Chapter 6

Recursion

Recursion

 An algorithm is a sequence of steps or procedures for
solving a specific problem

* A recursive algorithm is an algorithm that solves a
problem by relying on repetitions of the same algorithm.

e Example: Function Race()
1. If you are at the finish line, Stop
2. Take one step forward

3. Race()

Parts of Recursion

* The first part of a recursive algorithm is the base case

* A base case defines some procedure or stopping point
that the recursive algorithm is working towards

Function Race()
1. If you are at the finish line, Stop
2. Take one step forward

3. Race|()

Parts of Recursion

* The first part of a recursive algorithm is the base case

* A base case defines some procedure or stopping point
that the recursive algorithm is working towards

Function Race()

1. If you are at the finish line, Stop Base Case

2. Take one step forward

3. Race|()

Parts of Recursion

e Second, we work toward the base case

* Here we reduce the problem into a smaller size

Function Race()

1. If you are at the finish line, Stop

Work Toward
2. Take one step forward Base Case

3. Race|()

Parts of Recursion

e |astly we call the recursive method again

e Usually we perform the recursive function on a smaller set
of the problem determined by the function.

Function Race()
1. If you are at the finish line, Stop

2. Take one step forward

Work Toward
3. Raceo Base Case

Recursive Functions

e A function that calls itself in C++ is known as a recursive
function

e Example: Create a function that counts down from a
number N and then prints GO once it reaches 0.

example: simple_recursion.cpp
char_recursion.cpp

Creating a Recursive Function

* Write the base case: Every Recursive Function must
have a base case in order to finish execution

 Write the recursive case: Contains the logic that
recursively calls itself.

int recursiveFunction ()

i1f () |
return value;

J

else {

J

Exercise

Write a recursive function that reads in a number and
outputs the number factorial.

Ex:8/=56"4"3"2"1=120

int factorial (int n) {

Exercise

Write a recursive function that reads in a number and
outputs the number factorial.

Ex:8/=56"4"3"2"1=120

We can represent N! in a more concise definition:
N'=N*(N-1)!

5! =5"4!

answer: factorial.cpp

Greatest Common Divisor

Greatest common divisor is the largest number that divides
evenly into two numbers.

Euclidean algorithm: Subtract smaller number from larger
number until they are equal. That yields the GCD

Example:
GCD(8, 12) = GCD(8, 12 - 8) = GCD(8,4)
GCD(8, 4) = GCD(8 - 4, 4) = GCD(4, 4).

GCD(@4,4) =4 ==4->4

Greatest Common Divisor

GCD(num1, num?2)
Base Case:
numi1 == num2
Recursive Case:
If num1 > num2: GCD(hum1 - num2, num?2)

If num2 > num1: GCD(hum2 - num1, num1)

example: gcd.cpp

Greatest Common Divisor

We can also use the Modulo Euclidean algorithm for
finding the Greatest Common Divisor.

This uses the modulo operator to find the greatest common
divisor.

Full algorithm here: https://www.geeksforgeeks.org/
euclidean-algorithms-basic-and-extended/

Greatest Common Divisor (Modulo)

General formula for GCD modulo:
GCD(a, b) = GCDb % a, a)
Once a equals 0 we know that the GCD is b.
Example:
GCD(10,8) = GCD(8, 10 % 8)
GCD(8, 2) = GCD(2, 8 % 2)

GCD(2, 0) = 2

example: gcd_modulo.cpp

Recursion - Fan Out

Recursion can also be used to fan out operations:

int recursion(int vall, 1int wvalZ2) {

int total =Jrecursion(vall, wval2)]+ recursion(vall, wval?2);

recursion(vall, wval?2) recursion(vall, wval2);

Fibonacci Sequence

The Fibonacci sequence is a mathematical number set
where each number is the sum of the two preceding ones.

0,1,1,2,3,5, 8, 13, 21, 34, 55, 89, 144, ...

Fn=Fn-1+Fn-»2

Fibonacci Sequence

int fib(int num) {
1f (num <= 1)
return num;
return fib (num-1) + fib (num-2);

J

example: fibonacci.cpp

Types Of Recursion

Direct Recursion: When a function contains a call to itself
within its own function body.

Example: factorial.cpp

Indirect Recursion: When a function calls a second
function which in turn calls the first function again.

Indirect Recursion

void g () A
£0)

}

void f() {

g():;
}

int main () {
£0)
}

example: indirect_recursion.cpp

lteration vs Recursion

e Both Iteration and recursion are based on a control
statement:

 Both involve iteration / repetition
e [teration uses an iteration statement

 Recursion uses repeated function calls and utilizes the
stack

* |teration and recursion both require a termination test.
e |teration - uses conditions
* Recursion - uses the base case

Which is better?

Short Answer: [t depends

1. Recursion is generally less performant than iteration
(Using the stack involves a lot of overhead)

2. However Recursion can often times take less time to
code and represent the algorithm better

lteration vs Recursion

Iterative approach: Palindrome

bool palindrome (char word[], i1nt lowerBound, int upperBound) ({
bool pflag = true;

while (lowerBound < upperBound && pflag) {
if (word[lowerBound] !'= word[upperBound]) {
pflag = false;
} else {
lowerBound++;
upperBound--;

}
}

return pflag;

example: palindrome_iter.cpp

lteration vs Recursion

Recursive approach: Palindrome

bool pdrome (char word[], int lowerBound, int upperBound) ({
if (lowerBound >= upperBound) {
return true;

} else 1f (word[lowerBound] != word[upperBound]) {
return false;

} else {
return pdrome (word, ++lowerBound, --upperBound);

}
}

example: palindrome_recursive.cpp

Guessing Game

 Think of a number between 1 and 100 and create a
program that repeatedly guesses the number until the
correct number has been guessed.

* This can also be thought of as a search algorithm.

Number =45
‘Guess 1 °GUGSS 10 °Guess 50
Guess 2 Guess 20 Guess 25

Guess 3 Guess 30 Guess 37

Guessing Game

0 —
: 100

31

Guessing Game

Guess: 50 (— 100

0 DI 50

31

Guessing Game

Guess: 50 (— 100

31

Guessing Game

Guess: 37

example: binary_search.cpp

Guessing Game

Guess: 37

Guess: 31/

Guessing Game

vold Guess(int lowVal, 1nt highVal) {
int midval = (highVal + lowVal) / 2;
char response;

cout << "Is your number " << midVal << "? (h/1/y)" << endl;
ciln >> response;

if (response == 'y') {
cout << "Yay!" << endl;

} else 1f (response == 'h') {
Guess (m1dVal, highVal);

} else {
Guess (lowVal, midval);

example: guessing_game.cpp

Binary Search

* This is more commonly known as the binary search
algorithm

* This will find a number in an ordered list in at most log(n)
iterations, where n is the number of items In the list

* This is more preferable to a linear search where we just
check each item in the array one by one, performing at
most n iterations.

log(n) < n

Binary Search (lterative)

int bilnarySearch (int numbers[], int 1lb, 1nt ub, int wvalue) {
int half = 0;
bool found = false;
while (lb <= ub && !found) {

half = (1lb + ub) / 2;

1f (numbersl[half] == wvalue) {
found = true;

} else 1f (numbers[half] > value) {
ub = half - 1;

} else {

lb = half + 1;
J
J

return (found) ? half : -1;

example: binary_search_iterative.cpp

Binary Search (Recursive)

int binarySearch(int numbers[], 1nt 1lb, int ub, int value) {
int half;
if (lb > ub) {
return -1;
}
half = (lb + ub) / 2;
1f (numbers|[half] == wvalue) {
return half;
} else 1f (numbers[half] > wvalue) {
return binarySearch (numbers, 1lb, half - 1, wvalue);
} else {
return binarySearch (numbers, half + 1, ub, wvalue);

}

example: binary_search_iterative.cpp

Stack Overflow

e Stack Overflow: Deep recursion could fill the stack
region and cause a stack overflow, meaning a stack frame
extends beyond the memory region allocated for stack

int overflow(int wvalue) {
return overflow(value + 1) ;

J

 Keep in mind that even recursive algorithms that do
terminate eventually may cause stack overflow depending
on the amount of calls needed

