
Chapter 13
Inheritance and Polymorphism

Object Oriented Programming

The 3 principles of object oriented programming:

Encapsulation - the process of combining data members
and functions in a single unit called class. This is to prevent
the access to the data directly, the access to them is
provided through the functions of the class.

Inheritance

Polymorphism

Inheritance

In object oriented programming, one of the most important
topics is inheritance.

Inheritance - the concept of deriving a class from another
class, forming a hierarchy.

Inheritance provides code reuse, better organization and
faster development time.

Inheritance

When creating a class, instead of writing completely new
data members and member functions, we can designate
that the class inherit these properties from an existing class

Base Class (super class)- The existing class in inheritance.
A class definition that provides basic, common data
attributes and/or member functions that will be extended by
a derived class.

Derived Class (sub class)- A class definition that inherits
data members and member functions from a Base Class.

Derived Class Definition

To define a derived class we need to specify the access-
specifier and the base class

Types of access specifiers:

• Public

• Private

• Protected

class derived-class: access-specifier base-class

example: base.cpp

UML Diagrams

One of the main principles of Object Oriented Programming
is defining strong relationships between different pieces of
information

We can represent these relationships using UML Diagrams.

UML - Unified Modeling Language

UML is used in any Object Oriented Programming: Java,
Python, C++, C#, etc.

UML Diagram Basics

A Class Diagram is a UML Diagram that depicts a class’:

• Name

• Data Members (public private and protected)

• Member Functions (public private and protected)

Class Name

Data Members

Member
Functions

UML Diagram Basics

We represent member access with the following:

- means private

+ means public

means protected

Employee

+ Name
- Id

+ getName()
+ setName(string)

UML Diagram Basics

Defining Relationships

GenericItem

- itemName
- itemQuantity

+ SetName()
+ SetQuantity()
+ PrintItem()

ProduceItem

- expirationDate

+ SetExpiration()
+ GetExpiration()

Solid line with
unfilled arrow
indicates class

derivation

Base Class

Derived Class

example: produce.cpp

UML Diagram Basics

Defining Relationships

Derived class diagrams
only contain data members
not defined in the Base
Class

Note that Derived Class
still contains Base Class
Data Members and
Member Functions

GenericItem

- itemName
- itemQuantity

+ SetName()
+ SetQuantity()
+ PrintItem()

ProduceItem

- expirationDate

+ SetExpiration()
+ GetExpiration()

Base Class

Derived Class

https://learn.zybooks.com/zybook/SMUCS1342Spring2020/chapter/13/section/1

https://learn.zybooks.com/zybook/SMUCS1342Spring2020/chapter/13/section/1

Access Specifiers

Three types of access specifiers:

Public: class members and functions accessible to any function

Private: class members and functions only accessible by
member functions and friends of a class (we will talk about
friend functions later)

Protected: class members and functions can be used by
member functions or friends of a class, as well as classes
derived from the class  

Member Access in Base Class

Base Class
Members public protected private

public public protected private

protected protected protected private

private Not accessible Not accessible Not accesible

example: memberAccess.cpp

We can specify how a Base Class’ members are inherited in
the derived class:

Type of Inheritance

Life Cycle of Inheritance

Unlike other member functions within a class, Constructors and Destructors
are NOT inherited by a derived class.

Example Constructor:

When an object is created: 

1. Memory for class is reserved

2. The constructor is called

3. Initializer list is called (if one exists)

4. Body of constructor is executed

5. Control returns to calling process

class Employee {
 Employee(): name{"No Name"}, age{0} {
 // body of constructor
 }
};

Life Cycle of Inheritance

Inheritance Constructor:

 
 
When an object is created (with inheritance): 

1. Memory for class is reserved (both Derived AND Base class)

2. The Derived constructor is called

3. The base class is constructed first using appropriate constructor
4. Derived Initializer list is called (if one exists)

5. Body of constructor is executed

6. Control returns to calling process

class Person {
 Person() {}
};

class Employee: public Person {
 Employee(): name{"No Name"}, age{0} {
 // body of constructor
 }
};

Life Cycle of Inheritance

 
 
Lifetime of an object: 

1. Base class constructor

2. Derived class constructor

3. Derived class destructor

4. Base class destructor

class Person {
 Person();
 ~Person();
};

class Employee: public Person {
 Employee();
 ~Employee();
};

Employee employee1; // Create object

Single Inheritance

Single Inheritance: In single inheritance, a class is allowed
to inherit from only one class. i.e. one sub class is inherited
by one base class only.

class DerivedClass: public Base {

}

Multiple Inheritance

Multiple Inheritance: Multiple Inheritance is a feature of C++ where a
class can inherit from more than one classes. i.e one sub class is
inherited from more than one base classes.

class DerivedClass: public Base1,
 public Base2 {

}

Multi-Level Inheritance

Multilevel Inheritance: In this type of inheritance, a derived class is
created from another derived class.

class Base1: public Base2 {

}

class DerivedClass: public Base1 {

}

Hierarchical Inheritance

Hierarchical Inheritance: In this type of inheritance, more than one sub
class is inherited from a single base class. i.e. more than one derived
class is created from a single base class.

class DerivedClass1: public Base {

}

class DerivedClass2: public Base {

}

Is-a vs Has-a Relationship

Is-a relationship - an is-a relationship is representative of
Inheritance, where an object inherits specific properties
from a base class

Has-a relationship - a has-a relationship is when we use
Composition to represent the fact that an object is made up
of other objects (NOT inheritance).

example: abstract.cpp

Has-A Relationship

class ChildInfo {
 string firstName;
 string birthDate;
 string schoolName;

 ...
};

class MotherInfo {
 string firstName;
 string birthDate;
 string spouseName;
 vector<ChildInfo> childrenData;

 ...
};

In a has-a relationship, there is no inheritance involved. Instead on object is
composed of another. This relationship is known as Object Composition.

Is-A Relationship

class PersonInfo {
 string firstName;
 string birthDate;

 ...
};

class ChildInfo : public PersonInfo {
 string schoolName;

 ...
};

class MotherInfo : public PersonInfo {
 string spouseName;
 vector<ChildInfo> childrenData;

 ...
};

In an is-a relationship, we are using Inheritance. Determining whether a set of
objects are defined using a has-a relationship vs. an is-a relationship is a helpful
strategy for determining if inheritance or composition is needed.

Friend Functions

example: friend.cpp

A friend function of a class is a function defined outside of
the scope of the class but has access to all private and
protected data members and functions of that class.

Use the friend keyword to denote a friend function.
class Employee {
 string name;

 public:
 friend void print(Employee employee);
 void setName(string name) {
 this->name = name;
 }
};

Friend Class

example: friendClass.cpp

Similarly to a friend function, a friend class is a class who
has access to private and protected data members and
member functions of another class

Friendships are never corresponded unless specified.
Defining one class friendship does not mean the friend
class is also a friendly class.

Friendships are not transitive, meaning the friend of a friend
is not a friend unless explicitly defined.

Overriding member functions

Overriding member functions is possible when a derived
class defines a member function that has the same name
as the base class.

class BaseClass {
 void print();
};

class DerivedClass: public BaseClass {
 void print();
};

Overriding vs Overloading

Overloading: functions of the same name but with different
parameter types.

Overriding: functions with the same signature in the
derived class as the base class will “hide” the base class
function.

- We can refer to the base class definition of a function if we
provide the base class scope.

class DerivedClass: public BaseClass {
 void print() {
 BaseClass::print();
 }
};

example: override.cpp

Polymorphism

Polymorphism - refers to the behavior of a function of an
object will differ dependent upon the type of the object.

Overloading and Overriding are examples of compile-time
polymorphism.

void insert(double value);
void insert(int value);
void insert(char value);

Polymorphism

Runtime Polymorphism is when the compiler cannot make
the determination of which function to run, and the
determination is instead performed while the program is
running.

example: polymorphism.cpp

class Base {
 virtual void print();
}

class Derived: public Base {
 void print();
}

The virtual keyword

A virtual function is a member function that may be
overridden in a derived class and for which runtime
polymorphism is used.

Denoted by the keyword: virtual

example: virtual.cpp

class Base {
 virtual void print();
}

class Derived: public Base {
 void print();
}

Pure Virtual Functions

A base class can also have a pure virtual function.

This tells the programmer that the derived class must override
or implement the virtual function for polymorphism.

When a class has a pure virtual function this is known as an
abstract class.

An abstract class cannot be instantiated but is only used for
inheritance and/or polymorphism.

example: abstract.cpp

class Base {
 virtual void print() = 0;
 virtual int getItem() = 0;
}

