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ABSTRACT

“This paper introduces an adversarial framework using two Large Language Models (LLMs) tailored
through prompt engineering to advance phishing detection capabilities. The first LLM operates as a
generator, crafted prompts guiding it to produce sophisticated phishing emails that mimic legitimate
interactions. The second LLM acts as a discriminator, with prompts designed to enhance its ability
to detect and classify these generated phishing attempts accurately from genuine emails. This
setup leverages the dynamic capabilities of prompt engineering to refine the models’ responses,
facilitating an ongoing evolution in both phishing simulation and detection. By implementing this
methodology, we aim to improve the robustness and adaptability of AI-driven security defenses
against complex cyber threats.”
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1. INTRODUCTION

Phishing attacks have become a pervasive and rapidly escalating threat, compromising individuals,
organizations, and governments worldwide. According to the APWG Phishing Activity Trends
Report for Q3 2024 ,1 there were over 932,923 reported phishing attacks in one quarter alone. This
increase is compounded by the misuse of Large Language Models (LLMs) that enable attackers
to generate highly convincing, personalized phishing emails at scale.2 There has been a significant
rise in the sophistication of phishing attacks due to the use of Large Language Models (LLMs)
by cyber attackers.3 Such capabilities outpace traditional defenses and necessitate new adaptive
detection methodologies.

The evolution of phishing has reached a critical tipping point. High-profile incidents demonstrate
the catastrophic consequences of phishing attacks. Modern attackers employ LLMs to generate
emails that appear authentic, making it challenging for the reactive network techniques shown in
Table 1 to keep pace. AI-enabled zero-day attacks can filter through network defenses. The last
defense is a combination of a text-based classifier and an educated user with the discernment to
recognize possible phishing attacks and other forms of online deception.
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1.1 LLM-Enabled Outcome Engineering for Enhanced User Education

A long-term goal of this research is to improve user outcomes by enhancing their ability to recognize
and appropriately respond to phishing attacks. We propose the concept of Outcome Engineering as
a strategic framework for using AI to achieve tangible, measurable improvements in organizational
and personal decision-making.4 In our context, the desired outcome is a better-educated user—one
who is equipped to discern phishing attempts and other forms of online deception with greater
accuracy and confidence.

Table 1. Security Approaches and Descriptions
Security Approach Description

DNS-Based Defenses: Using advanced DNS-layer security to block malicious sites be-
fore a connection is established.

Secure Access Service
Edge (SASE):

Securing network access for users regardless of location.

Endpoint Protection: Employing machine learning and behavioral analysis to detect
threats at the endpoint level.

Email Security: Focusing on protecting against email-based threats with ad-
vanced threat detection and threat intelligence.

Zero Trust Security: Enforcing continuous authentication and authorization to vali-
date user access.

Extended Detection and
Response (XDR):

Integrating data from multiple security products for coordinated
threat response.

Phishing attacks continue to evolve in sophistication, increasingly exploiting the capabilities of
large language models (LLMs) to generate convincing, personalized fraudulent communications.
Traditional phishing detection methods rely primarily on static URL indicator analysis and re-
trained models, which can quickly become outdated as attackers adapt their tactics.

Our framework introduces a dual-LLM approach: one LLM (the Generator) produces phish-
ing and legitimate using the phishing URL dataset, while the other LLM (the Detector) classifies
emails and, crucially, provides detailed explanations. This educates users by highlighting the red
flags in suspicious emails. In this study, we further enhance the efficacy of our approach by compar-
ing the performance of the Detector LLM with and without the application of DSPy’s MIPROv2
optimizer,5 which programmatically refines the detection prompts to improve both accuracy and
the quality of explanations provided.

1.2 Motivation and Need for New Approaches

The limitations of conventional phishing detectors include:

• Lack of Interpretability: Traditional classifiers output a binary decision without explaining
the rationale, leaving users uncertain about why an email was flagged.

• Static Nature: Once trained, models do not easily adapt to new phishing tactics without
costly retraining.



• User Education: Without clear explanations, even high-accuracy models fail to educate
users, thereby limiting their ability to recognize future threats.

In contrast, our approach leverages prompt engineering to empower an LLM-based detector to
generate explanations with confidence scores. These explanations not only validate the detection
decision but also provide actionable insights that can be used to educate users on phishing red flags.

2. SYSTEM ARCHITECTURE

Our system combines an incremental URL indicator classifier with an LLM-based phishing detector,
operating block-by-block where the optimized detector from the previous block is applied to the
current block. Figure 1 illustrates the high-level architecture.

2.1 Incremental Learning

The incremental classifier described in6 continuously ingests URL data, extracting features such as
URL length, domain characteristics, TLD legitimacy, and other heuristics. It uses the strengths
of multiple models to make a classification. We emulate this approach by combining the relative
advantages of the BernoulliNB and PassiveAgressiveClassifier from the Python sklearn library.7

Our emulated algorithm quickly adapts to changing threat landscapes, achieving high accu-
racy on incoming data. However, it lacks the capability to explain its decisions in a human-
understandable way.

2.2 LLM-Based Generation and Detection with Explanation

The URL dataset described in? does not include email subject line and body. We use the LLM
generator uses the input URL and label, phishing or legitimate, from the dataset to produce a
a synthetic subject line and email body. The augmented dataset is then sent to the LLM-based
optimized and non-optimized detector. Both detectors are required to provide reasoning outputs.

2.3 DSPy Optimization

DSPy, or Declarative Self-improving Python, revolutionizes programming language models by fa-
cilitating rapid iterations in building modular AI systems with enhanced features for prompt and
weight optimization. Unlike traditional methods that focus on prompt strings, DSPy allows de-
velopers to employ structured, declarative code modules, enabling more reliable and maintainable
AI systems. This framework supports everything from simple classifiers to complex recursive agent
loops.

DSPy provides tools that convert high-level code into low-level computations, effectively align-
ing language models with a program’s structure and metrics. Its optimization tools, such as
dspy.BootstrapRS, dspy.MIPROv2, and dspy.BootstrapFinetune, enhance prompt effectiveness and
finetune weights based on quality metrics.8

The DSPy community, fostered by over 250 contributors, supports an open-source ecosystem
that enhances the compositional architectures and inference strategies for language model pro-
grams.9 Initiated by Stanford NLP in 2022, DSPy has grown rapidly, contributing significantly to
AI research and practical applications, thereby increasing control over AI systems and improving
outcomes in various real-world applications.



3. EXPERIMENTS AND RESULTS

In this section, we detail preparation and analysis of the PhiUSIIL Phishing URL Dataset.csv,
focusing on achieving a balanced representation of data through stratification. This foundational
step ensures that the subsequent training of our models is balanced on a block basis. We then explore
the performance of an incremental machine learning approach on just the URL and associated
features compared to two language models—the Generator and the Detector. The Generator is
tasked with simulating realistic email interactions, while the Detector evaluates these interactions for
signs of phishing, using both standard and enhanced prompts. Our results shed light on the nuanced
capabilities of these models to differentiate between benign and malicious intents, underscoring the
potential of AI LLM technology to bolster cybersecurity defenses and educate users.

Figure 1. Overview of the adversarial phishing detection architecture. The Generator LLM produces realistic
phishing emails incorporating URL indicators, while the Detector LLM evaluates these emails, providing
classifications with confidence scores and detailed explanations.

Stratification Procedure

We performed preprocessing on the dataset titled PhiUSIIL Phishing URL Dataset.csv to ensure
an even distribution of labels across the data blocks. This preprocessing was critical for maintaining



consistency in the training and evaluation of our machine learning models. The dataset consists of
the following variables:

To balance the dataset, we utilized the StratifiedKFold technique from the sklearn.model selection

module, configured as follows:

• Number of Splits: The dataset was divided into blocks of 20 entries each, calculated based
on the total number of samples divided by the block size.

• Shuffling: Enabled to ensure random distribution of data points within each block.

• Random Seed: Set to 42 to allow reproducibility of the dataset partitioning.

This method ensures each block contains a proportional number of samples from each class,
mirroring the overall distribution of labels in the dataset. The blocks were then concatenated
into a single DataFrame and saved as PhiUSIIL Phishing URL Dataset balanced.csv, preserving
the order and integrity of the data for subsequent analyses.

To illustrate the effect of stratification on label distribution, we analyzed the first ten blocks
of the dataset, both before and after applying stratification. The stratification process aimed to
ensure a more balanced distribution of labels (Phishing and Legitimate) across each block. We
calculated the difference in the proportion of phishing labels between the original and balanced
datasets for each block. The blocks with the most significant changes were selected for visualization
to demonstrate the impact of this balancing technique effectively.

Figure 2 shows two selected blocks where the difference in label distribution before and after
stratification was most pronounced. These examples highlight how stratification helps achieve a
more uniform distribution of labels across different subsets of the dataset, which is crucial for
maintaining the consistency and reliability of model training and evaluation processes.

Figure 2. Comparison of label distribution in selected blocks before and after applying stratification. The
blocks were chosen based on the most significant changes in the proportion of phishing labels, showcasing
the effectiveness of stratification in balancing the dataset.

The extract url features function computes several features from URLs to be used by the
classifier:



• URLLength: The total number of characters in the URL. This feature helps in differentiating
between typically longer, complex phishing URLs and shorter, legitimate ones.

• IsDomainIP: A binary indicator (0 or 1) that checks if the domain part of the URL is
an IP address, a common characteristic in phishing attacks to avoid traceable domain name
registrations.

• NoOfSubDomain: This feature counts the number of subdomains in the URL minus two,
capturing the complexity or attempts to mimic legitimate websites by adding additional layers
of subdomains.

• IsHTTPS: A binary feature indicating whether the URL’s scheme is HTTPS. Although
HTTPS indicates encryption, many phishing sites also use HTTPS to appear secure.

• HasObfuscation: Checks for common URL obfuscation techniques like the presence of ‘%‘
(indicating URL encoding) or ‘@‘ (used in phishing to confuse users about the actual domain
being accessed).

These features are transformed into a numpy array, which is then ready to be standardized and
used in predictions, ensuring that the classifier’s training and prediction processes are based purely
on observable characteristics of the URL without any leakage from the labels.

Figure 3. URL data and indicators transformed by TfidfVectorizer, then processed through both the
Bernoulli Naive Bayes (BNB) and Passive Aggressive Classifier (PAC). BNB applies Bayesian logic as-
suming feature independence, while PAC dynamically adjusts to prediction errors. The outputs from both
classifiers are then combined to produce a robust final output that balances immediate adaptability with
long-term trend analysis.

To create a reference baseline incremental machine learning phishing detection, we follow an ap-
proach similar to what is described by Prasad et al.6 which uses the Bernoulli Naive Bayes (BNB)
and Passive Aggressive (PAC) classifiers together, along with the TfidfVectorizer from the Scikit-
learn library,7 to implement an incremental learning system for URL classification (see Figure 3).
The TfidfVectorizer transforms URL indicators into a matrix of TF-IDF features, quantifying the
importance of terms within the dataset, providing a numerical representation for analysis. BNB,
suited for binary features, applies Bayes’ theorem under the assumption of feature independence,
effectively handling data where feature presence strongly indicates class membership. In contrast,



PAC adjusts its model dynamically in response to prediction errors, making it ideal for environ-
ments with evolving data like phishing detection. Both classifiers are trained incrementally, allowing
continual adaptation without full retraining. The script combines the predictive outputs of both
classifiers by averaging their individual predictions, thereby enhancing decision accuracy and sta-
bility. This method leverages the structured input from TfidfVectorizer and ensures that the final
classification decision is robust, taking into account the strengths of both classifiers to maintain
optimal phishing detection capabilities as data evolves. The Passive Aggressive Classifier excels
in swiftly adjusting to short-term changes, while the Bernoulli Naive Bayes optimizes performance
against overall long-term trends in the data.

The results indicate that the incremental ML URL-based classifier exhibits strong performance,
consistent with findings reported by Prasad et al.,6 suggesting its effectiveness in real-world appli-
cations.

Table 2. Incremental ML Classifier Performance

Block Accuracy (%) Precision (%) Recall (%) F1 Score (%)

1 96.67 93.75 100.0 96.77
2 100.0 100.0 100.0 100.0
3 96.67 94.44 100.0 97.14
4 100.0 100.0 100.0 100.0
5 100.0 100.0 100.0 100.0
6 100.0 100.0 100.0 100.0
7 100.0 100.0 100.0 100.0
8 100.0 100.0 100.0 100.0
9 100.0 100.0 100.0 100.0
10 100.0 100.0 100.0 100.0

3.1 Mistral-7b Subject Line and Email Generator

Mistral 7B is the name of the LLM model used to generate the emails using the URL dataset.
Mistral 7B is a versatile 7.3 billion parameter language model that excels in performance and
efficiency.10 Mistral AI, a pioneering French artificial intelligence startup founded in April 2023.

The generation of email subject lines and bodies is a crucial step in simulating realistic email
communications for our experiments. As detailed in Figure 1, the process utilizes the Mistral 7b
model to create content based on the nature of the email, whether it is legitimate or phishing.

For legitimate emails, the prompt instructs the model to generate a professional and coherent
subject and body without any indicators of suspicious email characteristics. This is intended to
mimic genuine communication from a reputable source. Conversely, for phishing emails, the prompt
strategically encourages the model to include elements designed to manipulate the recipient, using
tactics that invoke fear, greed, or urgency, among others. The goal is to craft an email that compels
the recipient to take an action against their best interest, such as clicking on a malicious link or
opening an attachment, while still maintaining a veneer of legitimacy.

The prompt explicitly requires responses in JSON format with keys ’subject’ and ’body’, ensur-
ing structured output that can be easily parsed and utilized in further processing or analysis within



our system. This approach allows us to systematically evaluate the effectiveness of different detec-
tion techniques against varied and nuanced phishing tactics generated by the advanced language
capabilities of Mistral 7b.

3.2 Detector Manual Prompt Construction

Below is the non-optimized prompt to detect phishing emails.

# manually constructed non-optimized prompt

prompt = (

"You are an expert email security analyst. Analyze the following email and

classify it as either ’phishing’ or ’legitimate’. Use your internal

knowledge of phishing tactics to infer hidden reasons. Consider the following

URL and its features as part of the context for your analysis: \n" +

glossary + " \nProvide a detailed explanation in natural language. Respond

ONLY with a JSON object that includes exactly three keys: ’label’ (phishing

or legitimate), ’confidence’ (a float between 0 and 1), and ’reasoning’ (an

array of strings). Do not include any extra text. Subject: " +

email.get(’subject’) + "\nBody: " + email.get(’body’)

)

Figure 4. Listing of the prompt used for the base method in the email classification process.

In our method, we leverage a detailed prompt to guide the large language model in classifying
emails accurately. The prompt, detailed in Figure 4, combines contextual information about the
email with a set of well-defined criteria for the analysis. This structured input is designed to
maximize the model’s understanding and output precision.

3.3 Optimized Prompt from Signature

The optimized prompt instructions specifically requests the following attributes to be considered
in the analysis: email subject, email body, URL (URL), URL length, domain IP status, number
of subdomains, HTTPS status, and presence of obfuscation. Based on these inputs, the model is
expected to produce a classification label (either ‘phishing‘ or ‘legitimate‘) and a detailed reasoning
behind this classification.

The table depicted in Table 3 shows examples of MIPROv25 optimizer prompt instructions from
the Llamma3.3 phishing detection experiments. Each entry in the table corresponds to a specific
instructional scenario presented to the model. These scenarios delineate various aspects to be
considered by the model, such as analyzing email characteristics, determining the legitimacy of the
content, and recognizing phishing tactics. This explicit directive ensures that the model’s responses
are aligned with the cybersecurity objectives, providing a structured and detailed methodology for
its reasoning process. The prompts are designed to reflect the complexities and subtleties involved in
distinguishing between legitimate correspondence and phishing attempts, highlighting the model’s
capacity to handle nuanced language tasks.



Example of Prompt Optimizer Generated Instructions
Classify an email as ”phishing” or ”legitimate” based on its subject, body, machine learning con-
text, URL characteristics (length, domain type, number of subdomains, HTTPS usage), and pres-
ence of obfuscation techniques. Provide a detailed reasoning for the classification, considering
factors such as urgency creation, security concerns, emotional manipulation, suspicious links, and
syntax. Ensure the analysis is thorough and informative to effectively determine the email’s legit-
imacy.
You are a cybersecurity expert tasked with protecting a high-profile government official’s email
account from phishing attacks. Given the fields email_subject, email_body, ml_context, url_
length, is_domain_ip, no_of_subdomains, is_https, has_obfuscation, you must produce the
fields label and reasoning to classify an incoming email as either ”phishing” or ”legitimate”. The
official’s email account has been targeted by sophisticated phishing attempts in the past, and it is
crucial that you accurately identify any potential threats to prevent a security breach. The label
should be either ”phishing” or ”legitimate”, and the reasoning should provide a clear explanation
for your classification decision, including any relevant factors such as suspicious keywords, unusual
sender behavior, or malicious links. Your prompt and accurate response is critical to ensuring the
official’s email account remains secure.
Classify an email as either ”phishing” or ”legitimate” based on its content and technical charac-
teristics. To accomplish this task, carefully analyze the provided input fields: email_subject,
email_body, ml_context, url_length, is_domain_ip, no_of_subdomains, is_https, and has_

obfuscation. Use these inputs to identify potential indicators of phishing attempts, such as sus-
picious links, urgent language, or obfuscated content. Then, generate a detailed list of reasons
(reasoning) supporting your classification decision and assign a corresponding label (label) in-
dicating whether the email is ”phishing” or ”legitimate”. Ensure that your reasoning is thorough
and takes into account various factors, including the email’s syntax, semantics, and any relevant
technical indicators.
You are a cybersecurity expert tasked with classifying emails as either phishing or legitimate in a
high-stakes scenario where a major corporation’s email system has been compromised. The CEO’s
personal email account has been hacked, and it’s up to you to identify which emails are malicious
and which are genuine. Given the fields email_subject, email_body, ml_context, url_length,
is_domain_ip, no_of_subdomains, is_https, has_obfuscation, produce the fields label (either
’phishing’ or ’legitimate’) and reasoning (a list of reasons why you classified the email as such).
Your classification will directly impact the corporation’s security measures, so it’s crucial that
you get it right. Use your expertise to analyze the input fields carefully and provide a detailed
explanation for your classification.

Table 3. Extracted instructions from the log file.

3.4 Phi-4 Detector Performance

Microsoft’s Phi-4 is a 14-billion parameter language model that emphasizes data quality over vol-
ume. Unlike traditional models that use organic data, Phi-4 integrates synthetic data throughout
its training. It builds on the Phi series and GPT-4’s capabilities, especially in STEM-focused
question-answering. Despite minimal changes from its predecessor Phi-3, Phi-4 excels in reasoning
benchmarks due to its refined training curriculum and innovative post-training techniques.11

email_subject
email_body
ml_context
url_length
url_length
is_domain_ip
no_of_subdomains
is_https
has_obfuscation
label
reasoning
label
reasoning
email_subject
email_body
ml_context
url_length
is_domain_ip
no_of_subdomains
is_https
has_obfuscation
has_obfuscation
reasoning
label
email_subject
email_body
ml_context
url_length
is_domain_ip
no_of_subdomains
is_https
has_obfuscation
label
reasoning


Table 4. Phi-4 LLM Detector Performance with Mistral7B v2 as email subject and body Generator

Block Index Base Performance Optimized Performance Improvement

Acc Prec Recall F1 Acc Prec Recall F1 F1
1 50.0% 50.0% 100.0% 66.7% N/A N/A N/A N/A N/A
2 60.0% 60.0% 100.0% 75.0% 100.0% 100.0% 100.0% 100.0% +25.0%
3 56.7% 56.7% 100.0% 72.3% 66.7% 64.0% 94.1% 76.2% +3.9%
4 53.3% 53.3% 100.0% 69.6% 73.3% 66.7% 100.0% 80.0% +10.4%
5 70.0% 70.0% 100.0% 82.4% 86.7% 84.0% 100.0% 91.3% +8.9%
6 56.7% 56.7% 100.0% 72.3% 76.7% 72.7% 94.1% 82.1% +9.8%
7 53.3% 53.3% 100.0% 69.6% 76.7% 71.4% 93.8% 81.1% +11.5%
8 56.7% 56.7% 100.0% 72.3% 80.0% 73.9% 100.0% 85.0% +12.7%
9 56.7% 56.7% 100.0% 72.3% 76.7% 75.0% 88.2% 81.1% +8.8%
10 53.3% 53.3% 100.0% 69.6% 80.0% 66.7% 100.0% 80.0% +10.4%

3.5 Llama3.3 Detector Performance

Llama 3.3 revolutionizes language model performance by delivering output quality comparable to
the 405-billion-parameter Llama 3.1, but with only 70 billion parameters, enhancing efficiency and
broadening functionality. It supports eight languages—English, French, Italian, Portuguese, Hindi,
Spanish, Thai, and German—and integrates seamlessly with third-party tools for complex function
calling tasks. This model excels in multilingual customer support and automated analysis, matching
or surpassing competitors like Gemini Pro 1.5 and GPT-4 in instruction following, reasoning, and
handling of long contexts, despite slightly lagging in math capabilities.12

Table 5. Llama3.3 Detector Performance with Mistral7B v2 as email subject and body Generator

Block Index Base Performance Optimized Performance Improvement

Acc Prec Recall F1 Acc Prec Recall F1 F1
1 56.7% 53.6% 100.0% 69.8% N/A N/A N/A N/A N/A
2 73.3% 69.2% 100.0% 81.8% 80.0% 83.3% 83.3% 83.3% +1.5%
3 70.0% 65.4% 100.0% 79.1% 83.3% 80.0% 94.1% 86.5% +7.4%
4 63.3% 59.3% 100.0% 74.4% 66.7% 65.0% 81.3% 72.2% -2.2%
5 80.0% 77.8% 100.0% 87.5% 73.3% 84.2% 76.2% 80.0% -7.5%
6 63.3% 60.7% 100.0% 75.6% 93.3% 94.1% 94.1% 94.1% +18.5%
7 70.0% 64.0% 100.0% 78.0% 76.7% 76.5% 81.3% 78.8% +0.8%
8 60.0% 59.3% 94.1% 72.7% 80.0% 82.4% 82.4% 82.4% +9.7%
9 73.3% 68.0% 100.0% 80.9% 76.7% 77.8% 82.4% 80.0% -0.9%
10 73.3% 68.0% 100.0% 80.9% 80.0% 77.8% 82.4% 81.1% +0.2%

The tables now properly display the lack of optimized metrics for the first block, ensuring clarity
in understanding that there were no optimization comparisons for that block.

Whenever the accuracy of the optimized LLM-based detector fell below the threshold of 0.9,
a DSPy MIPROv2 optimization cycle was triggered. This optimization process utilized labeled
examples from the block to refine and enhance the model’s accuracy in detecting phishing emails.
This iterative process aims to improve the detection capabilities of the system by adjusting and
fine-tuning the LLM’s response to the sophisticated tactics employed in the generated emails



The performance of the LLM-based detector is relatively poor. This may be partly due to the
sophisticated nature of the deceptive emails generated by the Mistral 7B model, which challenges
the detector’s ability to discern between legitimate and phishing emails. However, it is clear that
prompt tuning increased the performance for both Phi-4 and Llama3.3 detectors.

3.6 Illustrative Examples

In the experiment documented, a phishing detection scenario was staged using the URL https:

//www.sunyocc.edu as input, which generated an email with the subject ”Suspicious Account
Activity Alert - Sunyocc.edu” and a detailed body asserting suspicious activities in a student’s
account, urging immediate action as shown in Table 6.

Both the non-optimized Table 7 and optimized Table 8 provided several reasoning points, such
as the creation of urgency, the use of emotional appeals, and discrepancies between the displayed
and actual links. These reasoning points are useful for user education on phishing identification

Overall, while both the non-optimized and optimized prompts offer useful insights for user
education on phishing, the optimized detector’s higher overall accuracy shows the value of prompt
programming.

Table 6. Email Subject and Body Content

Feature Description
Email Subject Suspicious Account Activity Alert - Sunyocc.edu
Email Body Attention Student!

We have detected an unusual activity in your Sunyocc.edu account and
we believe it may be compromised. To secure your account immediately, click
on the provided link below to verify your identity and regain access: [Verify
Now] (suspicious link)

Failure to do so within 24 hours will result in permanent suspension of
your account and loss of all data.

Don’t miss this opportunity to protect your valuable academic records!
Act now before it’s too late!

Sincerely,
Sunyocc.edu Security Team

4. DISCUSSION AND FUTURE WORK

There are many avenues to explore for future work: 1. The LLM optimization could be modified to
be more like incremental learning approach to take advantage of previously learned prompts. The
DSPy optimizers do offer warm-start option however it only intializes the optimization cycle with
a previously optimized program; 2. Prompt optimization ”works better together”13 with model
fine tuning; 3) Adversarial feedback from the detector to the generator could lead to an arms race
to make both better; 4) Use the incremental machine learning classification results to confidently
guide when to expose the LLM phishing explanations to the user.

https://www.sunyocc.edu
https://www.sunyocc.edu


Table 7. Non-Optimized LLM Classification and Reasoning

Feature Description
Non-Optimized
LLM Classification

Phishing

Non-Optimized
Reasoning

• The email creates a sense of urgency with a time limit to respond, which
is a common phishing tactic.

• It uses emotional appeals like the potential loss of academic records to
prompt immediate action without careful consideration.

• Although the URL provided in the context appears legitimate, the actual
link in the email body is described as ’suspicious link’, suggesting it may
not match the given URL, which could be a phishing technique to mislead.

• The presence of HTTPS in the given URL does not guarantee the legiti-
macy of the email since many phishing sites now use HTTPS.

• The lack of obfuscation and the single subdomain in the provided URL do
not necessarily indicate legitimacy when considering the suspicious link
in the email body.

Table 8. Optimized LLM Classification and Reasoning

Feature Description
Optimized Classifi-
cation

Phishing

Optimized Reason-
ing

• The optimized detection method confirms the phishing attempt through
deeper analysis of the URL features and the urgency created in the email
content.

• The optimized model recognizes patterns associated with phishing, such
as the discrepancy between the displayed URL and the actual link, which
is a common tactic in sophisticated phishing schemes.

5. CONCLUSION

The near-perfect performance of the incremental machine learning approach on the just the URL
features draws a sharp contrast to poor to middling performance of the non-optimized and optimized
LLMmodels. If the task had been to simply classify potential phishing threats, the machine learning
approach offers higher performance at far less resource cost. This shows LLMs are not always the
right tool. However, the machine learning approach lacked the ability to explain or educate the user
on how to recognize phishing. LLMs can provide the user education which is also necessary to help
users recognize increasingly sophisticated phishing attacks. Prompt optimization offers principled
method to develop the prompt in a way that can respond to changing nature of phishing attacks.
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