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ABSTRACT

Automated prosody classification in the context of oral read-
ing fluency is a critical area for the objective evaluation of stu-
dents’ reading proficiency. In this work, we present the largest
dataset to date in this domain. It includes spoken phrases from
over 1,300 students assessed by multiple trained raters. More-
over, we investigate the usage of X-Vectors and two varia-
tions thereof that incorporate weighted attention in classifying
prosody correctness. We also evaluate the usage of quadratic
weighted kappa loss to better accommodate the inter-rater
differences in the dataset. Results indicate improved perfor-
mance over baseline convolutional and current state-of-the-art
models, with prosodic correctness accuracy of 86.4%.

Index Terms— Automatic Prosody Classification, X-
Vectors, Deep Learning

1. INTRODUCTION

Prosody is defined as the rhythm, metre, and intonation by
which words are spoken. It may be categorized as symbolic
or lexical prosody [1, 2, 3], phrasal breaks [4, 5], and con-
versational prosody [6, 7, 8]. Most applications of automatic
prosody detection require supervised learning, where trained
linguists label the interesting segments of audio phrases [9].
Prosody can vary greatly depending upon the context and
genre from which it is taken [10, 11]. In this work, we fo-
cus on prosody classification of grade-school students in the
context of reading specifically crafted passages aloud. The
goal is not to classify lexical prosody per se, rather to classify
the degree to which the student uses appropriate prosody.

For correctness, we use a a four-point scale developed
by a subset of these authors that is based on the National
Assessment of Educational Progress (NAEP) rubric [12, 13]
and parts of the Multi-Dimensional Fluency Scoring Guide
(MFSG) [14]. The goal of classifying correctness of prosody
is part of a holistic measure of reading fluency [12, 15]. Such
classification has proven to be beneficial in assessing over-
all oral reading fluency, complimenting the more commonly
collected/assessed measures of words per minute (WPM) and
words correct per minute (WCPM) [16, 17].
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Fig. 1. Overview of the models investigated in the proposed
method. Models follow one or more of the dotted paths, en-
compassing all combinations of temporal pooling.

A number of works (see Section 2) have investigated
prosody correctness classification in this domain. One such
study [18, 19], using a similar rating scale, achieved lexi-
cal accuracy of 73.24% and prosodic accuracy of 69.73%
when compared with human ratings. Aside from surpassing
this benchmark, we introduce a number of novel concepts:
(1) We use the concept of inter-rater reliability in our loss
function [20] and leverage a number of concepts from X-
vectors [21] and attentive X-vectors [22]. (2) We employ
weighted temporal pooling in our convolutional networks.
We summarize our contributions as follows: (1) We collected
and validated a dataset of prosody correctness classification
of 5,841 phrases collected from 1,335 students in 2™ - 40
grade. (2) We evaluate the use of weighted temporal pooling
(inspired by X-Vectors[22]) and weighted Kappa loss [20] in
prosody correctness classification. (3) We conduct an ablation
study to investigate the overall importance of each processing
procedure. To the best of our knowledge, this work sets a new
state of the art in prosody correctness classification using the
largest dataset' to date, with accuracy of 86.4%.

https://s2.smu.edu/-eclarson/prosody.html



2. RELATED WORK

Project LISTEN, a reading tutor, ([23],) began in the 1990s
and is regarded as seminal research on automated analysis
of children’s spoken reading. Much research in this field
builds upon it. Ananthakrishnan and Narayanan [24] propose
augmenting automatic speech recognizers (ASR) by adding
symbolic alphabet annotations of prosodic events. In doing
s0, they identify relevant prosodic features, particularly: 1) 6
FO-related; 2) 3 RMS energy-related; and 3) vowel duration.
Mostow and Duong [25] and then Duong, ef al. [26] com-
pared a child’s oral reading to that of an adult (of the same
text) by analyzing the contours in pitch, intensity, pauses
and word reading times. Their research is grounded in the
observation that a child’s expressive reading tends to mirror
that of an adult’s as the child progresses [17] and culminates
with a trained model. In terms of scale, the closest to ours
is the work of Sitaram and Mostow [27] (which builds on
[28]) who mined Project LISTEN’s database to evaluate oral
prosody in an effort to predict fluency and comprehension.
In all 85,209 sentences were evaluated and compared against
a corpus of 4,558 sentences. In total, 158 pitch-related, 115
intensity-related, and 166-duration related features were as-
sessed. Bolafios, et al. [18, 19] combine lexical and prosodic
features to analyze children’s oral reading based on the NAEP
rating scale [12], a more standard and recognized scale than
earlier studies. These feature sets were necessarily force-
aligned, but this was accomplished in an automated fashion.
They were able to obtain 73.24% lexical and 69.73% prosodic
(76.05% overall) classification accuracy when compared with
human ratings. The most recent work in this area is from
Sabu and Rao [29]. They build a reading tutor for identify-
ing lexical and prosodic miscues during oral reading similar
to those identified by a trained professional. They laud a
cross-validated precision-recall scores of 73.2%/73.0% for
prominence and 59.2%/80% for phrasal break.

This work builds upon the aforementioned, but differs in
several respects. First, our goal is solely to assess prosody
according to a novel 4-scale rubric using conventional neu-
ral networks. Similar to many of these studies, our automated
assessment will be compared against expert judgement. How-
ever, we incorporate the disagreement of those judges into our
model. Our sample size is considerably larger than previous
studies both in terms of recordings and participants. While
previous studies have informed our feature selection, we con-
centrate on known prosodic low-level descriptors (LDDs) in
the audio signal.

3. DATASET

In order to design and evaluate our prosody classification al-
gorithm, we collected audio samples of oral readings from a
variety of schools in the Pacific Northwest region of the USA.
Passages were written by an expert who also co-wrote the

original easyCBM oral reading fluency and reading compre-
hension passages [30]. Each passage is an (1) original work
of fiction, (2) has a beginning, middle, and end, (3) follows
either a “problem/resolution” or “sequence of events” format,
and (4) contains minimal use of dialogue and symbols. We
used 150, 50 at each of grades 2-4 consisting of 20 long (80-
90 words) and 30 medium (45-55 words), passages in the ex-
periment. Passages were distributed evenly (50% =+ 1.6%)
across the grade, passage length, and overall audio sample
size dimensions.

Although NAEP only applied the scoring rubric to Grade
4, our research team made the decision to use the study-
generated rubric and grade-calibrated passages which focus
on phrasing, adherence to the author’s syntax, and expressive-
ness to assess prosody across Grades 2 through 4. In total, 49
audio samples were identified and scored by the research team
as exemplars and used for training annotators and for certi-
fication of raters. A total of 63 human prosody raters were
recruited and completed two training sessions, meeting the
prosody certification. Raters score prosody on a four-point
prosody scale, with the option to score between if they were
not certain (1, 1.5, 2, ...) thus creating a seven-point scale.
Independent scores were averaged before taking the floor to
provide the final score. Recording were reviewed by 138
groups of raters paired randomly in batches of approximately
50. Each rater scored between 38 and 747 recordings (mean
217.7, SD 177.3). Initial analysis of the ratings showed inter-
rater agreement of 95.8% within 1.0 point of disagreement
(42.5% 0.0; 31.2% 0.5; 22.1% 1.0). Disagreement of larger
than 1.0 was deemed abnormal by the expert author and held-
out for re-review (255 samples). In this manner, 5,841 audio
recordings, each scored by two raters, were made available
for model training. Given the inherent ordinal nature of these
classifications, intra-class correlation (ICC) [31, 32] was used
to validate acceptability of rater agreement. An acceptable
mean of 0.74 (SD 0.12) on the 7-point scale and 0.71 (SD
0.12) on the final 4-point scale is observed.

Table 1 provides summary statistics of the data collected
from a total of 1,335 students, and these follow national av-
erages [33, 34] with the exception of race which is highly
skewed toward white children (1.6 times higher). A strat-
ified random sampling was applied to select audio record-
ings equally across grade, gender, ethnicity, race, and special
needs (not shown). All data collection was completed with
IRB approval.

In the interest of assessing generalizability of final model,
both passages and students were held out of the training data,
and used solely for model testing. One medium and one
long passage from each grade was selected at random total-
ing 1,185 samples. The students were held out in an iter-
ative manner that preserved the original distribution in the
dataset. In all, 102 students were held out, totaling 656 sam-
ples. Both sets were reconciled, yielding 4,128 (70.7%) train-
ing/validation samples and 1,713 (29.3%) testing samples.



Table 1. Summary of the collected dataset (in %)

Trait | Student | Audio | 2™ [ 3@ [ 4B

N= 1,335 5,841 | 460 | 427 | 448
Female 45.8 49.1 | 48.0 | 46.8 | 52.5
Male 53.6 49.8 | 50.4 | 52.5 | 46.7
White 80.5 809 | 84.1 | 799 | 78.6
Non-White 19.0 18.1 144 | 19.4 | 20.5
Latinx 31.7 254 | 263 | 27.6 | 22.3
Non-Latinx 67.7 73.6 | 722 | 71.7 | 76.8

* Failure to sum to 100% due to personal data withheld

Training samples were augmented by: 1) adding Gaussian
noise; 2) adjusting gain; 3) applying a high/low/band-pass
filter using the Audiomentations Python library. Augmenta-
tion was applied randomly over a range of the adjustments
taking care not to distort the student’s voice. Less frequent
classes were over-sampled to ensure balanced classes. In to-
tal, 14,092 new samples were added to training data (240%
increase). From these samples, voicing-related low-level de-
scriptors (LDDs) were extracted using the Extended Geneva
Minimalistic Acoustic Parameter Set (eGeMAPS)[35].

4. METHODS

In our design, we borrow concepts from X-Vectors [21]
and attentive X-Vectors [22] for use in our architectures.
However, we do not employ the time-context layers in our
work—we only build variations of temporal pooling methods
that weight the convolution output activations before mean
(1) and variance (02) are calculated into an embedding. We
hypothesize the use of different temporal weighting schemes
can help the model learn to ignore insignificant phrasal breaks
in the spoken passage, while emphasizing other more costly
prosodic mistakes. Several model architectures are con-
structed and investigated, described as follows:

(1) We employ a baseline network that uses residual
connections with identity mappings [36] and 1D time con-
volution, as shown in Figure 1. Each time convolutional
block uses a number of separable and strided convolutions
for downsampling. This baseline network does not follow
any dotted paths in Figure 1 and does not use any temporal
pooling before entering the output flow of the network. That
is, the pooling layer is replaced by a flattening operation. (2)
We employ an x-vector-based network that uses traditional p
and o2 pooling of the convolutional output activations over
time. Note that there is no silence detection employed as
pauses are critical for the classification of prosody. (3) We
employ a weighted x-vector architecture that uses the cen-
ter path and right dotted path in Figure 1. This dotted path
uses processing gate blocks to multiply the p and o2 before
pooling. This weighting is achieved through multiple 1D
convolutions followed by a softmax layer to force the net-

work to focus on certain time segments before entering the
output flow. (4) We employ a network using convolutional
self-attention instead of temporal pooling as shown in the
left dotted branch of Figure 1. (5) Finally, we employ a self
attention weighted x-vector architecture that uses portions
of each dotted branch in Figure 1. Here self attention is used
to calculate the weighted vector to weight the segment before
pooling, rather than the gate process blocks in method 2.

To analyze each model, the result must be compared to
human scoring results through a loss function. Most works
use the Categorical Cross Entropy(CCE) as a loss function,
which is a classic loss function for many classification tasks.
However, due to the nature of prosody scoring, classes have
a quantitative relation between each other that CCE cannot
represent. Therefore, we also conducted experiments with a
modified version of loss function: Quadratic Weighted Kappa
(QWK) [20].

QWK loss is related to the calculation of Inter-Rater Re-
liability (IRR) that is typically measured between two human
raters. QWK quantifies the seriousness of the disagreement
between human rating and model output as:

2 wiiOij
> wiiEij

where O, w and E are the confusion matrix, penalty weights
matrix, and outer product of histogram of raters, respectively.
O, the confusion matrix, corresponds to the number of an-
swers that receive a score ¢ by the first rater and a score j by
the second rater. A quadratic penalty weight matrix can be
expressed as are:
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where N is the total number of possible classes. Matrix O
and matrix E are normalized to sum to 1.
When optimizing with QWK, [20] showed that the prob-
lem can be reformed as a minimization problem of L by:

L=log(l1—k+e) 3)

where L € (—o0,log(2)] since x € [—1, 1], the log serves to
decouple the numerator and denominator calculations, which
in turn eases the computation of the gradient [20]. The ¢ is
a small value that avoids calculating log(0) for the loss func-
tion. In our dataset, we use the multiple scores from multiple
raters as ground truth. When there is disagreement among
raters, the QWK allows the loss to take into account this dis-
agreement. We hypothesize that such behavior is advanta-
geous for prosody classification.

5. RESULTS

A summary of the performance of each architecture is pre-
sented in Table 2 where each row represents a separate trained



Table 2. Results summary showing accuracy and IRR using
Cohen’s Linear Kappa.

Classifier Loss In-domain Cross-domain
Acc IRR Acc IRR

Baseline | CCE Loss | 80.6% | 0.76 | 45.8% | 0.27
k-Loss 68.7% | 0.69 | 47.7% | 0.36

X-Vec. | CCE Loss | 82.8% | 0.80 | 50.1% | 0.34
k-Loss 81.5% | 0.79 | 48.0% | 0.31

W. X-Vec. | CCE Loss | 75.9% | 0.70 | 46.6% | 0.27
k-Loss 80.4% | 0.78 | 56.4% | 0.42

X-Vec. | CCE Loss | 86.4% | 0.84 | 52.6% | 0.39
+SA k-Loss 74.9% | 0.73 | 57.2% | 0.44

W. X-Vec. | CCE Loss | 77.9% | 0.73 | 48.5% | 0.30
+SA k-Loss 79.5% | 0.77 | 60.2% | 0.46

model and each “loss” column indicates whether the model
was trained using CCE loss or QWK loss (k-loss). The left-
most “results” column shows performance using in-domain
phrases—that is, known phrases are used in the training set.
The rightmost column shows results across-domain phases
where phrases are used that do not exist in the training set. In
both scenarios, the training and testing sets are separated ac-
cording to students (as previously described) such that a stu-
dent is never in both the training and testing sets. For perfor-
mance, the overall accuracy is shown for classifying prosody
into four scales, as well as inter-rater reliability (IRR, linear
k) assuming that the model is another prosody rater. We use
the average of human raters as a ground truth for accuracy and
IRR. The best performing models (boldface in Table 2) per-
domain employ self-attention only and weighting with self-
attention, respectfully.

We organize the discussion of results by research ques-
tions. First we ask: Can automated prosody classification
for oral reading fluency be applied within or across domains
reliably? Within domain, the models perform similarly to (in
many cases better than) human raters. Therefore, we conclude
their use reasonable in this context. However, when applied
across domain, this performance drops considerably. There-
fore, automated cross-domain performance is still an open re-
search topic for the community. Second we ask: Do X-vector
architectures provide an advantage over baseline convolu-
tional models for prosody classification? Based on the perfor-
mances over baseline, we can conclude that the X-Vector ar-
chitecture provides a significant advantage in prosody classi-
fication. Third, we ask: Do X-vector weighting methods pro-
vide a distinct benefit? Here the results are not as straightfor-
ward. Using attention has an advantage, but weighting does
not seem to provide an advantage. Therefore, we conclude
that the most significant method for performance is attention.
We note that, when applying attention, the number of weights
in the model is reduced which might influence performance
due to the dataset size. Finally, we ask: Does using « loss

provide a distinct benefit over traditional cross entropy? For
most models, there is not a clear advantage, but a performance
boost is observed in others. In general, we encourage other
members of the speech processing community to employ and
evaluate the QWK loss when subjective scores are used.

6. CONCLUSION

In conclusion, we presented a new dataset for prosody clas-
sification in the context of oral reading fluency. The high-
est recorded performance for in-domain classification was
achieved using X-Vectors and self-attention, resulting in a
new state-of-the-art in prosody classification of 86.4%. An
interesting future work to increase across domain generaliza-
tion may be to include the concept of an average difference
feature extraction, whereby the “ideal” prosody of a known
phrase is estimated using text-to-speech (TTS) models. Thus,
the X-Vector model can focus upon the difference of a spoken
phrase to a suggested baseline. We leave this exploration to
future work.
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