� EMBED Equation.2  ���	where � EMBED Equation.2  ���



ie.,  k0((0,	x(t,	L(T  



(we will use f(x) --- but remember that the results are general)

�



By the theory of orthogonal functions, the recipe for Cn is:



� EMBED Equation.2  ���							(3)





we can write (2) as:



� EMBED Equation.2  ���			(4)



The spacing between successive harmonics in k space (k:



� EMBED Equation.2  ���



and we can write (4) as:



� EMBED Equation.2  ���			(5)



as L increases, (k decreases

as L ((, (k( dk, nk0(k

and



�		� EMBED Equation.2  ���





							(g(k)

this integral is only a function of k.

so



� EMBED Equation.2  ���						(7)



and  � EMBED Equation.2  ���



� EMBED Equation.2  ���						(8)





g(k) is called the Fourier Transform of f(x)



� EMBED Equation.2  ���



� EMBED Equation.2  ���



f(x) is the inverse F.T. of g(k)

All of the above also applies to ( and t: x(t,  k((:



� EMBED Equation.2  ���						(9)

� EMBED Equation.2  ���						(10)

** end of background **

Now consider a particle localized in space to a region a:



����������											(0  (matter wave)



(0=2(/k0







�����������			x										



												f(x)



(  the wave function ( must be localized and have the form:



		� EMBED Equation.2  ���



For convenience, choose f(x) to be a Gaussian distribution:

	

	� EMBED Equation.2  ���					(1)



( notes: 1.  the F.T. of a gaussian is another gaussian!

			2.  � EMBED Equation.2  ���

we require

			� EMBED Equation.2  ���							(2)



using note 2:



	� EMBED Equation.2  ���



let � EMBED Equation.2  ���,    � EMBED Equation.2  ���







�so

�

� EMBED Equation.2  ���



so  � EMBED Equation.2  ���,   � EMBED Equation.2  ���   and



� EMBED Equation.2  ���						(3)



This says we are pretty certain the particle is in a region (x(a.  As a((, we have a plane wave (p.119)



recall � EMBED Equation.2  ���;  we could write � EMBED Equation.2  ��� as � EMBED Equation.2  ���



Question:  What is the distribution of the probability amplitude ( in k- (or p-) space?  That is, what is ((k), the F transform of ((x)?



� EMBED Equation.2  ���		so



� EMBED Equation.2  ���



next:  slight of hand:

rewrite the exponentials in the (  :



� EMBED Equation.2  ���



� EMBED Equation.2  ���

�

�



expands to:



� EMBED Equation.2  ���



now we can write (4) as:

� EMBED Equation.2  ���					(5)



now let � EMBED Equation.2  ���



� EMBED Equation.2  ���,  and (5) becomes

� EMBED Equation.2  ���  (6)

�

��

													  (

and cleaning up (6) gives



� EMBED Equation.2  ���

�



� EMBED Equation.2  ����(  � EMBED Equation.2  ���							(7)



������ EMBED Equation.2  ���				(h		� EMBED Equation.2  ���

���



����		e-1

��					k0			2(k					k

				k1		k2



												Fig. 1



e-1(a(k1-k0)=1=a(k   or   (k=1/a

��

� EMBED Equation.2  ���

��





��			e-1

��

						x1		0		x2					x

��

����													2(x



� EMBED Equation.2  ���





� EMBED Equation.2  ���		or		� EMBED Equation.2  ���



Fig. 2  says that we are pretty certain that the particle is in the region  (x=a



Fig. 2  says that we are pretty certain the momentum spread is � EMBED Equation.2  ��� around the central value � EMBED Equation.2  ���.



Note:		(x=a

			(k=1/a,  so



(x(k=1





(  statement w/o proof:  the Gaussian distribution is a minimum certainty wave function.  It is the best we can do!  In general,



			� EMBED Equation.2  ���			and

			� EMBED Equation.2  ���



Another Comment:  we could have done a similar analysis with time and frequency



		� EMBED Equation.2  ���



let f(t) be Gaussian so on p.112   x(t, k((









and 	(t=a

		((=1/a



		� EMBED Equation.2  ���				� EMBED Equation.2  ���

		� EMBED Equation.2  ���





		� EMBED Equation.2  ���				(general f(t))

		� EMBED Equation.2  ���				in general





















Ch 3.  Energy Bands, Charge Carriers



(  how does current flow in a semiconductor?  or any other material?



How are materials put together?



(  interactions of the electrons in the outer shells form bonds











Ionic Bonding 



(  one (or more) electrons are transferred completely from one atom to another



(  example NaCl (Table 2-2 + Fig 3-1)



(  Na+, Cl- ( electrostatic attractive forces (balanced by repulsive forces)






�Table 2-2 Electronic configurations for atoms in the ground state.


			
�



	
Fig. 3-1 The NaCl Lattice: an example of ionic bonding.

		��(  the outer orbits of both atoms in ionic bonding are both filled



	- inert

	- no loosely bound electrons to provide current flow



Metallic Bonding



(  the outer shell is only partially filled with electrons

(  the outer electron is contributed to the crystal as a whole

(  ions with closed shells -- held together with the electrostatic forces due to the ions and the sea of free electrons

(  excellent conductors



Covalent Bonding



(  each atom of a bound pair contributes one electron to form a pair of electrons that are shared by both atoms



(  example:  Si, Ge, C

-  each  have 4 electrons in outer shell

-  each have the diamond lattice

-  each have 4 nearest neighbors

-  each of the 4 electrons are shared with 4 other atoms (covalently)

-  no free electrons to conduct electricity (at T=0 anyway)





Fig. 3-2 Covalent bonding in the Si crystal, viewed along a 100 direction.



��Energy Bands (qualitative)



(  individual atoms have discrete energy levels

(  as atoms are brought closer together, the energy levels spread into energy bands



Energy Bands  (Kronig Penny Model)



Assumptions



1.  Nuclei at rest (no atomic or lattice vibrations)

2.  The field seen by a given electron is that caused by 	a fixed nuclei plus an average field produced by the 	charge distribution.

Fig. 3-3  	Formation of energy bands as a diamond 					crystal is formed by bringing together 					isolated carbon atoms.

		��1.) + 2.) ( we can consider a single electron in a potential which has the periodicity of the crystal lattice.



3.) The problem is one-dimensional



4.)  Approximate the actual potentials by a series of square well potentials (or square potential barriers)



Fig. 1

		�

Fig. 2

�









We start with the time independent Schroedinger Eq.:



� EMBED Equation.2  ���				(1)

(  if V(z) was a constant, we would expect plane wave solutions:



		� EMBED Equation.2  ���



since V(z) is periodic in z (period=d), we can try a solution of the form



		� EMBED Equation.2  ���



(if V(z)=constant, expect ((z)(A)



(  we can consider a segment L=Nd of an infinite crystal, or consider L to be a closed chain of atoms in a crystal:









����

���������								d����N atoms in a chain of length L=Nd



(  Because of symmetry,



		� EMBED Equation.2  ���

so



		� EMBED Equation.2  ���			(2)



which is satisfied if:



� EMBED Equation.2  ���								(2a)



and � EMBED Equation.2  ��� (



� EMBED Equation.2  ���,	m=(1, (2, ...



So for a finite crystal of L=Nd,



		� EMBED Equation.2  ���								(3)



Now we  are ready to go!





Insert



	� EMBED Equation.2  ���		into



� EMBED Equation.2  ���



����� EMBED Equation.2  ������(4a, region II)			-(2









� EMBED Equation.2  ���

�

���

						(2

(4b, region I)



(  we are interested in how bound electrons (not free electrons, unbound to the lattice) behave in the lattice.



((		E<V0

���������V0		   I	     II	

�			E

����������		   W		b				....

so



(		� EMBED Equation.2  ���	

						where� EMBED Equation.2  ���is positive and real.



(		� EMBED Equation.2  ���

					where � EMBED Equation.2  ��� is positive and real.



(  the solutions will be oscillitory (sinusoidal) in region I, and damped exponentials in region II (recall potential barrier prob)



back to the math (evaluate � EMBED Equation.2  ���):



� EMBED Equation.2  ���	so



	� EMBED Equation.2  ���

			� EMBED Equation.2  ���



	� EMBED Equation.2  ���

so Eq (4a) + (4b) (p. 132) can be rewritten as:



� EMBED Equation.2  ���



(5a, region II), and



� EMBED Equation.2  ���



(5b, region I)



( (5a) + (5b) are true for all values of z ( [   ] = 0



(  (5a) +(5b) are 2nd order, linear differential equations with constant coefficients--solutions are of the form:

� EMBED Equation.2  ���

� EMBED Equation.2  ���



where (I, (II are determined by substituting into (5a) or (5b)



(5a) (

� EMBED Equation.2  ���			(6a)



since  � EMBED Equation.2  ���



��� EMBED Equation.2  ���

		b			c

recall:		ax2 + bx + c = 0



		� EMBED Equation.2  ���			so



� EMBED Equation.2  ���



or,		� EMBED Equation.2  ���



and the general solution for (II(z) is



� EMBED Equation.2  ���

or

� EMBED Equation.2  ���					(6b)



similarly to the above, (5b) (

� EMBED Equation.2  ���				(7a)



� EMBED Equation.2  ���



� EMBED Equation.2  ���



so	� EMBED Equation.2  ���		or,



� EMBED Equation.2  ���					(7b)

so		� EMBED Equation.2  ���

		� EMBED Equation.2  ���					p. 130



Now we can apply the boundary conditions:



1.)	( is continuous

2.)	� EMBED Equation.2  ��� is continuous



���������������				    II		I	  II�							E



					 0			W

	��������		-b			d





let z0=boundary between region I & II:



� EMBED Equation.2  ���,		or



� EMBED Equation.2  ���



so	� EMBED Equation.2  ���						(8)









also,  � EMBED Equation.2  ���



��so	� EMBED Equation.2  ���

� EMBED Equation.2  ���					(9)

the two circled terms are equal by (8), so ((/(z continuous (



		� EMBED Equation.2  ���						(10)



(  so at z=0, (I(0)=(II(0) (

	(see (7b), p.138,  (6b), P. 127):



� EMBED Equation.2  ���					(7b)



� EMBED Equation.2  ���					(6b)





so at z=0,

			A + B = C + D							(11)



and at z=W ((II = (I) (



� EMBED Equation.2  ���,   so



� EMBED Equation.2  ���	(12)



now apply � EMBED Equation.2  ���, but first rewrite (6b), (7b):



� EMBED Equation.2  ���					(13a)




� EMBED Equation.2  ���					(13b)



so,

	� EMBED Equation.2  ���

and

	� EMBED Equation.2  ���



and requiring � EMBED Equation.2  ���



� EMBED Equation.2  ���	  (14)



and at z=W,



� EMBED Equation.2  ���,	so



� EMBED Equation.2  ���		(15)


Note: Eq’s (11), (12), (14), & (15) are a set of 4 equations, with 4 unknown coefficients:  A, B, C, D.



(  a trivial solution to the 4 eqs is A=B=C=D, but this is not helpful, since ((=0





(  we could require that the determinant of the coefficients vanish -- or we can manipulate the equations:



A + B = C + D											(11)



� EMBED Equation.2  ���   (12)



� EMBED Equation.2  ���   (14)


� EMBED Equation.2  ���		(15)

we will manipulate the equations:

re-arranging (12):



� EMBED Equation.2  ���		(16)

re-arranging (14) one way:

� EMBED Equation.2  ���			(17a)
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