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Abstract
We seek to understand if an automated algorithm can replace human scoring of surgical trainees performing the urethrovesi-
cal anastomosis in radical prostatectomy with synthetic tissue. Specifically, we investigate neural networks for predicting 
the surgical proficiency score (GEARS score) from video clips. We evaluate videos of surgeons performing the urethral 
anastomosis using synthetic tissue. The algorithm tracks surgical instrument locations from video, saving the positions of 
key points on the instruments over time. These positional features are used to train a multi-task convolutional network to 
infer each sub-category of the GEARS score to determine the proficiency level of trainees. Experimental results demonstrate 
that the proposed method achieves good performance with scores matching manual inspection in 86.1% of all GEARS sub-
categories. Furthermore, the model can detect the difference between proficiency (novice to expert) in 83.3% of videos. 
Evaluation of GEARS sub-categories with artificial neural networks is possible for novice and intermediate surgeons, but 
additional research is needed to understand if expert surgeons can be evaluated with a similar automated system.
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Introduction

Robotic-assisted surgery is a type of minimally invasive 
surgery that allows for increased precision, flexibility, and 
control, resulting in quicker patient convalescence [1]. While 
robotic surgery has achieved great success and widespread 
adoption in recent years, this success remains inseparable 
from the skill of the surgeon operating the robot. There-
fore, efficient and reliable training of residents remains of 
paramount importance. The current model for training resi-
dents (surgical trainees) is to always have an experienced 
surgeon overseeing the resident throughout their training 
period, which is both labor intensive and costly, and there-
fore difficult to scale to meet current needs [2, 3]. To help 

mitigate this, Johnson et al. [4] designed a training scenarios 
for robotic prostatectomy procedures with synthetic tissue. 
From video of trainees practicing on this synthetic tissue, a 
validated assessment of robotic skill was assigned to each 
video from four experienced surgeons. For scoring, they 
employed the “Global Evaluative Assessment of Robotic 
Skills” (GEARS) score which contains various elements for 
an evaluator to consider including: Depth Perception (DP), 
Bi-manual Dexterity (BD), Efficiency (E), Force Sensitivity 
(FS), Autonomy (A), Robotic Control (RC). In their work, 
they establish that ratings of expert, intermediate, and novice 
(based on surgeons’ real-world experiences) did translate to 
significant differences in GEARS scores from the synthetic 
tissue model. However, the downside of this learning proce-
dure is that is still requires experienced surgeon’s to review 
trainee videos—ideally with multiple reviewers to increase 
the accuracy and reproducibility of the ratings. In this work, 
we seek to automate the process of scoring trainees on the 
synthetic tissue model. Using computer vision, we develop 
an automate the surgical evaluation process that closely cor-
relates with expert review, thus potentially expediting the 
learning process and reducing the need for oversight from 
an experienced surgeon.
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We leverage the dataset of Johnson et al. [4] at the Uni-
versity of Texas, Southwestern Medical Center (with per-
mission) to inform the design and evaluate our model. 
Therefore, in this work, our goals were set as follows: 

1.	 Design and evaluate algorithms for tracking the location 
of various surgical instruments, from standard video, in 
real time.

2.	 Design and evaluate novel deep learning architectures 
capable of predicting surgical proficiency using vali-
dated scoring metrics from training videos and investi-
gate the time segments from the video that influence the 
model prediction.

An overview of our processing pipeline is shown in Fig. 1. 
First, each video is divided into numerous video clips. For 
each video clip, we perform object detection for tracking 
specific parts of surgical instruments, saving the position of 
each object over time. From these time series positions, a 
sequence scoring model is designed to predict the GEARS 
score (a regression). We conduct extensive experimental 
validation using leave-one-subject-out cross-validation. We 
evaluate on the total GEARS score (a possible score of 30) 
and on each sub-category (or sub-domain) of GEARS (a 
possible score of 5 for each category). Of the 18 videos, 15 
were classified into the correct category (83.3%) using the 
conventional GEARS rating system (expert >25, interme-
diate 20–25, novice <20). The model accurately predicted 
novice surgeons in 11/11 cases (100%) and intermediate 
surgeons correctly in 4/5 cases (80%). The model failed to 

correctly identify an expert surgeon in any case (0/2). For 
GEARS sub-categories, 108 GEARS predictions were made 
by the reviewers (18 video segments × 6 GEARS domains). 
Compared to human scoring, the model accurately predicted 
the individual sub-category score within 1 point in 86.1% 
of predictions and within 2 points in 100% of predictions.

Related work

Because of the varied works that our methods build on, we 
divide our related work discussion into several categories 
comprising object detection, sequence modeling, multi-task 
learning, and robotic surgery assessment.

Object detection and location tracking Object detection is 
a challenging computer vision task that aims to identify pre-
defined objects in a image or a video [5]. It has been a prob-
lem historically investigated for more than 40 years. How-
ever, due to the emergence of convolution neural networks 
(CNNs) [6], the vision community has achieved state-of-
the-art results in many recognition tasks. We use a key point 
detector based on the U-Net architecture, which systemati-
cally encodes images and decodes into a given label space 
[7]. For example, Hasan et al. used the U-Net architecture 
to segment surgical instruments in a video frame [8]. Differ-
ently than our approach, they do not segment key points of 
the instrument; rather, they try to find a mask around each 
instrument. Perhaps most similar to our approach is that of 
Islam et al. [9] and Shvets et al. [10], that used a masking 
U-Net for identifying individual portions of robotic instru-
ments [9, 10]. While these works did not use key points, 

Fig. 1   An overview of the processing pipeline employed in our analysis
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their approach could be used to find angles of instruments 
and relative location of arm joints.

Sequential data modeling In addition to key point detec-
tion, our model makes use of sequence analysis to score each 
time series of object positions. Sequential series analysis 
aims to predict the future data based on current and histori-
cal data. temporal convolutional neural networks (CNN) [11] 
are a popular modeling procedure for sequential analysis that 
can be trained with parallelism, which is more complex for 
recurrent neural networks (RNN). For many applications, 
they have been shown to take less training time with predic-
tion performance similar to RNNs [12]. Moreover, a num-
ber of more recent models make use of a hybrid approach, 
whereby filter outputs are multiplied by weighted vectors, 
called attention [13]. Similarly, we also use weighted mul-
tipliers in our model over times when video segments are 
given greater importance in the final calculation.

Multi-task learning (MTL) is a popular method for 
exploiting information from multiple classification tasks in 
a single modeling framework. In neural networks, this infor-
mation sharing is achieved using shared weight representa-
tions between tasks—it has been shown to increase accuracy 
and generalization in a number of applications [14]. In the 
context of robotic surgery proficiency, each sub-scale of 
the GEARS score can be treated as a separate classification 
task from a shared set of features (the input video), which 
improves model reliability.

Robotic surgery assessment using deep learning Many 
works employ convolutional networks for robotic surgery 
assessment. Zhao et al. used traditional 2-D convolutional 
networks for tracking surgical instruments in video [15]. The 
main aim of this work was not assessment, but to track the 
instruments for verification. Another related work to ours is 
from Law et al. [16]. They employ as hourglass network to 
locate specific parts of a robotic instrument (tips, wrist, arm) 
form the raw video and compute motion features. From these 
features, they employ machine learning to make a binary 
prediction related to surgical proficiency. For labeling, they 
use a binary version of the GEARS score as evaluation—
the authors state that they would prefer to use a non-binary 
GEARS scoring, but found the results unreliable. Similarly, 
Lee et al. used instrument tracking to analyze surgical profi-
ciency using convolutional tracking networks. Based on the 
output of the tracking network, they used a mix of traditional 
machine learning modeling to predict three levels of surgi-
cal skill [17]. Their models’ accuracy ranged from 57% up 
to 83% accuracy for classifying the three levels. In our own 
previous work [18], we used a detector with a simple convo-
lutional sequence model to assess GEARS scores with up to 
78% accuracy among five different levels for each GEARS 
sub-category. While our work clearly takes inspiration from 
previous methods, we make a number of improvements and 
extensions to the system that increases throughput, requires 

less data, and can be used to assess sub-categories of the 
GEARS score using its entire dynamic range.

Methods

In this work, we employ a dataset collected in our previous 
work [4]. The aim of this dataset was to evaluate how the 
GEARS surgical scoring system performed for a prostatec-
tomy using artificial tissue. The dataset includes 18 robotic 
urological videos that recorded how trainees and experts 
sutured artificial urinary tissue in the final step of a pros-
tatectomy procedure. These 18 videos are segmented into 
74 non-overlapping segments and each segment is rated 
according to the GEARS rating system. All of the video 
segments are evaluated by more than one physician, so they 
have multiple GEARS ratings. Most discrepancies are small 
between raters.

In addition, the videos were mostly visually consistent—
each of the 18 videos was a different surgeon performing 
with the same surgical instruments, in the same environ-
ment, and completing the same task. The surgeon was oper-
ating two robotic arms to suture artificial urinary tissue. This 
visual consistency is advantageous for creating an automated 
system because it reduces the need for large-scale data col-
lection. That is, the model can train effectively with fewer 
examples because we only seek to analyze videos of syn-
thetic tissue with consistent visual characteristics. There-
fore, while the relatively few videos in the dataset might be 
considered a limitation of our study, the visual consistency 
greatly mitigates this limitation. Table 1 shows other general 
information about the dataset.

The “Global Evaluative Assessment of Robotic Skills” 
(GEARS) score were used to evaluate the skill of train-
ees [4, 19]. This scoring contains various elements for 
an evaluator to consider including: Depth Perception 
(DP), Bi-manual Dexterity (BD), Efficiency (E), Force 
Sensitivity (FS), Autonomy (A), Robotic Control (RC). 
We use the same scoring sheet and instructions available 
from [19]. In this dataset, the videos are sampled at rate 
of thirty frames per second (30 FPS). For each frame, spe-
cific parts of surgical instruments can be tracked using 
our key point detector. We believe that the movement of 

Table 1   General dataset information

Total videos 18
Total segments 74 (56 train, 18 eval.)
GEARS per video 24
Video length 8–12 min, Avg.: 10.4 min
Segment length 30s–5 min, Avg.: 2.2 min
Experience 2 Fac., 5 Fel., 11 Res.
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surgical instrument can give us clues regarding the skill 
of the trainee. In conversations with our surgical team, 
we identified seven unique objects in the video that play 
important roles during operation. These seven objects 
are the robotic arm Rear Joint, Front Joint, and Claw tip 
(for both the left and right arm) and the Needle. For each 
object, we locate the coordinates of it in the image (x, y) 
and save these coordinates for further processing. For the 
Needle, we identify two points corresponding to the start 
and end points. These points are marked manually for a 
subset of training frames and used to train our “key point 
detector model.” After training, these points are extracted 
automatically by the model.

Model architectures

Figure 1 presents the overview of our method. First, the key 
point object detector is used to identify surgical instruments 
in each video frame and the coordinates of surgical instru-
ments are saved. Second, the positions of surgical instru-
ments are concatenated together as features and used to train 
a sequence scoring model.

Key point detector The overview of the network is shown 
in Fig. 2. The key points detector is a modified U-Net archi-
tecture [7]. It receives a video frame and generates probabil-
istic heatmaps that match the resolution to the input image, 
640 by 360 pixels. One heatmap is generated for each key 
point and one heatmap for the background. Each heatmap 

Fig. 2   Our key point detector model, which estimates locations of joints and instruments in the video. Various breakout overlays are also shown
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generated corresponds to the probability that the surgical 
instrument is located at each pixel location. That is, eight of 
nine outputs predict the probability of joints and the tip of 
the needle. The ninth output is the “background,” which is 
used for training the detector, but is discarded before provid-
ing the predicted key points to the next phase. Finally, the 
model uses a Hough vote to calculate the coordinate of the 
joint [20]. The Hough vote helps to assign probability to 
groups of pixels by looking at all heatmaps together. Once 
the voting is complete, the detector gives an x and y coor-
dinate for any detected key points. We save this centroid to 
represent the location of the object, resulting in a 16-dimen-
sional vector (six joints with x and y pixel locations in the 
frame of the video and the two endpoints of the needle).

Training details The U-net architecture used is a convo-
lutional neural network that contains six encoding blocks, 
six decoding blocks, and a bottleneck block. The encoding 
blocks downsample the input image and the decoding block 
combines the previous block output and the encoding block 
output from early layers. “Downsampling” and “Upsam-
pling” are image resizing methods that change the size of the 
feature maps. Feature maps are sets of images that show how 
the neural network responds at each layer. The bottleneck is 
the smallest feature map in the network. By hierarchically 
using downsampling and upsampling, the U-Net architecture 
can effectively reduce the dimensionality of the input data. 
The model also consists of a series of residual blocks that 
employ “identity mapping” [21]. Batch Normalization is a 
widely used technology in neural networks that allows the 
network to learn how to scale different feature maps. Layer 
Normalization has the same purpose as Batch Normaliza-
tion, but has better performance if the batch size is small. 
Therefore, the batch normalization typically used in U-net 
is replaced with group normalization due to the limited size 
of the batch used in our model [22]. The network’s final 
layer is a pixel-wise Softmax across the nine heatmaps (i.e., 
a probability is given for each pixel). Cross-entropy to cal-
culate the prediction’s loss during training. In total, the key 
point detector is trained on 560 labeled video frames from 
the dataset.

Multi-task sequence scoring model In previous work 
comparing single task modeling to a multi-task modeling 
for robotic surgery scoring, we found that the multi-task 
model consistently out performed the single task model [18]. 
Therefore, we only consider the multi-task GEARS score in 
this work. By training our model in this way, we incentivize 
the model to extract patterns from the sequences that are 
important for for all GEARS sub-categories. Then, a sepa-
rate regression network is trained more specifically to each 
GEARS sub-category. As shown in Fig. 3, the scoring archi-
tecture processes the sequence of key point locations across 
all the frames of the video. Two pathways are traversed in 
the model, a time convolution and gate processing pathway. 

The time convolution extracts meaningful patterns from 
the sequence over time. The gate processing path informs 
which time segments are most meaningful. This pathway 
uses the outputs from the time convolutions and previous 
gate processing blocks. The two pathways are merged using 
the “weighted sum” block, which uses the gated blocks to 
aggregate the time convolution patterns into a single vec-
tor representation. This weighted sum is how our network 
“focuses” on certain time segments in the video. Segments 
that are judged to be important for assessing GEARS scores 
are given greater weight. Also, note that these weights are 
learned by the network so each video is given a dynami-
cally calculated weight. After aggregation, the network splits 
into separate branches for each GEARS sub-category (i.e., 
multi-task branches). These branches collapse the features 
from the convolution into a single score for each category. 
Finally, the six categories are concatenated into a single vec-
tor that denotes the predicted GEARS score for each sub-
category. The total GEARS score is calculated as the sum 
of all sub-categories.

Model training We separate the video segments into train-
ing and testing data as a validation procedure to allow better 
generalization of the model and prevent memorization. That 
is, we divide up the dataset into 74 segments, reserving 56 
for training and 18 videos for evaluation (assigned randomly, 
but ensuring that each surgeon has one video segment for 
testing). To make our prediction as close as possible to 
human rated GEARS score, mean squared error is used as 
a loss function for each GEARS score.

Results

We separate our analyses into four sections that build from 
one another. First, we describe the key point detector accu-
racy, followed by two analyses of the scoring network. We 
analyze the GEARS sub-category accuracy and the “novice, 
intermediate, expert” distinguishing ability of the network. 
Finally, we discuss the attention mechanism of the scoring 
network, investigating its ability to discover relevant por-
tions of the video that are influential to GEARS scoring. 
We conclude that the model is accurate, but requires fur-
ther data collection and investigation to understand how it 
assigns importance to time segments of video.

Key point detector evaluation

We first evaluate the key point detector qualitatively with 
visual examples, shown in Fig. 4. These four examples 
showcase different instrument positions and crossovers. In 
each case, the detector identifies reasonable locations for 
the key points. To evaluate the key point detector more 
quantitatively, we randomly choose 80 frames from videos 
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throughout our dataset for evaluation. We selected frames 
that contained most of the key points in them (that is, both 
left and right instruments, without many occluded points). 
We did not include the key points associated with the needle 
because many frames do not have a clear view of the needle 
(or the needle is placed out of the frame). This results in 420 
key points among the 80 frames. We labeled each of these 
key points in each frame manually. We then compared the 
key point centroid locations from the model with our manual 
labels. Two evaluation criteria are employed: (1) if a key 
point is found in the image (detection) and (2) if detected, 
how far away are the points, normalized by the image width. 
Table 2 summarizes these results. Of the 420 key points, 

297 are detected properly (leaving 123 missed key points). 
Upon further investigation of these misses, we found that 
many of the missed point were momentary “drops” in the 
instrument tracking. That is, the instrument was detected 

Fig. 3   Our Scoring network, which processes estimated locations of joints and instruments in the video. Top heatmap: Visualization of object 
position from video

Fig. 4   Results from our key point detector. Specific parts of surgical instruments were clearly identified with high confidence. Coordinates of 
surgical instruments for each frame are saved and sent to our scoring model

Table 2   Evaluation of key point detector

Evaluation 
metric

Value Evaluation 
metric

Value

Key points 
detected

297/420 (70.7%) Average differ-
ence

16.9px (2.6%)

Median differ-
ence

11.4px (1.8%) STD of differ-
ence

14.7px (2.3%)
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soon after losing tracking (typically within 5 frames). On 
rare occasions, some “drops” lasted as long 1.5 s. These 
were typically the result of blurred video segments. Moreo-
ver, it was very rare that a single frame missed more than 
1 or 2 key points. Only one of the 80 frames had 3 misses, 
for example.

When the instrument was detected, the found location 
was within 16.9 pixels of the actual location, on average. 
This translates to about 2.6% of the image width. Thus, we 
conclude that the key point detector is reliable for tracking 
most frames and when the instrument is found, the loca-
tion of the centroid is accurate. Finally, we note that perfect 
tracking accuracy is not necessarily required because the 
scoring network can process the sequence in a way that helps 
to correct for these imperfections in tracking.

GEARS sub-category evaluation In this analysis, we 
investigate the sequential scoring model’s ability to identify 
each GEARS score on a scale of 1–5. We define a “match-
ing” prediction to our human ratings for each GEARS sub-
category based on the multiple human ratings that video 
has received. A prediction for the GEARS sub-category is 
considered “valid” if the prediction is within one point of 
the human rating. Of the 108 GEARS predictions (18 video 
segments × 6 GEARS domains), 86.1% of all GEARS sub-
categories are valid. If we expand the definition to define a 
valid entry as when the predicted score is within two points, 
then 100% of all GEARS sub-categories are valid. To further 
elucidate this performance for each GEARS score, Table 3 
shows the results per sub-category. In this table, a match is 
considered valid when the prediction is within one point of 
the human reviewers. Table 3 reveals an important limitation 
of our modeling: the autonomy score only matches for 72.5% 
of the results, the lowest of all sub-categories. This is likely 
because the model does not have direct information to under-
stand the autonomy of a given trainee. For instance, verbal 
commands that would indicate the trainee has decreased 
autonomy, are not captured by the model. However, when 
a surgeon receives verbal instructions there may be some 
characteristics (such as pausing in tool motions) that indicate 
feedback is occurring. We hypothesize that this is why the 
model does not fail entirely on the autonomy sub-category 
but struggles most with this prediction.

Novice-expert assessment In this analysis, we summarize 
the results of the models by aggregating to a single score 
based upon the conventional GEARS rating system. Spe-
cifically, for each video, we sum all GEARS scores for each 

sub-category to achieve a single score of proficiency. We 
define levels of proficiency as is typically applied to sums of 
GEARS scores: expert >25, intermediate 20–25, and novice 
<20. Of the 18 videos, 15 were classified into the correct 
category (83.3%). The model accurately predicted novice 
surgeons in 11/11 cases (100%). The model classified inter-
mediate surgeons correctly in 4/5 cases (80%). However, the 
model failed to correctly identify an expert surgeon in any 
case (0/2). There are several possible reasons for why the 
model fails to identify videos that are performed by experts. 
First, fewer examples of experts were available for training, 
which is crucially important for a machine learning algo-
rithm such as this. We hypothesize this is the main reason 
for decreased accuracy. Even so, while the training data do 
not include many expert examples, experts are not the pri-
mary use case for our model. That is, we expect trainees to 
be the main users, where novices and intermediate surgeons 
are far more common. It is also possible that the model per-
forms well at finding errors in the videos (which are more 
numerous for novices), but struggles when few errors are 
seen (experts). To elucidate this further, we also investigate 
what parts of the videos the model selected as “most influ-
ential” in its weighted sum merging block (which aggregates 
frames over time).

Important video segments analysis

To analyze the importance of segments within each video, we 
saved the “weighted sum” merge block output from the scor-
ing model for each video. We refer to these as “importance 
weights” or IWs. These IWs give a weight for each frame in 
the video. Larger IWs result in that segment of the video hav-
ing more influence on the assigned GEARS score. Smaller 
IWs indicate that the time segment is largely ignored. When 
analyzing the distribution of IWs, we see that the model clearly 
assigned certain portions with higher weights and many por-
tions were assigned weights near zero, indicating that the 
model had clear preferences for certain time segments. Given 
this observation, we grouped IWs in each video based on 
percentile of all IWs across the dataset. Anything above the 
30th percentile was deemed “high impact” and anything in the 
range of 15th–30th percentile was deemed “medium impact.” 
Using this definition, 9 of the 18 videos had segments deemed 
high impact and 6 videos with “medium impact”, each last-
ing about 10 s in duration. Three videos did not have any IWs 
above the 15th percentile. Interestingly, these three videos 

Table 3   Evaluation of model 
performance for each GEARS 
sub-category

Sub-category Mean Diff. Matching Sub-category Mean diff. Matching

Depth perception 0.69 94.4% Force Sens. 0.72 83.3%
Bi-manual Dext. 1.04 77.8% Autonomy 0.85 72.2%
Efficiency 0.64 94.4% Robotic control 0.74 88.9%
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included the two expert surgeons from our dataset. Of the 15 
videos with high- and medium-impact segments, we recruited 
a surgeon to review the videos and observe the time segments 
for any maneuvers or techniques that might be informative 
for the GEARS scores. For all time segments, the reviewer 
responded that a technique was employed at that time that 
could influence their rating of the GEARS score. While the 
reviewer assessed that the time segment could be influential, 
they did not always agree that it was most influential for deter-
mining the score. We did observe that about half the time seg-
ments coincided with poor technique, and about half with good 
technique. Further research is required to understand the role 
of IWs. Even so, it is clear that the time segments chosen by 
the model are influential, but the direction of influence (nega-
tive or positive) does not appear to be easily explained.

Conclusion

In this paper, we developed a deep learning method to evaluate 
robotic-assisted surgery video. Our proposed method detects 
the positions of surgical instruments with a key point detec-
tor model. The recognizer tracks surgical instrument posi-
tions over time and uses these time series features to infer the 
proficiency (GEARS score). Specifically, we present a con-
volutional multi-task model capable of using the instrument 
positions to predict six categories of GEARS scores reliably. 
Experimental results demonstrate that the proposed method 
achieves good performance on a surgery video dataset of train-
ees performing a prostatectomy with scores matching human 
raters in 86.1% of all GEARS sub-categories. Furthermore, the 
model can detect the difference between proficiency (novice 
to expert) in 83.3% of videos.
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