
Chapter 6
Recursion

Recursion

• An algorithm is a sequence of steps or procedures for
solving a specific problem

• A recursive algorithm is an algorithm that solves a
problem by relying on repetitions of the same algorithm.

• Example: Function Race()

1. If you are at the finish line, Stop

2. Take one step forward

3. Race()

Parts of Recursion

• The first part of a recursive algorithm is the base case

• A base case defines some procedure or stopping point
that the recursive algorithm is working towards

Function Race()

1. If you are at the finish line, Stop

2. Take one step forward

3. Race()

Parts of Recursion

• The first part of a recursive algorithm is the base case

• A base case defines some procedure or stopping point
that the recursive algorithm is working towards

Function Race()

1. If you are at the finish line, Stop

2. Take one step forward

3. Race()

Base Case

Parts of Recursion

• Second, we work toward the base case

• Here we reduce the problem into a smaller size

Function Race()

1. If you are at the finish line, Stop

2. Take one step forward

3. Race()

Work Toward
Base Case

Parts of Recursion

• Lastly we call the recursive method again

• Usually we perform the recursive function on a smaller set
of the problem determined by the function.

Function Race()

1. If you are at the finish line, Stop

2. Take one step forward

3. Race() Work Toward
Base Case

Recursive Functions

• A function that calls itself in C++ is known as a recursive
function

• Example: Create a function that counts down from a
number N and then prints GO once it reaches 0.

example: simple_recursion.cpp

char_recursion.cpp

Creating a Recursive Function

• Write the base case: Every Recursive Function must
have a base case in order to finish execution

• Write the recursive case: Contains the logic that
recursively calls itself.

int recursiveFunction(/* params */) {

 if (/* base case */) {
 return value;
 }
 /* recursive case */
 else {
 // call function again
 }

}

Exercise

Write a recursive function that reads in a number and
outputs the number factorial.

Ex: 5! = 5 * 4 * 3 * 2 * 1 = 120

int factorial(int n) {
 // define base case

 // define recursive case
}

Exercise

Write a recursive function that reads in a number and
outputs the number factorial.

Ex: 5! = 5 * 4 * 3 * 2 * 1 = 120

We can represent N! in a more concise definition:

N! = N * (N - 1)!

5! = 5 * 4!

answer: factorial.cpp

Greatest Common Divisor

Greatest common divisor is the largest number that divides
evenly into two numbers.

Euclidean algorithm: Subtract smaller number from larger
number until they are equal. That yields the GCD

Example:

GCD(8, 12) = GCD(8, 12 - 8) = GCD(8,4)

GCD(8, 4) = GCD(8 - 4, 4) = GCD(4, 4).

GCD(4,4) = 4 == 4 -> 4

Greatest Common Divisor

example: gcd.cpp

GCD(num1, num2)

Base Case:

num1 == num2

Recursive Case:

If num1 > num2: GCD(num1 - num2, num2)

If num2 > num1: GCD(num2 - num1, num1)

Greatest Common Divisor

We can also use the Modulo Euclidean algorithm for
finding the Greatest Common Divisor.

This uses the modulo operator to find the greatest common
divisor.

Full algorithm here: https://www.geeksforgeeks.org/
euclidean-algorithms-basic-and-extended/

Greatest Common Divisor (Modulo)

General formula for GCD modulo:

GCD(a, b) = GCD(b % a, a)

Once a equals 0 we know that the GCD is b.

Example:

GCD(10,8) = GCD(8, 10 % 8)

GCD(8, 2) = GCD(2, 8 % 2)

GCD(2, 0) = 2

example: gcd_modulo.cpp

Recursion - Fan Out

Recursion can also be used to fan out operations:

int recursion(int val1, int val2) {
 ...

 int total = recursion(val1, val2) + recursion(val1, val2);
}

recursion(val1, val2) recursion(val1, val2);

Fibonacci Sequence

The Fibonacci sequence is a mathematical number set
where each number is the sum of the two preceding ones.

0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, …

Fn = Fn - 1 + Fn - 2

Fibonacci Sequence

example: fibonacci.cpp

int fib(int num) {
 if (num <= 1)
 return num;
 return fib(num-1) + fib(num-2);
}

Types Of Recursion

Direct Recursion: When a function contains a call to itself
within its own function body.

Example: factorial.cpp

Indirect Recursion: When a function calls a second
function which in turn calls the first function again.

Indirect Recursion

void g() {
 f(); // indirect recursive call
}
void f() {
 g();
}
int main() {
 f();
}

example: indirect_recursion.cpp

Iteration vs Recursion

• Both Iteration and recursion are based on a control
statement:

• Both involve iteration / repetition

• Iteration uses an iteration statement
• Recursion uses repeated function calls and utilizes the

stack

• Iteration and recursion both require a termination test.

• Iteration - uses conditions

• Recursion - uses the base case

Which is better?

Short Answer: It depends

1. Recursion is generally less performant than iteration
(Using the stack involves a lot of overhead)

2. However Recursion can often times take less time to
code and represent the algorithm better

Iteration vs Recursion

bool palindrome(char word[], int lowerBound, int upperBound) {
 bool pflag = true;

 while(lowerBound < upperBound && pflag) {
 if (word[lowerBound] != word[upperBound]) {
 pflag = false;
 } else {
 lowerBound++;
 upperBound--;
 }
 }

 return pflag;
}

Iterative approach: Palindrome

example: palindrome_iter.cpp

Iteration vs Recursion

Recursive approach: Palindrome

example: palindrome_recursive.cpp

bool pdrome(char word[], int lowerBound, int upperBound) {
 if (lowerBound >= upperBound) {
 return true;
 } else if (word[lowerBound] != word[upperBound]) {
 return false;
 } else {
 return pdrome(word, ++lowerBound, --upperBound);
 }
}

Guessing Game

• Think of a number between 1 and 100 and create a
program that repeatedly guesses the number until the
correct number has been guessed.

• This can also be thought of as a search algorithm.

Guess 1
Guess 2
Guess 3

.

.

.

1
Guess 10
Guess 20
Guess 30

.

.

.

2
Guess 50
Guess 25
Guess 37

.

.

.

3

Number = 45

Guessing Game

0 100

31

Guessing Game

0 100

31

0 50

Guess: 50

Guessing Game

0 100

31

0 50

5025

Guess: 50

Guess: 25

Guessing Game

example: binary_search.cpp

0 100

31

0 50

5025

25 37

Guess: 50

Guess: 25

Guess: 37

Guessing Game

0 100

31

0 50

5025

25 37

Guess: 50

Guess: 25

Guess: 37

Guess: 31

Guessing Game

void Guess(int lowVal, int highVal) {
 int midVal = (highVal + lowVal) / 2;
 char response;

 cout << "Is your number " << midVal << "? (h/l/y)" << endl;
 cin >> response;

 if (response == 'y') {
 cout << "Yay!" << endl;
 } else if (response == 'h') {
 Guess(midVal, highVal);
 } else {
 Guess(lowVal, midVal);
 }
}

example: guessing_game.cpp

Binary Search

• This is more commonly known as the binary search
algorithm

• This will find a number in an ordered list in at most log(n)
iterations, where n is the number of items in the list

• This is more preferable to a linear search where we just
check each item in the array one by one, performing at
most n iterations.

log(n) < n

Binary Search (Iterative)

example: binary_search_iterative.cpp

int binarySearch(int numbers[], int lb, int ub, int value) {
 int half = 0;
 bool found = false;
 while (lb <= ub && !found) {
 half = (lb + ub) / 2;
 if (numbers[half] == value) {
 found = true;
 } else if (numbers[half] > value) {
 ub = half - 1;
 } else {
 lb = half + 1;
 }
 }

 return (found) ? half : -1;
}

Binary Search (Recursive)

example: binary_search_iterative.cpp

int binarySearch(int numbers[], int lb, int ub, int value) {
 int half;
 if (lb > ub) {
 return -1;
 }
 half = (lb + ub) / 2;
 if (numbers[half] == value) {
 return half;
 } else if (numbers[half] > value) {
 return binarySearch(numbers, lb, half - 1, value);
 } else {
 return binarySearch(numbers, half + 1, ub, value);
 }
}

Stack Overflow

• Stack Overflow: Deep recursion could fill the stack
region and cause a stack overflow, meaning a stack frame
extends beyond the memory region allocated for stack

• Keep in mind that even recursive algorithms that do
terminate eventually may cause stack overflow depending
on the amount of calls needed

int overflow(int value) {
 return overflow(value + 1);
}

