Fig. 1-15	Relationship between band gap and lattice 					constant for alloys in the InGaAsP and AlGaAsSb 				systems.  The dahed vertical lines show the 					lattice constants for the commercially available 				binary substrates GaAs and InP.  For the marked 				example of InxGa1-xAs, the ternary composition 				x=0.53 can be grown lattice-matched on InP, 					since the lattice constants are the same.  For 				quaternary alloys, compositions on both the III 				and V sublattices can be varied to grow lattice-				matched epitaxial layers along the dashed 					vertical lines between curves.  For example, 					InxGa1-xAsyP1-y can be grown on Inp substrates, 			with resulting band gaps ranging from 0.75eV to 				1.35eV.  In using this figure, assume the lattice 				constant a of a ternary alloy varies linearly with 				the composition x.
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Fig. 1-16	Liquid-phase epitaxial growth of AlGaAs and GaAs layers on a substrate: (a) cross section of the sample in contact with a Ga-rich melt containing Al and As; (b) 	carbon slider used to move the GaAs substrate between various melts.  In this case, two pockets are provided, containing melts for AlGaAs and GaAs growth.  The GaAs substrate on the slider is moved first into the AlGaAs growth chamber; after growth of this layer (shown in part a), the excess melt is wiped off as the slider moves the substrate to the next growth chamber.
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Fig. 1-17	Schematic diagram of a vapor-phase epitaxial (VPE) reactor used to grow GaAs, GaP, and the ternary compound GaAsP.
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Fig. 1-18	Crystal growth by molecular beam epitaxy (MBE): (a) evaporation cells inside a high-vacuum chamber directing beams of Al, Ga, As, and dopants onto a GaAs substrate.

			�
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Chapter 2:  Atoms & Electrons



(The need for Quantum Mechanics)





About the turn of the century, there were many experimental and natural phenomena that could be explained by classical (Newtonian) mechanics.



1)	The frequency spectrum of black body radiation.

2)	The characteristic line spectra of atoms (Niels Bohr, Nobel Prize 1922)

3)	Photo-emission of electrons from metals (waves acting like particles!)

4)	Particles (like billiard balls) could behave like waves (interference, diffraction, Davison-Germer experiment.









Classical Behavior



1)	Particles -- we can specify the position (x) and momentum (mv) independent of each other.

2)	e-m radiation -- plane waves
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can have arbitrary amplitude A (or energy E(A2)



(	Both 1) and 2) are not true at the quantum level.







�Black Body Radiation

											classical theory
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T=temperature

u(w) = energy density



~1900 ~ Planck Assumption: the E&M radiation inside the cavity is quantized

E=nhw	(Nobel Prize 1918)
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� EMBED Equation.2  ���		h= 6.63 X 10-34 J(s = 4.14 X 10-15 eV(s
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The Photoelectric Effect



(	interpreted by Einstein in 1905 (Nobel Prize)



Observations

-	increasing the light intensity does not increase Emax (increased # of electrons emitted)

-	a cutoff frequency vc below which no electrons are emitted no matter how intense the light.



explanation:		light energy is quantized

	Ephoton = h(







Fig. 2-1	The photoelectric effect: (a) electrons are ejected from the surface of a metal when exposed to light of frequency ( in a vacuum; (b) plot of the maximum kinetic energy of ejected electrons vs. frequency of the incoming light.
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Atomic Spectra



	The emission lines of an excited gas consist of discrete wavelengths
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-	also true for individual atoms for hydrogen (~1900)









Lyman		� EMBED Equation.2  ���





Balmer		� EMBED Equation.2  ���





Paschen	� EMBED Equation.2  ���









Fig. 2-3	Relationships among photon energies in the hydrogen spectrum.
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Bohr’s Explanation of hydrogen spectra (Nobel Prize 1922)



-	electron in stable orbits (does not continually radiate and collapse into the nucleus)



-	electron can shift to higher or lower orbits, gaining or losing a photon
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emission



-	the angular momentum p( of the electron is quantized



� EMBED Equation.2  ���� EMBED Equation.2  ���	n=1,2...			(1)
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the electrostatic force is



						� EMBED Equation.2  ���









the centrifigul force is



					� EMBED Equation.2  ���



where v (linear velocity) and w (angular velocity) are related by
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				� EMBED Equation.2  ���			(5)
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			from � EMBED Equation.2  ���				(1)



				� EMBED Equation.2  ���						(6)
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			� EMBED Equation.2  ���			(6)



The total energy for an electron in the nth orbit is:	



� EMBED Equation.2  ���	(7)



the difference in energy � EMBED Equation.2  ���

		

� EMBED Equation.2  ���			(8)



� EMBED Equation.2  ���			p. 56







( The assumption that angular momentum is quantized predicts the atomic spectra of hydrogen!
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What else was happening ~ 1900’s?



Wave - Particle Duality



- The photoelectric effect showed that radiation could be both a wave and a particle.









Fig. 2-4  Electron orbits and transitions in the Bohr model of the hydrogen atom.  Orbit spacing is not drawn to scale.

	�

From Einstein’s famous equation:

		E=mc2

We can associate a momentum (p=mv) with a photon (even though a photon has no rest mass):



	� EMBED Equation.2  ���



� EMBED Equation.2  ���,	� EMBED Equation.2  ���		� EMBED Equation.2  ���



( radiation has momentum (like a particle)

( radiation has a wavelength









!! DeBroglie Hypothesis (1923)



Matter may possess the same dual nature:  matter would have a wavelength

	� EMBED Equation.2  ���			Nobel Prize 1929



	The wave nature of matter (electrons) was confirmed in 1925 by Davisson and Germer



- monoenergetic electrons striking a single-crystal Ni target were diffracted like waves:
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The Schroedinger Equation



To describe the wave properties of matter, Schroedinger (1926) came up with a “wave equation” for a particle with mass m and a potential energy V(x,y,z):

� EMBED Equation.2  ���� EMBED Equation.2  ��� 															(2.24)

where

� EMBED Equation.2  ���



Comments:

-  cannot derive Schroedinger’s Equation (any more than we can Maxwell’s Equations



-  a plausibility argument is made in text



-  Schroedinger’s Equation replaces F=ma (which can be derived from the S.E.)



Interpretation of (



1.  ( is called the wave function or probability amplitude density



2.  The quantity

		� EMBED Equation.2  ���



is the probability that a particle with mass m will be found in the volume dV at

				x=x0, y=y0, z=z0



3.  The most we can expect with the S.E. is to determine the probability of finding a particle in a region of space.



Conditions on (





1.  If the particle exists, it has to be somewhere:





� EMBED Equation.2  ���



2.  ( must be continuous and single valued (non-ambiguous prob)





3.  � EMBED Equation.2  ���		(the spatial derivatives are continuous) if V remains finite.



(  What is the physical significance of





� EMBED Equation.2  ���	where z0 is a boundary and 															((0





-  There is a relatively involved answer using Stokes theorem and conservation of probability that gives rise to a “probability current”, but ...





-  Also there is a more straight-forward answer:





Consider the time independent Schroedinger Equation (p.71)



			� EMBED Equation.2  ���			(1)







integrate each term wrt z from z0 to z0+(





� EMBED Equation.2  ���																(2)





and



� EMBED Equation.2  ���																(3)







as long as V(z0) is finite, both V(z0)((z0)( and E((z0)( (0 as ((0



and therefore,



		� EMBED Equation.2  ���							(4)



everywhere, and in particular at a boundary.











The time independent S.E (V(f(t)):







� EMBED Equation.2  ���															(1)







1.  Assume a product solution:
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			where		� EMBED Equation.2  ���



so (1) becomes:



	� EMBED Equation.2  ���																(2)









2.  Now divide both sides of (2) by ((r)((t):



� EMBED Equation.2  ���				(3)



						� EMBED Equation.2  ���



		if � EMBED Equation.2  ��� for all � EMBED Equation.2  ��� and � EMBED Equation.2  ���, then

				� EMBED Equation.2  ���



where E’ is a constant and (3) becomes 2 equations:



		� EMBED Equation.2  ���					(5)



and

		� EMBED Equation.2  ���				(6)





The solution to (5) is

				� EMBED Equation.2  ���				(7)



where ( is the angular grequency and is equal to � EMBED Equation.2  ��� (or � EMBED Equation.2  ���)



However, from the DeBroglie hypothesis (p.64), the total energy of the particle is � EMBED Equation.2  ���



( so the arbitrary constant E’ in (5) and (6) is the total energy E of the particle!







In (7) let � EMBED Equation.2  ���, since



		� EMBED Equation.2  ���



and � EMBED Equation.2  ��� will contain an arbitrary constant that can absorb � EMBED Equation.2  ���.





Broad Comments About Waves





-  electromagnetic waves

-  waves on a string (guitar)

-  acoustic waves

-  matter waves (solutions to S.E.)



(  all have similar properties



-  Fourier Analysis?

-  Fourier Transformers?



(  The nature of waves result in certain restrictions:



(1)  � EMBED Equation.2  ���

(2)  � EMBED Equation.2  ���



( = radian frequency;  t=time;  x=position;  k=2(/(, (=wavelength



Eqs. 1 and 2 are true for all waves. (will show later?)



For matter waves (solutions to S.E.)



				� EMBED Equation.2  ���

(				� EMBED Equation.2  ���



Eq. (1) p.73 ( ( multiple both sides by � EMBED Equation.2  ���)



				� EMBED Equation.2  ���						(3)



also for matter waves,



				� EMBED Equation.2  ���				(DeBroglie)



so multiplying both sides of (2) p.73 by � EMBED Equation.2  ��� gives



				� EMBED Equation.2  ���



but � EMBED Equation.2  ���, so

				

				� EMBED Equation.2  ���							(4)



Equations (3) and (4) are called thee Heisenberg Uncertainty Principle



				� EMBED Equation.2  ���					(4)



-  The uncertainty in momentum (or in velocity (v, since (p=m(v) times the uncertainty in position of a particle is equal or greater than � EMBED Equation.2  ���



example:  a donor electron



�		Si					Si			Si

���

������	���������is associated with the middle silicon atom in a lattice.  Find (p, (x, and (v.



take (x=5.43( then

				� EMBED Equation.2  ���



[Note: 1 Joule = 1 newton meter=1 kg(meter)/sec2]
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			� EMBED Equation.2  ���



awful fast! maybe dopant electrons are not associated with a single atom.





Another Example:

�

		t=0								t=20(sec

��������				E2                                            h(

���	(E2	
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  an electron is excited to an energy level E2 at time t=0.  In 20(seconds, it spontaneously decays, emitting a photon.  Find the uncertainty associated with the energy level E2.  
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