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ABSTRACT
In this investigation we propose new machine learning methods
for automated scoring models that predict the vocabulary acquisi-
tion in science and social studies of second grade English language
learners, based upon free-form spoken responses. We evaluate per-
formance on an existing dataset and use transfer learning from a
large pre-trained language model, reporting the influence of various
objective function designs and the input-convex network design. In
particular, we find that combining objective functions with varying
properties, such as distance among scores, greatly improves the
model reliability compared to human raters. Our models extend
the current state of the art performance for assessing word defini-
tion tasks and sentence usage tasks in science and social studies,
achieving excellent quadratic weighted kappa scores comparedwith
human raters. However, human-human agreement still surpasses
model-human agreement, leaving room for future improvement.
Even so, our work highlights the scalability of automated vocabu-
lary assessment of free-form spoken language tasks in early grades.

CCS CONCEPTS
• Applied computing → Computer-managed instruction; •
Computing methodologies→ Neural networks.
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1 INTRODUCTION
Understanding how well English language learners understand
academic vocabulary while they develop language proficiency is
an important goal for educators and researchers. One method of
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assessment that is theoretically and empirically based, and that has
the potential to increase our understanding of how second language
learners develop their academic vocabulary is to allow learners to
respond verbally when describing or using academic terms [9].
However, scoring student speech can be very time consuming. To
mitigate this problem, previous work has established an end-to-
end pipeline for training and evaluating automated scoring (AS)
models with hand transcribed data and word embedding based
recurrent network models [15]. In parallel, transfer learning has
been employed with pre-trained language models to specific tasks,
achieving great success in numerous classification tasks. In most
studies, transfer learning is based on pre-trained language models
where a few fully connected layers are trained for a specific task,
but the language model weights remain frozen (i.e., untrained) [14].
This evidence motivates us to use transfer learning of a language
model for assessment of vocabulary acquisition. In particular, we
investigate two separate classification tasks: one task is referred
to as a “definition comprehension task” where a student is asked
to define an academic word; and another task is referred to as a
“sentence comprehension task” where a student is asked to use the
word in a sentence. In each task, students respond verbally and
transcriptions are used to assess understanding.

Thus, this study extends previous research on AS models by
introducing BERT [7] pre-trained language model with transfer
learning, emphasizing the importance of (1) exploring appropri-
ate methods for supplying input vectors to pre-trained models,
(2) ensuring convexity of transfer learning architectures by using
skip connections, and (3) carefully selecting loss functions to better
model the classification task as related to human subjective annota-
tions. Specifically, in this study we address the following research
questions:

(1) What information should be exposed to a pre-trained lan-
guage model for classifying definitions and sentence usage?

(2) Which architectural elements are most influential for increas-
ing human-machine agreement?

(3) How well does the best model (as judged by validation set
performance) generalize to a test set that is constructed with
words that do not appear in the training set?

Moreover, our study indicates a series of implications and poten-
tial improvements in terms of data collection, human rating process,
and network architectures. These implications are currently being
employed in a new round of data collection. Once this round is
completed, more methods will continue to be investigated.
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Figure 1: Example of the end-to-end pipeline of the network.
Variables marked in red are found through hyperparameter
search.

2 DATASET AND METHODS
We use the ELVA dataset to inform the design and evaluate our
AS models [15]. Student responses in the dataset are assessed by a
metric referred to as depth of knowledge (DOK) [3]. As mentioned,
the measure contains two separate tasks: a definition comprehen-
sion task and a sentence comprehension task, hereafter referred
to as definition and sentence tasks. In the original data collection,
human annotators evaluated DOK for the definition task by scoring
student responses between 0-2 and the sentence tasks from 0-3.
Further analysis revealed that the inter-rater reliability (IRR) of the
sentence task was greatly improved by only allowing scores from
0-2. Thus, we decided to adopt this scoring method for all responses
(i.e., definitions and sentences).

A total of 13,471 English recorded utterances from 217 second
grade participants were used in the study (6,778 for definition task
and 6,693 for sentence comprehension). However, a substantial
portion of the data was marked by annotators as “Don’t Know”
(DK) and “No Response” (NR), for when the student responded
saying they did not know the word or when the student did not
verbally respond, respectively. In our analysis we removed DK
and NR responses from the dataset because they artificially boost
performance evaluation. That is, these responses are relatively
easy to identify by humans and the AS models, which can boost
agreement measures even though the AS model is a simple pattern
matching similar phrases to “I don’t know.” Excluding DK and NR
leaves a dataset with 2,163 and 2,298 examples respectively.

2.1 Performance Measure
To evaluate the AS models, we measured the IRR between human
raters and AS models by calculating the quadratic weighted kappa
(QWK), as follows:

𝜅 = 1 −
∑

𝑖,𝑗 𝑤𝑖,𝑗𝑂𝑖,𝑗∑
𝑖,𝑗 𝑤𝑖,𝑗𝐸𝑖,𝑗

where 𝑤𝑖, 𝑗 =
(𝑖− 𝑗 )𝑘
(𝑁−1)𝑘

(1)

𝑂,𝑤 and 𝐸 are the matrices of observed scores, penalty weights,
and expected scores. 𝑂𝑖, 𝑗 corresponds to the number of responses
that receive a score 𝑖 from one rater and score 𝑗 from another rater.
Matrix 𝐸 is calculated via the outer product between the score
vectors of the two raters, normalized to have the same sum as
Matrix 𝑂 . In calculating the weight entries,𝑤𝑖, 𝑗 : 𝑁 is the number
of possible ratings (in this study 𝑁 = 3), 𝑘 indicates the strength
of the penalty (since we employ quadratic kappa, 𝑘 = 2). 𝜅 = 1
indicates perfect agreement and 𝜅 = 0 indicates no agreement.

2.2 Transfer Learning
Transfer learning refers to the methodology that improves the per-
formance of target task model by transferring the knowledge from
similar tasks (i.e., classification task) within a given domain (i.e.,
processing speech) [18]. Transfer learning has achieved great suc-
cess in many domains and applications [5, 10], especially in the
area of Natural Language Processing (NLP). BERT (Bidirectional
Encoder Representations from Transformers) is a large language
model designed for predicting the next sentence given a prompt.
The encoder of BERT is often used to analyze a text sequence and
provide a latent representation that is useful for many text classifi-
cation tasks such as clinical text classification[8], academic paper
classification[4] and fake news detection[17]. In our study, we em-
ploy BERT to analyze the transcription of student responses using
several competing pre-processing methods. After BERT has gen-
erated the latent representation of the responses, fully connected
neural network layers can be trained for a new classification task—
in our study these layers are trained to predict the human scoring
of the response, 0-2.

2.3 Loss Function and Objective Architecture
Many neural networks, including AS models in related works [15]
are trained using Categorical Cross Entropy (CCE) as a loss function,
𝑙𝐶𝐶𝐸 . CCE is often a go-to option for classification tasks. However,
in this particular task, different assessment scores (0, 1, 2), though
discrete, have quantitative relations. That is, the distance between
score 0 and 1 is smaller than that between 0 and 2, and wewould like
the model to reflect this while training. Such quantitative relations
between different scores are not represented in the CCE loss func-
tion. Thus, in our study we use several loss functions that account
for this, such as QWK and mean squared error, in experiments and
compare with CCE. We also employ multi-task learning, which
allows for incorporation of multiple loss functions simultaneously.

In this study multi-task learning is implemented so that the
majority of the transfer learning architecture is optimized with two
loss functions. However, at the output layer, the network branches
into two fully connected layers with output dimensions of one and
three (i.e., the number of classes) as shown in Figure 1. The single
dimension branch directly predicts the target label (0-2) using the
Mean Squared Error (MSE) loss, 𝑙𝑀𝑆𝐸 = (𝑦 − 𝑦)2. On the other
hand, the three dimensional output is followed by a softmax and
CCE is used as a loss function. The combined loss function is:

𝑙𝑚𝑢𝑙𝑡𝑖−𝑡𝑎𝑠𝑘 = 𝜔𝑀𝑆𝐸 · 𝑙𝑀𝑆𝐸 + 𝜔𝐶𝐶𝐸 · 𝑙𝐶𝐶𝐸 (2)
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Where 𝜔𝑀𝑆𝐸 and 𝜔𝐶𝐶𝐸 are weight multiplier hyper parameters.
All hyper parameters are found using a search algorithm, as ex-
plained later. We adapt the QWK from equation 1 for use as a loss
function. We first use logarithms to decouple the numerator and
the denominator, which simplifies the computation of gradient [6].
Thus, the problem is reformulated into a minimization of 𝑙𝑄𝑊𝐾 :

𝑙𝑄𝑊𝐾 = log(1 − 𝜅 + 𝜖) (3)

where 𝜅 is from equation 1 and 𝜖 avoids calculating log(0). The
incorporation of each loss function is investigated as a hyper pa-
rameter.

2.4 Architecture and Variations
We investigate preprocessing variations in how different language
prompts are provided to the BERT model. Available input prompts
to BERT include (1) the word that is being asked, (2) the student’s
answer, and (3) the correct definition (for definition task) or exam-
ple sentences (for sentence task). Intuitively not all components
may needed as inputs to pre-trained language model since some
potentially bring noise or convey redundant information. However,
the student’s answer should always be a part of the input. Thus,
we use an input factor analysis (Figure 2) to select combinations
that can be provided to BERT. The combinations include: (1) only
using the student answer, (2) using the student answer + true defi-
nition/sentence, (3) using the student answer + word, and (4) using
all inputs as prompts. For a particular combination, components
were tokenized and segmented by BERT’s symbol segmentation
engine. The outputs of BERT for each sample in training set were
then collected as the high dimensional vector representation. We
investigate the quality of each combination in the next section.

Finally, as shown in Figure 1, we also used residual connections
in our layers after the pre-trained BERTmodel. Residual connection
architectures also allow the output to maintain a convex function
of the output of BERT [2]. This convexity might help to increase
performance of the model. The usage of residual connections is
also a hyper parameter.

3 ANALYSIS AND EXPERIMENTS
Given the variations of network architectures and loss functions
we introduced in this study, we systematically investigate how
each aspect influences performance. First, we use visualizations to
understand the input factor analysis and, second, we describe the
implementation of our hyper parameter search.

3.1 Selection of input factors
Figure 2 shows visualizations of the embeddings for each competing
combination of input factors. For each combination of factors, the
vector representations were visualized with dimensionality reduc-
tion via stochastic neighbor embedding (t-SNE) [16] and color coded
by human rating, 0-2.Within-class and between-class variance were
also calculated with these vector representations (without dimen-
sionality reduction) aiming to find a combination that has the small-
est within class variance and largest between class variance (i.e.,
representations that are most separable on the training set). With
this analysis, we were able to answer the first research question:

Figure 2: BERT embedding visualization with t-SNE. All sub-
plots have the same range of x-axis and y-axis. Between class
variance is noted in subplot title, as value ×10−3.

What information should be exposed to a pre-trained lan-
guage model for classifying definitions and sentence usage?
The answer is: Student’s answer and the correct definition/sentence
has the best separability both visually and using the within-class
and between-class variance. Thus, for the remainder of our hyper
parameter tuning we employ this combination only.

3.2 Other Experimental Details
Hyper-parameter searches were conducted with same train valida-
tion split on combinations of dense network/skip-connection and
different objective architectures. 10-fold cross validation was car-
ried out with the best parameters searched. The models are trained
and compared without DK and NR examples in the dataset. Adap-
tive momentum (AdaM) optimization is employed for all training
[12]. Investigations were also conducted with RMSprop and SGD,
with Adam having superior performance and higher reliability in
all testing. We also employ decoupled weight decay regularization
to help prevent overfitting [13]. The AdaM-learning rate, number
of layers, number of hidden nodes for each layer, weight decay rate,
and multi-task loss weights were registered as hyper-parameters.
We employ both a train-validation split of 0.8 : 0.2 and a 10-fold
cross validation split. Hyper parameter tuning was carried out us-
ing efficient sampling and pruning mechanisms with optuna [1].
All model variations were set to 2000 iterations of hyper parame-
ter search with all hidden layers size ranging from 16 to 256. The
parameters found through this search are shown in Figure 1. Search-
ing processes were pruned if no better parameters were found in
200 iterations.

4 RESULTS
The performance of all models in terms of QWK is shown in the
Table 1. The results reported are the best for each model among
all hyper parameters searched. With the best performance in each
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Table 1: Performance of different models using QWK

Included Elements Definition Sentence

AS model Multi-task Residual QWK CCE MSE 80:20 Valid. 10-Fold 80:20 Valid. 10-Fold
Previous Best - - - ✓ - 0.650 NULL 0.580 NULL
CCE-dense - - - ✓ - 0.749 0.703 ± 0.068 0.677∗ 0.626 ± 0.061
QWK-dense - - ✓ - - 0.771 0.751 ± 0.053 0.651 0.692 ± 0.045∗
Multi-dense ✓ - - ✓ ✓ 0.774 0.723 ± 0.065 0.670 0.647 ± 0.049
CCE-res - ✓ - ✓ - 0.750 0.697 ± 0.057 0.671 0.642 ± 0.055
QWK-res - ✓ ✓ - - 0.775 0.755 ± 0.058∗ 0.677∗ 0.665 ± 0.043
Multi-res ✓ ✓ - ✓ ✓ 0.779∗ 0.737 ± 0.067 0.669 0.648 ± 0.051

column marked in Table 1, we are able to partially address our
second research question: Which architectural elements are
most influential for increasing human-machine agreement?
There is not a clear overall winner, however, it is clear that the
objective architectures that encode the quantitative relations (i.e.,
using QWK) between different scores have superior performance
with similar network architecture. Meanwhile, residual-connections
tend to improve performance further.

4.1 Generalization Analysis
In our remaining analysis, we use the best overall models for the def-
inition task and sentence task, which areMulti-Res and QWK-Dense,
respectively. We turn our attention to the final research question:
How well does the best model (as judged by validation set
performance) generalize to a test set that is constructed with
words that do not appear in the training set?We investigate this
by taking out the words “erupt” and “scientist” from the training
set, and re-training the models without these words. We also inves-
tigate models with half of the left-out words used in the training set
in order to understand how a smaller quantity of word examples
influences performance. We then evaluate on each model using the
left out words.

Table 2: Performance of generalization on unseen words

remove all/half
“erupt” and “scientists”

from train set

Agreement between Definition Sentence
Rater1 and Rater2 0.96 0.84
Rater1 and Rater3 0.93 0.79
Rater2 and Rater3 0.90 0.87
Rater1 and Machine 0.71 / 0.75 0.50 / 0.68
Rater2 and Machine 0.69 / 0.75 0.53 / 0.76
Rater3 and Machine 0.69 / 0.71 0.55 / 0.72

Table 2 shows the QWK agreement among pairs of raters from
the ELVA dataset. To investigate agreement, we report the QWK
among pairs of raters and treat the model like a fourth rater. We
observe that:(1) Including example words in training always en-
hances performance; (2) Human-Machine agreements are much
higer on definition tasks compared to sentence tasks, models gener-
alize better on new words for definition tasks; (3) Human-Machine

agreements improvement is more apparent on sentence tasks com-
pared to definition tasks when some data involving the words are
in the training set. Therefore, sentence tasks may require vastly
more examples to perform close to human level.

5 IMPLICATIONS OF FINDINGS
In our analyses, we seek implications to help guide future data
collection related to vocabulary acquisition for English language
learners. These implications are currently being integrated into the
next round of data collection.

Problem: DK and NR with manual transcription creates many
zero variation data that artificially boosts agreement. As noted
by [15], manual transcription is inefficient. Improvement: Tran-
scription is now automatic using cloud services. NR and DK data
is automatically detected. Problem: Simply providing a score of
0-2 sometimes make raters not confident with their scoring. Im-
provement: Raters now have a list of rubrics to select for every
score. This rubric characterizes the score so that raters can select
reasoning for a certain score. Future AS models should be able to in-
corporate this rubric as another task during optimization. Problem:
Words can have ambiguous meanings and usages. Improvement:
More than one true definition could be rated against during scor-
ing. When raters score the response, raters are asked to mark the
true definition that the students are trying to lead to. Problem:
Sentence tasks are generally harder even for human raters. The
volume of valid variations is extensive. Example sentences from
high scoring students can be dramatically different for a given word.
Improvement: The sentence task now provides an image related
to the word, students are asked to create a sentence related to the
image.

We conclude that the limit of performance with AS modeling
on the current dataset has likely been achieved. With the second
round of data collection, the volume, reliability, and granularity of
the data will improve. Thus, additional analysis will be conducted
to better understand the problem and creating increasingly reliable
models. Many investigations will be enabled, including: generaliza-
tion analysis with a larger number of words; additional analysis of
pre-trained language models; supervised contrastive learning [11]
can be adopted; latent space vector behavior for different models
can be investigated, among many others.
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