multi-task, as depicted in Figure 4. In fact,
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the single-task models do not train beyond apparent chance. We then aggregated the output of every fold for
every model within a domain family of models and task training type, which created two large groups of data.
That is, the multi-task outputs and the single-task outputs. We then compared them statistically to understand
if there is a significant difference between the performance of the two groups as a whole. We calculated the
McNemar test of the binary classification between outputs of each group, single-task as compared to multi-task,
finding a p-value < 0.001 for all tasks and we conclude a significant difference exists. This signifies that, while we
only need one ratings domain for a quality model, we still need multiple tasks within that domain for training.
Therefore, we now turn our attention to the question: Does one domain have superior performance across tasks
than another?

Fig. 4. Power Set: Average Single- vs Multi-Task Accuracies

7.4 Superior Domain Family
In order to elucidate which family, if any, has superior performance we again aggregate every fold for every
model within a single domain family of models, as with Section 7.3, with respect to the variable-length 𝐵𝑀3𝑇𝑋

multi-task architecture. We compare domains by calculating the McNemar test of the binary classification outputs
comparing each domain in turn for a total of three tests. We conclude that the difference is not significant between
equal weight RTLX and mental demand families (Raw-TLX vs Mental Demand:Ndg=2161, p-value=.763) (where
Ndg is the off diagonal elements of the McNemar contingency table). However, for both RTLX and mental demand
when each are compared to Bedford, the difference is significant (RTLX vs Bedford:Ndg=2526, p-value=.003) and
(Mental Demand vs Bedford:Ndg=2399, p-value=4.12e-07). Given, there is not a significant difference between
RTLX and Mental Demand domains, and both are superior in performance to the Bedford workload domain
(Table 7), we choose equal-weights RTLX in lieu of mental demand for simplicity. This is done in the hope that it
will generalize better when more abundant and unobserved data becomes available. The creators of NASA-TLX
implemented multiple sub-scales to provide clarity when assessing cognitive load [46].
With a superior domain family chosen, we ask how models compare within the RTLX family of models.

Specifically, how does the number of modalities and participant training influence the performance of variable-
length 𝐵𝑀3𝑇𝑋 multi-task models? However, this elicits two related, but distinct research questions: (1) Is the
performance of the architecture within a domain influenced by the combinations of input modalities? and (2) Is the
performance of the architecture within a domain influenced by having been trained on participants with similar
experiences?
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7.5 Modality Combination Performance
Given the various combinations of modalities, in order to explore the variance in performance, we trained an
RTLX family of multi-task models in the same manner as in Section 7.3. The freedom provided by the number of
modalities as a hyper-parameter can be keenly observed on Figure 5. Even with only three modalities, performance
above 80% is attainable, and with two modalities, performance is about 75%. And for the case of the 2-Class
categorical task, by itself, acceleration is in the high 70s. While not as high with respect to the binary task,
acceleration appears to provide important incite when combined with other modalities. The top nine modality
combinations for the binary task and the top 14 combinations for the 2-class categorical all have acceleration as a
modality within their set of combinations. Figure 5 presents a comparison of modality combinations without
acceleration for the binary and 2-class categorical tasks. However, it is important to note that there is variance
among training runs enabling a modality combination to move slightly up or down the average performance
scale; this is evidenced by the variation between the binary task and two-class categorical, Figure 5. Our initial
conclusions here are more mixed. While having more modalities does tend to increase performance, it is not
always the case that more is better. Even so, when all modalities are included the performance of the model is
typically strong. After acceleration, there is not a clear modality that is always a top performer, but EDA tends to

(a) All Subjects: Binary (b) All Subjects: 2-Class categorical

(c) All Subjects: Binary no acceleration (d) All Subjects: 2-Class categorical no acceleration

Fig. 5. Equal weight RTLX family of models, ordered by average fold accuracy, all subjects, a single training run
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be higher performing. Pupillary response does seem to be selected when paired with other modalities, but is not
favored strongly over other measures from the E4.

To investigate performance among modality combinations further, we sought to mitigate the variance between
training runs caused by the stochastic nature of the training. To do this, we looked at the average accuracy over
ten separate cross-validation training runs. More specifically, we trained an RTLX family of multi-task models
ten times (10 folds x 33 models x 10 separate runs = 3,300 models) using the same techniques described in Section
7.3. To reduce the number of models compared, we treat the “engineered features” as a single modality. Figures 6
(a) and (b) show the average accuracy for both the binary and 2-class categorical tasks, with each combination of
modalities shown as a separate bar. Error bars correspond to the interquartile range. Figure 6 (c) and (d) shows
the same results, but averaged by each individual modality. That is, each bar is the average performance of
models which employed that modality (with error bars signifying the interquartile range). From these graphs,
we can conclude that including acceleration in the model, on average, results in the best performing models.
Peripheral skin temperature, on the other hand, results in models with decreased performance, on average. To
analyze these results statistically, we used a McNemar test between each set of models that employ each modality.
Specifically, we calculated the McNemar test of binary classification between the aggregate data for all training
runs covering all models that include each target modality. We found that we could reject the null hypothesis that
these models were the same in all modality comparisons (𝑝 < 0.01) except pupillometry vs photoplethysmography
(Binary:Ndg=12445, 𝑝 = .566; 2-Cat:Ndg=12407, 𝑝 = .243). For all other modalities, we conclude a significant
difference exists. Thus, we found, for both tasks, that the level of influence on the accuracy of the RTLX family
of models ordered from most influential to least influential is (1) acceleration, (2) EDA, (3) pupillometry and
photoplethysmography, and (4) temperature.

7.6 Performance Given Subject Experience
To understand how performance is affected by subject experience we built three RTLX family of models trained
on only one subject type, each. That is we built three groups of models (33 models each) where each group was
trained on one subject type: novices, operators, or pilots. Figure 7 depicts the accuracy of the 33 models for
each group, which are defined by subject type, and were folded with cross-subject, 2-fold cross-validation, and
whereby only two subjects were left out. This was done because of the dataset size constraints — 10 novices and 9
operators, which provided four and three folds, respectively — nine folds for the Pilot group. We again aggregate
the folds of all models within each group. And we aggregated the accuracy across all modalities within a group
and compared groups with a two-sided Wilcoxon signed-rank test [107] — (pilots vs operators: p-value=6.49e-05,
pilots vs novices: p-value=7.1e-07, novices vs operators: p-value=4.94e-06). The Wilcoxon signed rank test is a
non-parametric version of the paired T-test, and we used this test because the data was not found to be modeled
well by a normal distribution. Both operators and pilots groups failed the Shapiro-Wilkes test [95] for normality.
We thus concluded that the differences among each subject-type group are significant and subject type can
influence the quality of the model. Moreover, the pilot group tends to have the strongest performance across all
models, followed by operators, and then novices. For operationalizing this model as an instructional tool, this
result is encouraging. We can expect more reliable performance for more experienced groups, and performance
tends to be more reliable as the learners gain additional experience.

7.7 Discussion
The implications of these results are clear in the field of pilot workload awareness, but wider implications are
also present in the cognitive computing field. Clearly, activity, maneuver (the human task), and skill level are
correlated as indicated by our results that multi-domain classification is possible (though did not provide a distinct
advantage); and they have an influence on model performance for classification of cognitive load. However, it
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(a) All Subjects: Binary (b) All Subjects: 2-Class categorical

(c) Binary: Target modality average (d) 2-class categorical: Target modality average

Fig. 6. Equal weight RTLX family of models, ordered by average fold accuracy averaged over 10 training runs, all subjects

is unclear how these three factors are inter-related based on our analyses. Gray [38] may have had the correct
approach with his introduction of pilot inceptor workload. Inceptor workload may support a method of label
alignment, as discussed in Section 5.1. Specifically, it may be possible to use the “aggressiveness vs duty cycles
method” to label an observed maneuver without subjective ratings. As such, further investigation into activity
and cognitive load is warranted.
The implication of modality choice is relatively clear. In our analyses the modality combination was a hyper

parameter with some combinations outperforming others. While the use of many modalities was typically a
good performer, it was never consistently better than using a subset of modalities, which has implications for a
number of applications. Many applications can get a “good-enough” classification using only the sensors from
the E4 wrist-band. We have shown that acceleration and EDA are the top two influencing modalities. With PPG
on par with pupillometry. Others may find a more reliable result with the inclusion of pupillary response because
it adds yet another vantage point with the potential to provide more context. However other considerations need
to be further investigated. These include investigation of modality fault tolerance, modality inter-change through
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(a) Novices (b) Operators

(c) Pilots

Fig. 7. Equal weight RTLX family of models, ordered by average fold accuracy and trained only on: (a) Novices, (b) Operators,
(c) Pilots, and (d) All subjects

context-aware computing, and modality latent data augmentation. Additionally, it may be possible to reverse
engineer the model to understand what aspects of a given modality are important for classification of cognitive
load or other human cognition metrics.
By understanding the internal context of an aviator during a simulation, essential aspects of the learning

experience could be efficiently exposed to a computing system. With a cognition-aware computing system, it is
likely possible to personalize the learning experience for students, expediting the educational effectiveness by
maximally challenging the learner without overloading them as hypothesized by cognitive load theory [71]. Given
our research showing that two levels of load are relatively reliable to infer, it should be possible to reformulate the
theory of cognitive load (in learning) with this binary constraint. The utility of a binary cognitive load classifier
may be enough for a number of personalized learning algorithms to come to fruition. The limitations of this are
currently not well understood and require further research.

8 EDWARDS PILOT WORKLOAD STUDY
The Edwards Objective Measures of Pilot Workload study was a feasibility study to demonstrate utility of
physiological sensor systems as a flight test data source for objectively assessing pilot workload. Southern
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Methodist University was one of three institutions that participated with our Empatica E4 capture software,
joining in two flight test sorties. A key goal was to have the test pilot flying wear as many sensors as possible
given the limited number of sensors and constraints of flight. Ultimately, this feasibility study was a data capture
experiment evaluating the capacity to collect such data in real-flight; but also it was used for assessing the
practicality and wearability of the sensors. The study was conducted in real-flight on a military cargo aircraft at
Edwards AFB, where we evaluated the Empatica E4 wristband. This additional data collection scenario allowed
us to ask Do the models of cognitive load trained in our VR experiments generalize well to new pilots flying in real
aircraft, under maneuvers not included in our original experiments?

Multiple maneuvers were flown in order to collect data and potentially assess pilot workload. Aerial refueling
and offset landing tests were expected to induce high workload. Normal flight profile maneuvers such as climb,
cruise, and decent were expected to induce low or operational workload. The test conditions were operationally
representative of real flight. Data collection was conducted on an instrumented C-17A, a large cargo aircraft. The
IRB application and relevant protocols were submitted and approved through the Air Force Research Laboratory
(AFRL). The IRB at Southern Methodist University approved the experiment through reciprocity. The AFRL IR ID
protocol number is FWR20180152N. Flight test was conducted by the 418th Flight Test Squadron in accordance
with test plan, 412TW-TP-18-47, Objective Measures of Workload Feasibility Study [50].

8.1 Maneuvers
While climb, cruise, and decent maneuver data were collected along the normal flight profile, three maneuvers
were flown multiple times in order to collect as much high workload data as possible. These maneuvers included:
(1) aerial refueling boom limits demonstration, (2) aerial refueling stationkeeping, and (3) lateral offset landing test
maneuver. The potential for baseline physiological data was achieved with data collected during low workload
tasks such as periods during rest between test points. The three maneuvers flown are as follows (note the C-17A
test aircraft is the receiving aircraft in the first two maneuvers):

Fig. 8. Boom Limits Demonstration — Points five and six are inner and outer limits [50]

(1) Aerial Refueling Boom Limits Demonstration: The goal is to fly this maneuver for a minimum of five minutes.
Once cleared by the tanker to pre-contact and contact positions. The boom operator of the tanker makes
contact with the receiving aircraft and directs the receiving aircraft through a boom limits demonstration;
which includes in all three boom axes — azimuth, elevation, and extension. The test aircraft holds within
three degrees or two feet of each limit, until stabilized. The pilot flying will (or attempts to) hold this
position for five seconds. Figure 8 illustrates the six boom positions for the boom demo.
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(2) Aerial Refueling Station keeping: As with the Boom Limits Demo, the station keeping maneuver begins with
clearance from the tanker to pre-contact and contact positions. The boom operator will then make contact.
For a minimum of five minutes, the receiving aircraft will remain in contact, also known as station keeping.
The receiving aircraft, remaining in contact with the tanker, is stabilized in straight and level flight. The
tanker and the receiving aircraft with bank 30𝑜 . This will be held through at least 90𝑜 of heading change.
Both aircraft will return to straight and level flight. At this point the maneuver is completed if five minutes
or more has elapsed.

(3) Lateral Offset Landing Test Maneuver: The pilot flying will conduct an approach to a runway with a 300ft
lateral offset distance. A touchdown point on the runway will be identified at the pilot flying’s discretion.
At 500 ft above ground level (AGL), the pilot flying will initiate recovery to runway center line. They will
line up and stabilize on their desired touchdown point by 300 ft AGL. ‘Go Around’ will be flown if they are
not stabilize before 300 ft AGL. If the pilot flying is stabilized before to 300 ft AGL, the maneuver can be
terminated with either a touch and go or a full-stop landing.

Table 8. Variable-length 𝐵𝑀3𝑇𝑋 : Metrics from the classification of Edwards Pilot Workload Study flight data — five test
pilots across two flights flown August 28th and August 30th, 2018.

Raw-TLX Ratings Domain
Binary 2-Class

Subject(s) Maneuver Count Acc. TPR Prec. AUC Acc. TPR Prec. AUC

All Pilots 33 90.9% 90.9% 90.4% .936 93.9% 93.9% 93.9% .957
Pilot A 14 100.0% 100.0% 100.0% 1.0 100.0% 100.0% 100.0% 1.0
Pilot B 6 100.0% 100.0% 100.0% 1.0 100.0% 100.0% 100.0% 1.0
Pilot C 2 50.0% 50.0% 25.0% 1.0 50.0% 50.0% 25.0% 1.0
Pilot D 3 66.67% 66.7% 44.4% 1.0 100.0% 100.0% 100.0% 1.0
Pilot E 8 87.5% 87.5% 93.75% .857 87.5% 87.5% 93.75% .857

8.2 Results
Ultimately, 33 maneuvers of workload data were collected averaging 7 minutes long, with a median of 6 minutes
and a standard deviation of 4.7 minutes. Six maneuvers lasted over 10 minutes long, with one spanning 22 minutes.
Due to the nature of the tasks, this data is unbalanced with only five samples of low load and 28 samples of
high load. The unmodified subjective RTLX ratings were aligned and mapped to binary labels, as in Section
5.1. The modality data was processed and standardized as in Section 5.5. This new dataset was run-through
the variable-length 𝐵𝑀3𝑇𝑋 model with only the E4 modalities (PPG, acceleration, EDA, and peripheral skin
temperature) with respective hand engineered data. The results are listed in Table 8. Note that the accuracy,
precision, and true positive rate are reported using a fixed threshold value across all pilots, not a pilot specific
threshold from their ROC. In this way, the pilot may have an AUC of 1.0 but accuracy less than 100%. While
the results are promising — an accuracy of 90.9% across 33 data points with five previously unobserved subjects
in actual flight — the dataset is too unbalanced for conclusive results. And in some cases, Pilot C and D, there
is not enough data to make a conclusive judgment. Even so, a description of performance is warranted as an
exploratory exercise. A hypothesis might be made that simulator data cannot capture the level of high load
induced in real flight, and this dataset is skewed for an observance of high load with respect to the model trained
on simulator data. However, Pilot C’s misclassified sample is a low load label classified as high load, while Pilot D
and E, each, classified a high load sample as low load — one type I error and two type II errors. Ultimately, we
can only conclude that this methodology is feasible. More flight data is needed for a conclusive result, but the
results are quite promising.
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9 CONCLUSION
In this research we use the aviation domain for inducing and evaluating cognitive workload. We evaluated
numerous machine learning models to classify cognitive load across subject and across task.We find that we
can accurately and reliably use multiple physiological/biometric modalities to objectively evaluate
two levels of cognitive load in a simulated flight environment. To the best of our knowledge, these results
set a new state-of-the-art in cognitive load inference.
The activities of this research involved the collection of physiological measures relevant to aviators as they

underwent simulated flight scenarios for both low and high levels of induced workload. We proposed a new
concept of subjective label alignment as a way of reducing the noise inherent in subjective cognitive load ratings.
We further proposed two versions of a new method for cognitive load classification: one with fixed-width input,
and the other variable-width input. These architectures took advantage of x-vector like architectures and deep
multi-modal, multi-task, and generative learning, with many time series modalities from physiological sensors
encoded into a latent space. Statistics layers are calculated and passed through to the bottleneck, and finally
passed through to multiple task layers classifying multiple tasks across 40 subjects inclusive of three subject
types — pilots, operators, and novices. Our approach was further validated with real-flight data from five test
pilots collected over two test and evaluation flights on a C-17 aircraft.
The importance of measuring human performance objectively across subjects is hard to overstate, and the

results of this research suggests cognitive load can be objectively classified across subject and activities into at
least two levels with reliable accuracy and in near-real time, > 81.0%. Additional levels of sensitivity should
and need to be investigated further. Interestingly, the skill level of participants influences the accuracy of the
model, with more reliable results for pilots with increased flight experience. Furthermore, this methodology for
classification of cognitive load may be important in establishing the context of an aviator while in-flight. The
scope of our conclusions is limited to scenarios from our experiments, but the classification of cognitive load
across maneuvers for additional flight tasks or for other activities in other domains are likely applicable. We
leave the investigation of cognitive load classification in additional flight activities and other disciplines to future
work. By understanding these internal states and granting a machine access to this context we increase the
informational bandwidth and enrich the interaction between the human and the machine. By reliably inferring
context, numerous ubiquitous computing applications are enabled, especially in learning environments. Thus,
our work has broad implications in context-aware computing, where the inclusion of cognitive load inference
may prove transformative.
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