ENGINEERING ECONOMY FACTORS

Discrete Payments and Discrete Compounding

Discrete Payments and Discrete Compounding						
Factor	${\bf Find}$	Given	Formula			
Single-Payment						
Compound-Amount	\mathbf{F}	Р	$F = P(1+i)^n = P(F/P, i, n)$			
Present-Worth	Р	F	$P = F \frac{1}{(1+i)^n} = F(P/F, i, n)$			
Equal-Payment Series						
${\bf Compound\text{-}Amount}$	F	A	$F = A\left[\frac{(1+i)^n - 1}{i}\right] = A(F/A, i, n)$			
Sinking-Fund	A	F	$A = F\left[\frac{i}{(1+i)^n - 1}\right] = F(A/F, i, n)$			
Present-Worth	Р	A	$P = A\left[\frac{(1+i)^n - 1}{i(1+i)^n}\right] = A(P/A, i, n)$			
Capital-Recovery	A	Р	$A = P\left[\frac{i(1+i)^n}{(1+i)^n - 1}\right] = P(A/P, i, n)$			
<u>Uniform-Gradient Series</u>						
	A	G	$A = G\left[\frac{1}{i} - \frac{n}{(1+i)^n - 1}\right] = G(A/G, i, n)$			
Geometric-Gradient Series						
	Р	F_1, g	$P = \frac{F_1}{(i-g)} \left[1 - \frac{(1+g)^n}{(1+i)^n} \right]$			
<u>Infinite Series</u>						
	Р	A	$P = A\left[\frac{1}{i}\right] = A(P/A, i, \infty) , i > 0$			
	Р	G	$P = G\left[\frac{1}{i^2}\right] = G(P/G, i, \infty) , i > 0$			
	Р	F_1, g	$P = \frac{F_1}{(i-g)} , i > g$			

Discrete Payments and Continuous Compounding

J		
Find	Given	Formula
\mathbf{F}	Р	$F = Pe^{rn} = P[F/P, r, n]$
Р	\mathbf{F}	$P = Fe^{-rn} = F[P/F, r, n]$
F	A	$F = A\left[\frac{e^{rn} - 1}{e^r - 1}\right] = A[F/A, r, n]$
A	F	$A = F\left[\frac{e^r - 1}{e^{rn} - 1}\right] = F[A/F, r, n]$
P	A	$P = A\left[\frac{1 - e^{-rn}}{e^r - 1}\right] = A[P/A, r, n]$
A	Р	$A = P\left[\frac{e^r - 1}{1 - e^{-rn}}\right] = P[A/P, r, n]$
	F P	F P F F A A F A A F

Continuous Payments and Continuous Compounding

Factor	Find	Given	Formula
Funds Flow Conversion	A	$ar{A}$	$A = \bar{A} \left[\frac{e^r - 1}{r} \right] = \bar{A} [A/\bar{A}, r]$
Equal-Payment Series			
Compound-Amount	F	\bar{A}	$F = \bar{A}\left[\frac{e^{rn} - 1}{r}\right] = \bar{A}[F/\bar{A}, r, n]$
Sinking-Fund	\bar{A}	F	$\bar{A} = F\left[\frac{r}{e^{rn} - 1}\right] = F[\bar{A}/F, r, n]$
Present-Worth	Р	$ar{A}$	$P = \bar{A}\left[\frac{e^{rn}-1}{re^{rn}}\right] = \bar{A}[P/\bar{A},r,n]$
Capital-Recovery	$ar{A}$	Р	$\bar{A} = P\left[\frac{re^{rn}}{e^{rn}-1}\right] = P[\bar{A}/P, r, n]$

CONVENTIONAL LOAN PAYMENT FORMULAS

$$A = P(A/P, i, n)$$

$$R_t = A(P/A, i, n - t) = P(F/P, i, t) - A(F/A, i, t)$$

$$I_t = iR_{(t-1)} = iA(P/A, i, n-t+1)$$

$$B_t = A - I_t$$

fixed loan particulars

P is the principal amount of the loan

A is the loan payment amount

i is the interest rate

n is the number of payments

time-dependent quantities (at time t)

 R_t is the remaining balance after making the payment

 I_t is the part of the payment going toward interest

 B_t is the part of the payment going toward principal

total paid toward principal = $P - R_t$

total paid toward interest = $tA - (P - R_t)$

equity = market value - R_t