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a b s t r a c t 

Nowadays, a large number of cloud services have been published and hosted by geo- 

distributed cloud data centers (Geo-2DCs). In spite of numerous benefits, those Geo-2DCs 

face significant challenges such as dynamic resource scaling where workload forecasting 

plays a crucial role in addressing such a challenge. High accuracy and fast learning are key 

indicators for workload forecasting and the literature has witnessed a lot of effort s. This 

work proposes an integrated forecasting method, equipped with noise filtering and data 

frequency representation, named Savitzky-Golay and Wavelet-supported Stochastic Config- 

uration Networks (SGW-SCN), to predict the amount of workload in future time slots. In 

this approach, the workload time series is first smoothed by a Savitzky-Golay filter and 

then decomposed into multiple components via wavelet decomposition. With stochastic 

configuration networks, an integrated model is established to characterize statistical char- 

acteristics of both trend and detail components. Extensive results have demonstrated that 

the proposed method achieves higher forecasting accuracy and faster learning speed than 

typical forecasting methods. 

© 2018 Elsevier Inc. All rights reserved. 

 

 

 

 

 

 

 

1. Introduction 

Cloud computing has become a new type of Internet service because of its high scalability, flexibility, and cost-efficiency.

Geo- D istributed C loud D ata C enters (Geo-2DCs) are established, so that customers can deploy applications and store data

in the centers, while leveraging the computing powers of the server farms as well as various computing services hosted at

the centers [3,21] . As a result, Geo-2DCs and their effective operations have received significant attention in recent years

[12] . However, because of the massive computing resources maintained in Geo-2DCs, the power consumption has become

a critical problem. Besides, Geo-2DC providers aim to maximize their revenue while meeting various Service Level Agree-

ments (SLAs) for customers. Therefore, recent studies have proposed a collection of dynamic scheduling algorithms to reduce

resource consumption as well as to improve energy efficiency in Geo-2DCs [4] . 
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However, dynamic resource scaling typically depends on a number of factors including the number of active users, up-

coming events, and the current states of a system. Historical usage patterns are usually used to predict the number of

resources in future time slots. In recent years, researchers have proposed many workload forecasting schemes [1,5–7,13,22] ,

which mainly measure the maximum or average workload for specified time slots. However, the accuracy of their forecasting

results may not always be satisfactory. 

In this research, we propose a machine learning-based workload forecasting method, focusing on estimating the num-

ber of tasks arriving in the future time slots in Geo-2DCs. Be more specific, we have developed a novel approach called

SGW-SCN, which incorporates S avitzky- G olay filter and W avelet decomposition (SGW) [17,19] with S tochastic C onfiguration

N etworks (SCNs) [23–26] . Extensive results based on a real-life benchmark dataset 1 have demonstrated that our approach

outperforms several common methods with respect to forecasting accuracy and training speed. The main contributions of

this work are three-fold: 

• It adopts the Savitzky-Golay filter method to eliminate possible outliers and noises in the non-stationary workload time

series. 

• It applies wavelet decomposition to obtain the trend and detail components for different original workload time series. 

• An integrated forecasting model with noise filtering, frequency representation of data and SCNs, named SGW-SCN, is

proposed to predict the amount of original workload in future time slots. 

The remainder of this paper is organized as follows. Related studies are discussed in Section 2 . Section 3 describes the

dataset and data preprocessing. Section 4 describes the proposed model. Section 5 presents experimental results. Finally,

Section 6 concludes this work. 

2. Related work 

2.1. Data-Driven approaches 

Machine learning approaches have been increasingly adopted for time series forecasting [6,7,9–11,30] . Chen et al. [7] pro-

pose a self-adaptive prediction method that uses an ensemble model and subtractive-fuzzy clustering-based fuzzy neural

network. Chang et al. [6] propose a workload prediction model by using a neural network and the steepest descent learn-

ing algorithm. It improves prediction accuracy over a time-delay neural network and the linear regression methods. Kumar

and Singh [11] present a workload forecasting model that uses neural network and the self-adaptive differential evolution

algorithm. It can learn the most suitable burst workload along with an optimal crossover rate. Islam et al. [10] present a

prediction-based resource provisioning strategy by using a sliding-window-based neural network and the linear regression

techniques. It performs better than non-sliding-window-based neural network. 

Most of the above methods adopt neural network and the linear regression approaches. However, they only work well in

catastrophic and irregular workload bursts. Furthermore, their forecasting performance is limited when dealing with periodic

and non-linear cloud-based workload series. To overcome such limitations, this work proposes SGW-SCN to predict cloud

workload by considering its periodicity and non-linearity. 

2.2. Model-based approaches 

Several researches for Geo-2DCs have been proposed to analyze the workload prediction by using model-based ap-

proaches [8,14,15,20] . Urgaonkar et al. [20] capture the transient behavior of workloads in shared data centers. They model

server resources by using a time-domain queuing model that dynamically maps resource requirements of each application

to workload characteristics. Mishra et al. [15] propose a method to understand task resource consumption in Google com-

pute clusters with workload classification models. Based on it, fine-grain task scheduling and capacity planning are realized.

Liu et al. [14] present an approach to model the energy consumption in a data center. They predict renewable energy and

workload demands one week into the future, and allocate IT resources according to time varying power supply and cooling

efficiency. 

However, the above methods adopt the queuing models to estimate the average queue length for the next time slot, and

they are not suitable for on-line prediction due to performance concerns. Different from them, our forecasting technique

aims to predict workload in Geo-2DCs in a shorter time period at a scale of minutes. 

2.3. Integrated learning approaches 

Integrated learning is a paradigm that jointly integrates multiple related methods and has demonstrated its advantages

in many fields [1,5,22,27,29] . Many researchers have achieved workload forecasting through different integrated learning

approaches. Calheiros et al. [5] adopt an autoregressive integrated moving average (ARIMA)-based predictor for proactive

provisioning of virtual machine instances. Their simulation is conducted through workload trace from Wikimedia. Ardagna
1 https://github.com/google/cluster-data . 

https://www.github.com/google/cluster-data
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Fig. 1. Workload forecasting approach. 

Fig. 2. Aggregated task arriving rates of different types. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

et al. [1] propose a distributed solution that integrates a workload prediction model and distributed non-linear optimization

techniques. Van den Bossche et al. [22] evaluate the effectiveness of the different workload forecasting techniques includ-

ing exponential smoothing, Holt-Winters, and ARIMA. They then propose a method to automate procurement decisions of

contracts for Infrastructure-as-a-Service (IaaS) providers. 

In contrast, our forecasting can quickly react to tasks with optimal resources, which is critical for Geo-2DCs. Besides, our

proposed SGW-SCN can better capture transient behaviors of workload and effectively avoid one-step delay occurrence. 

3. Data preprocessing 

Fig. 1 illustrates our integrated forecasting approach. The data preprocessing step first extracts tasks in each 5-min time

slot. The noise points (outliers) in the workload that affect the forecasting accuracy are eliminated, and a stationary sequence

is obtained. Then, we decompose the stationary sequence into two parts through wavelet decomposition. One is the trend

component of the workload, and the other contains its details. Thus, we obtain two time series with different f eatures.

Afterwards, we adopt SCNs to determine optimal parameters of the forecasting model for both time series. The values of

the trend and detail components at the subsequent time slot are obtained, respectively. Finally, the number of tasks arriving

at the following time slot is obtained via wavelet reconstruction. 

To understand the characteristics of tasks, we investigated the workload traces in Google production compute clusters

in May 2011, and found that they are highly non-linear, non-stationary with significant noise interference. The traces were

collected from an 12.5k-machine cell over 29 days, resulting in a total of 25,462,157 tasks. Each task has an attribute indi-

cating its importance, and Google clusters divide all tasks into different levels. A higher level implies a more important task.

Twelve attributes were studied dividing into three groups: gratis (0–1), other (2–8), and production (9–11) [28] . Accordingly,

we divided all tasks into three types, and obtained the number of arriving tasks of each type. We then divided 29 days into

8352 5-min time slots, and counted the aggregated arriving rates of three types of tasks as shown in Fig. 2 . As explained in

Section 4 , we adopted data in the first 25 days for training, and used the data in the last 4 days for testing. 

The workload time series is highly non-stationary thus it is difficult to realize accurate forecasting. Therefore, before

constructing a workload forecasting method, the workload time series needs to be stabilized. Typically, a stationary time

series means that its mean and variance are stable around a constant. As shown in Fig. 2 , however, the number of tasks

varies significantly. It is hard to extract features in such a volatile workload because of the dramatic changes. Thus, we

decided to standardize the workload to decrease the fluctuation range, which will also clarify its features and ease their
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Fig. 3. Aggregated task arriving rates of different types (z-score). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

extraction. We first performed the z-score (zero-mean) normalization on the workload to reduce its standard deviation. As

shown in Fig. 3 , the aggregated task arriving rates of different types become more stable. Here, the aggregated task arriving

rates refer to the sum of the number of tasks per minute. 

3.1. Savitzky-Golay filter 

The non-stationary workload time series was further smoothed to remove outliers and noises. Savitzky-Golay filter [19] is

a data smoothing method known for its least square polynomial smoothing. It can eliminate noises while preserving the

peak and the width of the signal. In workload collections or transmissions, some data may be abnormal or lost, which may

result in interference data. To restore the objective authenticity of data, we experimented three methods, namely, average

filter, median filter, and Savitzky-Golay filter to smooth the original workload. We found that the Savitzky-Golay filter with

a window size of 5 achieves the best performance. 

A workload time series is described as: 

X = { x 1 , x 2 , · · · , x t } , t ∈ N 

+ , (1)

where X is the workload, and N 

+ = { 1 , 2 , . . . } . x t is the number of tasks at time slot t . Y k (k ∈ [ m + 1 , t −m ]) is a subsequence of

X , and its size is 2 m + 1. Y k is obtained as: 

Y k = { x k −m 

, · · · , x k , · · · , x k + m 

} , k ∈ [ m + 1 , t −m ] . (2)

A set of ( 2 m + 1 ) consecutive values were used in the determination of the best mean square fit through these values of

a polynomial of degree ϖ ( ϖ less than 2 m + 1 ). The coefficients of a polynomial are obtained as: 

p(n ) = 

� ∑ 

r=0 

a r n 

r , n ∈ [ −m, m ] . (3) 

Note that, the value of n ranges from −m to m , and that n = 0 at the central point of the set of 2 m + 1 values. Hence,

the least squares criterion requires that the sum of the squares of the differences can be a minimum between the observed

values x k + n , and the calculated values p ( n ) over the interval being considered. We obtain 

E = 

m ∑ 

n = −m 

(p(n ) − x k + n ) 
2 = 

m ∑ 

n = −m 

( 

� ∑ 

r=0 

a r n 

r − x k + n 

) 2 

. (4) 

Thus, the central point of the fitted polynomial is taken as the smoothed data point. 

3.2. Augmented Dickey-Fuller test 

Augmented Dickey-Fuller (ADF) [16] test is widely adopted to test whether a sequence is stationary. It can evaluate the

stationarity of a high-order autoregressive process, by judging whether a unit root exists in a sequence. If there is no unit

root, the sequence is considered stationary; otherwise, it is not. We applied the ADF unit root test to Google cluster-usage

traces, and the result is summarized in Table 1 . It is observed that the p value is less than the significant level of 0.01, so the

data can be considered stationary. Besides, the value of white noise is zero. Therefore, the smoothed workload time series

has non-white noise, and can be viewed as stationary and predictable. 
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Table 1 

Result of ADF unit root test. 

Type Value 

ADF -9.18045751 

p value 2.25931e-15 

Critical value (10%) -2.56695506 

Critical value (5%) -2.86188766 

Critical value (1%) -3.43113669 

White noise 0 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

4. Workload forecasting approach 

4.1. Wavelet decomposition 

After data preprocessing, we study how to obtain the trend and detail components for different workload time series.

Wavelet decomposition is widely adopted to analyze non-stationary and nonlinear signals, since it can reduce non-stationary

characteristics of a series and improve the forecasting accuracy. Besides, wavelets can capture the details in data at differ-

ent scales of resolutions. There are many wavelet algorithms, e.g., Morlet, Mexican Hat and Daubechies wavelets. They can

achieve better resolution for a smooth time series. However, they are more time-consuming to calculate than the Haar

wavelet. Compared to them, the Haar wavelet requires only additions, instead of miltiplications. Besides, the Haar matrix

contains many zero-value elements and therefore its computation time is limited. In addition, it can be used to analyze

localized features of a workload time series. Thus, in our work, Haar wavelet decomposition [17] is adopted to extract the

characteristics of workload time series. 

For a sequence with 2 n numbers, every two adjacent numbers are arranged into a group. Then, the sequence is regarded

as a new one with 2 n −1 groups. We calculate the difference and the sum of two values in each group separately, and obtain

two new sequences. Such a process is called one stage of wavelet transformation. The process is repeated recursively, pairing

up the sums to prove the next scale and leading to 2 n −1 differences and a final sum. The mother wavelet of a Haar wavelet

is obtained as: 

�(γ ) = 

{ 

1 0 ≤ γ ≤ 1 / 2 

−1 1 / 2 ≤ γ ≤ 1 

0 otherwise, 

(5)

where γ is the support domain of a Haar wavelet. The scaling equation is obtained as: 

θ (γ ) = 

{
1 0 ≤ γ ≤ 1 

0 otherwise. 
(6)

For a Haar wavelet, there are Haar matrices. In our work, a Haar matrix � is obtained as: 

� = 

[
1 1 

1 −1 

]
. (7)

With a Haar matrix, we can transform any sequence ( x 1 , x 2 , x 3 , x 4 , ..., x 2 t , x 2 t+1 ) of equal length into a sequence of vectors

(( x 1 , x 2 ), ( x 3 , x 4 ),..., ( x 2 t , x 2 t+1 )). The sum s and difference d of each vector are calculated, and the result (( s 1 , d 1 ), ( s 2 , d 2 ),...,

( s t , d t )) is further processed by the Haar-wavelet transformation. 

In our work, we performed one-stage Haar-wavelet decomposition on the time series and obtained two new sequences

that reflect different features of the original workload. The first sequence reflects the trend characteristics of the original

workload. It treats two successive data as a whole and reflects the overall change characteristics. In the second sequence,

the details of the original workload are recorded to calculate the changes between adjacent data. Thus, we obtain change

and detail trends of the original workload. 

4.2. SCN-based data modeling techniques 

In [24] , Wang and Li propose a learner model, which is generated incrementally with stochastic configuration networks

(SCNs). In our work, we adopt SCNs to construct randomized learner models under a supervised mechanism. Input weights

and biases of hidden nodes are randomly assigned in accordance with a supervised mechanism, and output weights are

analytically evaluated in a constructive manner. To avoid slow convergence rate in the constructive process, we adopted a

calculation method for output weights according to Theorem 7 in [24] . It is demonstrated that the resulting randomized

learner models are universal approximators through an SC algorithm, which is obtained as below: 

• Configuration of Hidden Parameters : Randomly assign input weights and biases to meet 

〈 e ∗L −1 ,q , g L 〉 2 ≥ b 2 g δ
∗
L,q , (8)
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Fig. 4. Changes of mean and variance. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

where L = { 1 , 2 , . . . } , q ∈ { 1 , 2 , . . . , u } , e L −1 ,q is the current residual error, L is the number of hidden nodes, g L is the random

basis function, and ∀ g ∈ �, 0 < ‖ g ‖ < b g for some b g ∈ R 

+ . It is assumed that span( �) is dense in an L 2 space, and a

non-negative real number sequence { μL } with lim L → + ∞ 

μL = 0 and μL ≤ (1 − r) (0 < r < 1) . δ∗
L 

= 

∑ u 
q =1 δ

∗
L,q 

and δ∗
L,q 

=
(1 − r − μL ) ‖ e ∗L −1 ,q ‖ 2 . Then, we generate a new hidden node and add it to the current model. 

• Evaluation of Output Weights : Selectively determine output weights of the current model, and they are obtained as: 

[ β∗
1 , β

∗
2 , . . . , β

∗
L ] = arg min 

β

∥∥∥∥∥ f −
L ∑ 

j=1 

β j g j 

∥∥∥∥∥. (9) 

Then, we have lim L → + ∞ 

‖ f − f ∗
L 

‖ = 0 . In the training process, our work adopts a method similar to the SC-III Algorithm

in [24] . 

The parameters of SCN are described as: 

• L max is the number of maximum hidden nodes. 

• T max is the number of maximum random configurations. 

• ε is the expected error tolerance. 

• The scope control set ϒ := { λ1 : �λ: λmax } plays an important role in setting ranges of random parameters including

weight ω L and bias b L . 

• r is the learning parameter. 

• np is the number of nodes added into each loop of the network. 

SC algorithms quickly rebuild a learner model when it is over-fitting in training data, instead of reproducing a new

learner model or keeping all weights in each iteration for model retrieval. It provides more confidence and high flexibility

to users. After the above steps, a forecasting method is obtained. Then, the one-step forecasting of the workload time series

is realized. It is worth noting that it is easy to implement the proposed method in real-life Geo-2DCs once previous workload

time series is collected and become available at current time slot. Specifically, the Savitzky-Golay filter is adopted to smooth

workload time series that is further decomposed into trend and detail components via wavelet decomposition. Finally, SGW-

SCN is established to obtain optimal parameter setting in the forecasting models. The predicted results are reconstructed via

wavelet reduction to obtain the number of arriving tasks in current time slot. 

5. Performance evaluation 

5.1. Data preprocessing 

Fig. 4 shows the changes of mean and variance of the original workload time series. As shown in Fig. 4 , the values of

mean and variance both change greatly. Besides, neither of them stays stable abound a constant, and it is clear that the

workload time series does not meet the stationarity constraint. 
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Table 2 

M SE with different window sizes. 

Size \ M SE MM Filter MA Filter SG Filter 

3 0.1137 0.1434 0.2278 

5 0.1144 0.1234 0.0638 

7 0.1140 0.1480 0.0902 

9 0.1138 0.1542 0.1219 

Table 3 

M SE of four sequences. 

Group \ M SE Sample A Sample B Sample C 

Original 0.2664 0.1878 0.1412 

MA Filter 0.1234 0.0984 0.0827 

MM Filter 0.1144 0.0881 0.0664 

SG Filter 0.0638 0.0446 0.0404 
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Fig. 5. Mean and variance changes of smoothed sequence. 

 

 

 

 

 

 

 

 

 

 

 

We further evaluated the performance of the Savitzky-Golay (SG) filter by comparing it with two typical filter methods

including the Moving Median (MM) filter and the Moving Average (MA) filter. After extensive tests, we obtained the best

filter effect when the window size is 5. Table 2 shows the Mean Squared Error ( M SE ) with different window sizes. M SE [18] is

defined as: 

M SE = 

ϒ∑ 

ν=1 

( ̂  y ν − y ν ) 
2 

ϒ
, (10)

where y ν and ̂

 y ν represent outputs of normalized and predicted data at time slot ν , respectively, and ϒ is the total number

of observations in the dataset. 

We further evaluated the forecasting model with three different sets of test data (samples A, B, and C). Table 3 shows M SE

of four sequences including the original, MA filter, MM filter, and SG filter data. It is clearly observed that the Savitzky-Golay

filter achieves higher forecasting accuracy than its two peers. Based on the smoothed sequence, the ADF test was adopted

to determine whether it is stationary. A differential operation was conducted on non-stationary sequences, and the ADF test

was performed repeatedly until the sequence meets the stationarity condition. 

Afterwards, we obtained a stationary sequence smoothed by the Savitzky-Golay filter. Fig. 5 shows its mean and variance

trends. It is shown that the mean is stable at 0, and the variance is also stable at a constant. This means that the influence

of extrema on the stationarity of the sequence is eliminated. 
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Fig. 6. Trend and detail components with wavelet decomposition. 

Table 4 

The training process of L max . 

L max M SE R 2 Training time (s) 

10 0.1057 0.5678 0.74 

20 0.0901 0.6316 1.53 

30 0.0798 0.6738 2.46 

40 0.0661 0.7298 3.45 

50 0.0681 0.7217 4.86 

60 0.0635 0.7404 6.72 

70 0.0627 0.7438 7.59 

80 0.0647 0.7355 14.25 

90 0.0673 0.7248 14.42 

100 0.0664 0.7284 27.64 

150 0.0688 0.7188 39.56 

200 0.0719 0.7062 94.09 

Table 5 

The training process of T max . 

T max M SE R 2 Training time (s) 

1 0.0633 0.6411 7.05 

5 0.0633 0.6982 12.41 

10 0.0628 0.7432 8.06 

20 0.0635 0.7404 8.59 

50 0.0647 0.7356 11.28 

100 0.0627 0.7438 7.59 

150 0.0646 0.7360 22.07 

200 0.0631 0.7422 21.34 

300 0.0630 0.7424 28.52 

500 0.0623 0.7451 45.94 

 

 

 

 

 

 

 

We further applied wavelet decomposition to the workload time series. The order of Haar wavelet was set to 1. For

example, we gained its trend and detail components with wavelet decomposition for workload time series in the 25th day,

and the result is shown in Fig. 6 . 

Furthermore, SCN was adopted to build the forecasting model. In our work, we adopted the parameter setting of SCNs

for workload time series. In the Savitzky-Golay filter, m = 2 and � = 3 . We obtained the arriving rate of smoothed tasks of

each type in 29 days. We further gave the training process of SCN parameters with Google workload dataset in days 1–25.

The test dataset was used in days 26–29. SCN parameters were set as: 

• In the training process of SCN, the number of hidden layer nodes is increased gradually. When it increases to L max or

e L −1 ,q is less than the predefined expected error tolerance ε, the training is terminated. The training process of L max is

shown in Table 4 and it is shown that L max = 70 achieves the best performance. 

• The training process of T max is shown in Table 5 and it is shown that T max = 100 achieves the best performance. 

• The error tolerance is set to 0.0 0 0 01, i.e., ε = 0 . 0 0 0 01 . 

• λ∈ {0.5, 1, 5, 10, 30, 50, 100, 150, 200, 250}. 
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Table 6 

Performance comparison of different methods for type-1 application. 

Methods M SE R 2 Training 

Original Smoothed Original Smoothed time (s) 

ARIMA 0.0655 N/A 0.0657 N/A 62.44 

BPNN 0.0838 N/A -0.1945 N/A 80.10 

SCN 0.0526 N/A 0.2507 N/A 7.30 

WARIMA 0.0686 N/A 0.0223 N/A 91.10 

WBPNN 0.0768 N/A -0.0940 N/A 183.52 

WSCN 0.0750 N/A -0.0690 N/A 15.75 

SG-ARIMA 0.0203 0.0068 0.7109 0.9326 44.32 

SG-BPNN 0.0216 0.0089 0.6921 0.9306 75.50 

SG-SCN 0.0187 0.0072 0.7333 0.7377 13.21 

SGW-ARIMA 0.0169 0.0077 0.7589 0.8364 94.33 

SGW-BPNN 0.0231 0.0073 0.6705 0.9702 172.89 

SGW-SCN 0.0166 0.0058 0.7627 0.8760 14.04 

Table 7 

Performance comparison of different methods for type-2 application. 

Methods M SE R 2 Training 

Original Smoothed Original Smoothed time (s) 

ARIMA 1.5196 N/A 0.1383 N/A 73.16 

BPNN 2.4818 N/A -0.4073 N/A 90.25 

SCN 1.4750 N/A 0.1636 N/A 7.28 

WARIMA 1.6491 N/A 0.0649 N/A 106.25 

WBPNN 1.7197 N/A 0.0249 N/A 173.60 

WSCN 1.7049 N/A 0.0332 N/A 14.58 

SG-ARIMA 0.5187 0.3075 0.7059 0.7566 58.78 

SG-BPNN 0.7504 0.5406 0.5745 0.5722 87.45 

SG-SCN 0.5657 0.3487 0.6792 0.7240 13.53 

SGW-ARIMA 0.4609 0.1961 0.7654 0.8465 127.32 

SGW-BPNN 0.5293 0.2760 0.6998 0.7816 180.63 

SGW-SCN 0.4130 0.1928 0.7658 0.8475 14.16 

Table 8 

Performance comparison of different methods for type-3 application. 

Methods M SE R 2 Training 

Original Smoothed Original Smoothed time (s) 

ARIMA 0.0252 N/A -0.3449 N/A 48.34 

BPNN 0.0310 N/A -0.6538 N/A 78.05 

SCN 0.0264 N/A -0.4096 N/A -0.80 

WARIMA 0.0227 N/A -0.2114 N/A 110.02 

WBPNN 0.0280 N/A -0.4972 N/A 158.35 

WSCN 0.0235 N/A -0.2535 N/A 14.06 

SG-ARIMA 0.0043 0.0050 0.7692 0.5351 54.19 

SG-BPNN 0.0070 0.0068 0.6261 0.3736 76.75 

SG-SCN 0.0049 0.0055 0.7370 0.4922 12.83 

SGW-ARIMA 0.0079 0.0028 0.6261 0.7356 112.38 

SGW-BPNN 0.0080 0.0037 0.5744 0.6628 161.33 

SGW-SCN 0.0071 0.0024 0.6803 0.7756 13.79 

 

• r ∈ {0.9, 0.99, 0.999, 0.9999, 0.99999, 0.999999}. 

• The number of hidden layer nodes is set to 70 and np = 1 . 

In these experiments, we adopted a control variable method to determine the optimal value of a specific variable. Then,

the number of tasks arriving at the next time slot was obtained by wavelet reconstruction. 
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Fig. 7. Forecasting results of three types of task arriving rates. 
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Table 9 

Robustness analysis of SCN for the training process. 

Length of input L max T max M SE R 2 

10 70 100 0.0834 0.6589 

20 70 100 0.0742 0.6966 

30 70 100 0.0701 0.7135 

40 70 100 0.0680 0.7221 

50 70 100 0.0674 0.7244 

70 70 100 0.0627 0.7438 

70 100 100 0.0664 0.7284 

70 150 100 0.0688 0.7188 

70 200 100 0.0719 0.7062 

70 300 100 0.0739 0.6979 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

5.2. Evaluation criteria 

We evaluated the accuracy of the forecasting models generated from different learning algorithms with M SE [18] , and R 2

[2] that are measures of the goodness-of-fit of a forecasting model: 

R 

2 = 

ϒ∑ 

ν=1 

( ̂  y ν − ȳ ) 2 

ϒ∑ 

ν=1 

(y ν − ȳ ) 2 
, (11)

where ȳ = 

1 
ϒ

∑ ϒ
ν=1 y ν , y ν denotes the output of original normalized data and ̂

 y ν denotes the predicted output, and ϒ denotes

the number of observations. R 2 describes the fitting ability of a model, and its value falls within the range [0, 1]. R 2 = 1 . 0

indicates a perfect forecasting model. Tables 6–8 show their performance comparison of different models from two aspects.

Firstly, we compared the predicted results with the original data that is not smoothed by Savitzky-Golay filter. The results

are labeled as Original. Secondly, we compared the predicted results with the data smoothed by the Savitzky-Golay filter.

The results are labeled as Smoothed. 

Tables 6–8 show that SGW-SCN achieves better forecasting accuracy with shorter training time than other methods.

Besides, we applied the Savitzky-Golay filter method to the original workload data series in the performance comparison of

the last six methods. However, we did not adopt the Savitzky-Golay filter method in the first six methods. Therefore, we did

not show the performance comparison of the smoothed workload data series in the first six methods in Tables 6–8 . 

Furthermore, we conducted the robustness analysis for SGW-SCN through the adjustment of system parameters. Table 9

shows that more accurate forecasting results for the original workload time series are achieved when L max and T max are set

to 70 and 100, respectively. In addition, the lengths of input vectors of BPNN and SCN are both set to 70. 

5.3. Forecasting result 

We further verified whether the proposed model can predict different types of tasks. Fig. 7 shows the forecasting results

of three types of task arriving rates. Based on the forecasting results in Fig. 7 and the performance comparison in Tables 6–8 ,

we can draw the following conclusions: 

• A more accurate forecasting model is established by the data smoothed with the Savitzky-Golay filter. 

• Wavelet decomposition improves the forecasting accuracy of Google workload time series. 

• SGW-SCN achieves better forecasting performance than other typical methods when they are applied to the same work-

load dataset. 

6. Conclusions 

It is critically important for geo-distributed cloud data centers (Geo-2DCs) to improve their energy efficiency and to

reduce energy consumption. Accurate forecasting of arriving tasks plays an important role in achieving so since it can be

used to achieve the optimal resource provisioning for tasks. However, it is difficult to accurately predict because of the

irregularity and complexity of the workload time series. This paper presents an integrated forecasting method resulting

from a novel combination of S avitzky- G olay filter, W avelet decomposition (SGW) techniques and S tochastic C onfiguration

N etworks (SCNs). SGW-SCN is established to predict arriving tasks for Geo-2DCs at the following time slot. Our simulation

results based on real-life workload have demonstrated that our integrated model achieves more accurate forecasting results

and faster learning speed than state-of-the-art forecasting methods. In the future work, we plan to apply deep learning

methods to further improve the forecasting accuracy of large-scale workload. In addition, we plan to analyze spatial and

temporal characteristics of workload, and use them to further improve the forecasting accuracy. 
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