EE 8372 & DATA SECURITY

Homework 8 Professor Dunham
24 March 2020 Due: 31 March 2020

Review Text: Chapter 3, section 3.4; Chapter 7, sections 7.1-7.4 and 7.6; and Chapter 8, sub-
sections 8.1.3 and 8.2.4.

Suggested Reading in Menezes, Oorschot and Vanstone: Chapter 2, section 4, 5, and 6; Chapter
3, sectionsl, 2, 3, 6, 7 and 8; Chapter 4, sections 1, 2, 3 and 4; Chapter 8, sections 1 and 2; and
Chapter 9, sections 1, 2, 3 and 4.

Read Lightly FIPS 180-2, Secure Hash Standard (SHS), 2008 October 17.

1.
2.

Compute 7777*'mod(77773) by using repeated squaring (show all steps).

The ciphertext 9472 was obtained from the RSA algorithm using modulus pn = 11413 =
101 x 113 and e = 7467 . Find the plaintext.

In order to increase security, Bob chooses modulus pn and two encryption exponents e and
e> . He asks Alice to encrypt her message m to him by first computing ¢; = m°! (mod pn) ,
then encrypting ¢; = ¢}? (mod pn) . Alice then sends ¢, to Bob. Does this double encryption
increase security over single encryption? Why or why not?

This problem looks at some aspects of prime numbers.

(a) Let p be an n-bit number (the number has exactly n bits and the highest bit must be a
1). What are the minimum and maximum possible values of p?

(b) What is a reasonable estimate for the number of n-bit prime numbers?

(c) Approximately how many 1024-bit numbers are prime? Hint: This is a LARGE num-
ber, use scientific notation to represent your answer.

(d) The current NIST standard (NIST 800-131A Revision 1) recommendation for the mod-
ulus (pn) of a RSA algorithm is that it be a minimum of 2048-bits. Assuming that p is
a 1024-bit prime number, what is the probability than an odd 1024-bit random number
is prime?

(e) Is an exhaustive search attack feasible for finding a 1024-bit prime number used in a
2048-bit or larger RSA modulus?



5. Using the Miller-Rabin random primality testing algorithm, determine which of the follow-
ing hex numbers are prime with error probability less than 1073, All the numbers in the
problem are 30-bit or smaller numbers. You can program the Miller-Rabin algorithm in your
favorite programming language using 64-bit integers and use integer arithmetic operations
and modulo reductions. Hint: It is suggested that you use the UNIX program bc (a C style
interactive language) as well as the primality-testing.bc software package. Information on
the program bc as well as several programming examples are available on the course web
site.

(a) 0x108C1

(b) 0x6CE45

(c) 0x17C79D

(d) 0x1B206B

(e) 0XxA98AC6D

(f) 0x7CAB1C23
Optional: If you are interested in testing some larger numbers, use your Miller-Rabin ran-
dom primality testing algorithm to determine if the following numbers are composite or tests
prime with an error probability of less than 1073,

(a) 0x97340264E77E568659

(b) 0x5AD789FB37AADE289F

(c) 0x7D25FB921140550EBFB0D84B

(d) 0x34BA3709DF728A732FDB1787

(e) 0x62A6F3AFCS5E548D4ECO0DEBO873FDE7386C10994190130A7

(f) 0xD37ADA29632ADDE177CE24E4671D5SF59DEDB7E193EA8B117
Comments: Both the Miller-Rabin and the Solovay-Strassen random primality testing algo-
rithms can fail for a set of composite numbers called pseudoprimes — composite numbers
that pass all test as a prime number. While this is an unlikely event, it can occur. It is gener-
ally recommend that a fast primality testing algorithm such as the Miller-Rabin or Solovay-
Strassen be used to identify a prime candidate and then use a different class of random
primality testing algorithms such as the Lucas primality test described in the NIST standard
FIPS 186-4 to provide add additional confidence in the primality of a prime candidate. Fi-

nally, since determining primality is in the class P, one could use one of the deterministic
primality algorithms to make a final confirmation.



