
A-HSG: Neural Attentive Service Recommendation based on High-order Social
Graph

Chunyu Wei

Beijing National Research
Center for Information
Science and Technology

(BNRist)
Department of Automation

Tsinghua University
Beijing 100084, China

cy-wei19@mails.tsinghua.edu.cn

Yushun Fan∗

Beijing National Research
Center for Information
Science and Technology

(BNRist)
Department of Automation

Tsinghua University
Beijing 100084, China

fanyus@tsinghua.edu.cn

Jia Zhang

Department of Electrical
and Computer Engineering
Carnegie Mellon University

Silicon Valley
Moffett Field

CA 94035, USA
jia.zhang@sv.cmu.edu

Haozhe Lin

Beijing National Research
Center for Information
Science and Technology

(BNRist)
Department of Automation

Tsinghua University
Beijing 100084, China

linhz16@mails.tsinghua.edu.cn

Abstract—With the widespread application of Service-
Oriented Architecture, the quantity of web services keeps
increasing rapidly over the Internet. Providing personalized
service recommendation to users remains to be an important
research topic. Recent studies have proved social connections
helpful for modeling users’ potential preference thus improving
the performance of service recommendation. To date, however,
one special type of social relation, called high-order social
relation, has not been thoroughly studied. In reality, a user’s
preference may not only be affected by the user’s direct
neighbors, but also indirect ones. Furthermore, such influences
may not remain static in the context of various attentions.
To tackle such issues, we have developed a novel neural
Attentive network based on High-order Social Graph (A-HSG)
toward offering social-aware service recommendation. First,
a graph convolution-based, multi-hop propagation module is
devised to extract the high-order similarity signals from users’
local social networks, and inject them into the users’ general
representations. Second, a neighbor-level attention module is
constructed to adaptively select informative neighbors to model
the users’ specific preference. Extensive experiments over a
real-life service dataset show that A-HSG outperforms baseline
methods in terms of prediction accuracy.

Keywords-Service Recommendation; Social Network; Atten-
tion; Graph Convolution; High-order Connectivity

I. INTRODUCTION

With the rapid advancement of the Service Oriented

Computing (SOC) and Cloud Computing techniques [1],

numerous services have been published onto the Internet.

Such services offer users a broad range of choices for

fulfilling their demands without building everything from

scratch. In this context, service recommendation technology

is widely recognized as an important instrument to help

users select suitable web services among vast amounts

of candidates. In recent years, due to the prosperity of

social media, increasingly more service-oriented systems

have seamlessly integrated social features, such as Epinions,
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Yelp, Steam and Amazon. Meanwhile, traditional service

repositories, such as ProgrammableWeb, also allow users

to join communities and establish friendships with other

users [2]. On these service platforms, users usually share

their preference of services with their friends. For example,

on the largest game service platform Steam, users can post

comments about the game services on their profile pages or

share game experiences with their friends through instant

messages, which can potentially affect the game service

selection of their friends. Thus, to accurately recommend

web services to users, not only their historical preference

should be considered, the social connections between the

users and their friends also demand concerns.

Figure 1. An illustration of users’ high-order social relation. The
left part shows the high-order similarity among users in service system,
in which the profiles of user B and C indicate similar general preference
between them. The right part describes the high-order difference existing in
the service system. When interacting with Map service, the user’s specific
preference is getting influence of different intensities from its neighbors.

However, integrating social information into service rec-

ommendation is not a trivial task, especially when it comes

to high-order influence, because users’ preference may not
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only be influenced by their own friends, but also result from

their friends’ social network. According to the social correla-

tion theory [3], we adopt the term high-order social relation
to describe such a common phenomenon in most service

systems, which embodies two concepts. Figure 1 shows an

example on a service platform to illustrate the definitions

of these two concepts and how they may influence users’

preference:

• High-order social similarity (general preference).
High-order social similarity refers to a common case

when a user and the friends of his friends tend to share

similar general preference. For example, in the left part

of Figure 1, User A loves to stay indoor playing games

and watching tourism videos, which makes him become

a social friend of two vloggers B and C on a service

platform. So intuitively users B and C may share many

common characters, which leads to the similar general

preference for them. For example, both users B and C

will use map service when travelling. However, such

relationship cannot be reflected by only considering

the first-order social relation. Therefore, when learn-

ing a user’s representation, considering the similarity

between the user and his high-order neighbors (like the

similarity between B and C) may lead to significant

gain in the accuracy of the user’s representation.

• High-order social difference (specific preference).
High-order social difference reflects users’ specific

preference influenced diversely by the users in their

social networks. In other words, for a specific re-

quirement, different users in the social network may

contribute different influence intensities. The right part

in Figure 1 shows an example when choosing a map

service, a user tends to follow those neighbors who

love traveling. This means that when modeling a user’s

specific preference on a service, it is necessary to treat

the influence of the user’s neighbors differently, which

helps to distill significant preference signal towards the

specific service among all the user’s neighbors.

Considering these two unique features, we believe the

social connections among users are beneficial to improve

the quality of service recommendation.

To the best of our knowledge, there is not yet a rec-

ommendation approach considering the high-order social

relation in web service domain. However, we notice that

in some advanced machine learning technology, the social

relation has been partially utilized to grain strides. For

example, SBPR [4] and SocialMF [5] utilize users’ social

connections to improve the recommendation accuracy. But

they do not consider both the similarity and the difference

of the high-order social relation, which might easily lead to

incompleteness of the representation but still provide good

bases. Some methods like Deepinf [6] explicitly encode the

high-order social similarity but with the social influence set

equal or relied on predefined static functions. Some other

methods like SAMN [7] only model the social difference

of direct social friends, failing to exploit the high-order

neighbors and integrate their features. Therefore, the social

relation in service ecosystem still cannot be fully exploited.

In this work, we propose a neural Attentive network

based on High-order Social Graph (A-HSG), which utilizes

the recent advances in graph convolution [8][9] and neural

attention mechanism [7] to simultaneously model both the

general preference and the specific preference. Applying

the idea of Graph Neural Network (GNN), we first devise

an social embedding propagation layer, which refines

the user’s representation by aggregating the embeddings

of its connected friends. By stacking multiple embedding

propagation layers, the model is able to extract the high-

order similarity signals from the social network and encode

them into the user’s general preference representation. After-

wards, to obtain the user’s specific preference towards some

service, a neighbor-level attention module places higher

weights on the representations of the neighbors sharing

similar preference on the same service, and then aggregates

their weighted sum with the user’s representation to get the

final representation. Finally, a linear interaction between the

user’s final representation and the service embedding derives

a ranking score. Over the real-life Steam game service

dataset, our extensive experimental results show that our

A-HSG model consistently outperforms the state-of-the-art

methods in terms of prediction accuracy.

Our main contributions are three-fold:

1) We propose A-HSG, a novel service recommendation

framework, which highlights the noteworthy signifi-

cance of the high-order social relation in most service

systems carrying both high-order social similarity
and high-order social difference.

2) We employ a multi-hop propagation module to ex-

plicitly integrate the high-order social similarity into

a user’s representation, which enhances the capability

of encoding his general preference.

3) We develop a neighbor-level attention module to adap-

tively measure the dynamic social influence strength

in the context of different services, which enriches a

user’s representation with the specific preference.

The remainder of this paper is organized as follows. Sec-

tions II, III, and IV introduces preliminaries, describes our

model framework and discusses experiments respectively.

Section V compares with related work, and Section VI draws

conclusions.

II. PRELIMINARIES

A. Notation Definitions

In a service system, we use U = {u1, u2, . . . , uM} and

S = {s1, s2, . . . , sN} to denote the set of users and the set

of services, respectively. Let G = (U,E) represent a static
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Figure 2. Model Framework. Prior to the model framework, our model firstly samples important neighbors from the social network G to form a
sub-network for every user in the batch. Following the sampling, the data process framework comprises two main components: (1) a multi-hop propagation
module to enforce the sampled users’ embeddings to capture the high-order social signal; and (2) a neighbor-level attention module to assign non-uniform
weights to the user and his sampled neighbors.

social network, where E is the edge set in a graph that

denotes the social interactions between the users, such as

friends in an undirected social network and followers in a

directed social network. Note that we do not focus on the dif-

ferences between these two types of networks in this project.

For each user ui, its neighbors are denoted as ui1, ui2, ...,
with whom user ui is directly or indirectly connected. We

also define F(i) for each user ui, which denotes the set of

users with whom ui is directly connected. According to the

graph theory, D(i) denotes the “degree” of user ui in a social

graph, which is calculated by D(i) = |F(i)| representing the

number of users in the set F(i). To simplify the notation,

we use the above notations to denote the same terms in the

local social interaction graphs in the remainder of this paper.

B. Construction of local sub-network

For a specific user ui, to represent his social features,

the best way is to extract his sub-network from the social

network G. So we preform Breadth-First-Search (BFS)

starting from the user ui to sample a fixed number of

neighbors N(i) = {ui1, ui2, ...uiL} with a fixed length L,

thus ensuring that the most influential neighbors are included

in the sample list. For the ease of notation, we denote the

user ui itself as ui0 and also put it in the sample list. Thus

the final sampled users in the local sub-network become

N(i) = {ui0, ui1, ui2, ...uiL}.

III. MODEL FRAMEWORK

In this section, we will first introduce our A-HSG frame-

work, then discuss its optimization. As illustrated in Figure

2, the architecture of A-HSG contains two consecutive

components: a social embedding propagation module, and

a neighbor-level attention module. The input of the A-HSG

is a social interaction network, divided into a batch of

local sub-networks through the sample process. The social

embedding propagation module learns embedding matrices

for users, and stacks multiple propagation layers to learn

high-order social similarity signals and merge them into the

user’s general preference. The attention module learns high-

order social difference signals and merge them into the user’s

specific preference. The final output of A-HSG is the learned

user preference representation.

A. Social Embedding Propagation Module
Following the recent emergence of representation learning

technique, we encode the user ui and the target service sj
into a low-dimension latent space with embedding vectors

eui
∈ R

d0 and es ∈ R
d0 , where d0 is the initial embedding

size. The embedding layer learns an embedding matrix E ∈
R

(L+1)×d0 as a look-up table, with each row corresponding

to the representation of a user in the sample list:

E = [eui0 , eui1 , eui2 , ...euiL
], (1)

where euik
represents the embedding of the user uik ∈ N(i).

According to the social correlation theory [3], users’ gen-

eral preference is influenced by their high-order neighbors.

We thus build a multi-hop propagation module to model

the social information flow. Figure 3 shows a two-hop

propagation process. Here we will first show the information

propagation of one single user in a sub-network. Then we

extend the propagation to a matrix-form, which can operate

layer-wise propagation over the entire sub-network. Finally,

we generalize the layer-wise propagation to multiple stacked

layers.
1) Propagation Process of a single user: For a user ui

and one of his connected friends uk, we define the social
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1st-hop

2nd-hop

Figure 3. Illustration of second-order embedding propagation for user
ui0. Each node in the figure denotes the corresponding embedding of each
user. After the 1st-hop propagation layer, ui0 and its neighbors integrate
the social similarity of their 1st-order neighbors into their embedding. Then
after the 2nd-hop propagation layer, ui0 again integrates its neighbors’ new
embeddings and thus indirectly encodes the high-order social similarity
signals. By doing so, the 1st and the 2nd order social information diffuses
to ui0 during the corresponding embedding propagation operation. We
concatenate all the embeddings of each hop to get the final representation.

information flow from uk to ui as:

mui←uk
= f(euk

, eui , pik), (2)

where puk is the decay factor of the propagation. Intuitively,

the more connected friends eui or euk
has, the smaller

puk should be, since they will have less influence on their

every single friend. Applying the concept of neural graph

collaborative filtering [9], we set f(·) as:

mui←uk
=

1√|D(i)||D(k)| (Wselfeuk
+

Winter(eui
� euk

)),

(3)

where 1√
|D(i)||D(k)| is the coefficient puk, Wself ,Winter ∈

R
d0×d1 are independent weight matrices of this propagation

process, and d1 is the transformation size. We use eui
�euk

to represent the interaction between both ui and uk, where

� denotes the element-wise product. This operation ensures

that the connected friends with higher similarity to user ui

will pass more information to ui.

By exploiting the social information flows from user ui’s

all connected friends, we can update the representation of

ui after one round of propagation process as:

e(1)ui
= ReLU(mui←ui

+
∑

uk∈F′(i)
mui←uk

), (4)

where ReLU is a nonlinear activation function. In order

to keep the original information of ui, we insert the term

mui←ui
in the function, which can be represented as:

mui←ui
= Wselfeui

. (5)

Here Wself ∈ R
d0×d1 shares the same values as the weight

matrix in Equation(3).

2) Matrix form of the Propagation Process: To carry

out the propagation process for all users in the network, we

transform Equation (3), (4), and (5) into a matrix form as:

E(1) = ReLU((L+ I)EWself + LE�EWinter) (6)

where E(1) is the propagation result of the initial embedding

matrix E, and L is the Laplacian matrix of the sub-graph,

which can be calculated as follows:

L = D−
1
2R(i)D−

1
2 , (7)

where D is the diagonal degree matrix with each of its

diagonal elements Dii = D(i). The diagonal element

Lii = 0 and the off-diagonal element Lik = 1√
|D(i)||D(k)| .

By implementing the matrix form, we can not only

update all the user representations in the same sub-network

simultaneously, but also facilitate the batch calculation. Fur-

thermore, it enables us to easily stack multiple propagation

processes to extract the high-order social signals, which will

be discussed in the next part.

3) Multi-hop Propagation: By stacking more propaga-

tion layers, the module can explore the high-order social

similarity information. In the l-th step of propagation, Equa-

tion (6) can be reformulated as:

E(l) =ReLU((L+ I)E(l−1)W(l)
self+

LE(l−1) �E(l−1)W(l)
inter),

(8)

where E(l) ∈ R
(L+1)×dl are the representations of the users

in N(i) after l times of propagation steps, and E(l−1) is

the representation from previous steps. W
(l)
self ,W

(l)
inter ∈

R
dl−1×dl are the transformation matrices for the l-th step.

We assign different weight matrices for the transformation

in each step, and thus the dimension of E(l) is changed after

every propagation. E(0) is set as E in Equation (1).

After propagating l times, we receive l+1 representations

for each user in N(i). According to above analysis, those

representations focus on diverse social information flows

and manifold preference. Thus to construct a comprehensive

embedding, we add a hidden layer on the concatenated

embedding matrix:

E∗ = Concat(E,E1,E2, ...,El)Wr

= [e∗ui0
, e∗ui1

, e∗ui2
, ...e∗uiL

], (9)

where Wr ∈ R
(d0+d1+...+dl)×d0 is the transformation

matrix regulating the final size, and e∗uik
denotes the final

embedding of user uik in N(i) and it is also one row of the

matrix E∗.

B. Neighbor-level Attention Mechanism

The main purpose of neighbor-level attention is to assign

different weights to a user’s sample neighbors when the user
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is interacting with a specific service and thus help model the

specific preference. First, we use the element-wise product

of the final user embedding and the service embedding to

represent the “opinion” that the user has on the service:

oi = e∗i � q, (10)

where e∗i is the final representation of user i. Given the

opinion of the user and his neighbors, we implement a

concatenate operation to learn the joint opinion of the user

and each of his neighbors. Then a two-layer network is

applied to compute the attention weights α(j) (1 ≤ j ≤ L):

α∗(j) = hTReLU(WConcat(o0,oj) + b), (11)

where oj is the opinion of the j-th user in the sample set

(the 0-th one is the target user). Note that W ∈ R
2d0×d0 ,

hT are model parameters.

Afterwards, we normalize the neighbor-level attention

scores with a softmax function, which can make the attention

network a probabilistic interpretation:

α(j) =
exp(α∗(j))∑

1≤i≤L exp(α∗(i))
. (12)

Then the final representation of the user can be formulated

as:

Ui = e∗ui0
+

∑

1≤j≤L
α(j)e

∗
uij

, (13)

where Ui is final representation of user ui.

C. Learning

1) Prediction: After obtaining the representation of user

ui, we then apply the Matrix Factorization (MF) technique

to model the implicit feedback and rating prediction:

Ŷij = UT
i qj (14)

where Ŷij is the predicted score for the unused services,

which will then be ranked in descending order to provide

Top-K service recommendation list.

2) Optimization: The core of the optimization process is

to learn the relevance-based ranking of services. Existing

researches usually apply Bayesian Personalized Ranking

(BPR), which compares the score of the positive service

with several sampled services. However, in this case, we

found that BPR is unstable in optimization. Hidasi et al.

proposed Top1 [10], a regularized approximation of the

relative rank of the relevant item. For each positive user-

service pair < ui, sj >, we randomly sample a negative

service from the unobserved services of the user, which is

denoted as sk. The Top1 pairwise ranking loss is as follows:

LTOP1 =
∑

(i,j,k)∈D
σ(Ŷik − Ŷij) + σ(Ŷ2

ik) (15)

where σ(x) = 1
1+exp (−x) is the logistic sigmoid function

and D represents the set of pairwise training instances. The

second term of equation (15) is a regularization term.

IV. EXPERIMENTS

A. Experimental Settings

1) Dataset Description: Steam is a platform providing

game and software service, which includes services from

over 1,200 publishers and over 75 million active Steam

users. In addition to its service store, Steam provides numer-

ous social networking features such as profile pages, friends,

groups, instant messaging, and voice chats. According to [1]

and [11], the game service shows a high level of similarity to

web services with three unique features: (1) The friendship

connections are sparse compared to other social networks;

(2) There are long tail behaviors in their distributions; and

(3) Services on heterogeneous platforms are massive and

varied.

To test and verify our A-HSG, we randomly crawled 7,043

Steam accounts, along with the friendship lists, and a total

of 16,112 game services to construct a real-world dataset,

where the social network is built according to Section II.B.

Table I summarizes the numerical properties.

Table I
STATISTICS OF THE DATASETS

Item Number

User 7,043

Service 16,112

Invocations 6,700

Density(Invocations) 0.0059%

Social Interaction 8,509

Density(Social Interaction) 0.0172%

2) Evaluation Metrics: To evaluate the performance of

all algorithms, we adopted two popular metrics, namely

Normalized Discounted Cumulative Gain (NDCG) and Hit

Ratio (HR). The NDCG@K metric is position-aware, which

accounts for the position of the hits by assigning higher

scores to hits at top ranks. The HR@K metric measures

whether the test item is present on the recommendation list.

Both the adopted metrics can be formulated as follows:

NDCG@K =
1

RN

N∑

i=1

2reli−1

log2(1 + i)
(16)

HR@K =

∑K
i=1 reli
|ytestu | (17)

Where K is the size of the recommendation list, reli = 0 or

1 denotes whether the service at the rank i is in the test set,

and the RN term indicates the maximum possible cumulative

component through ideal ranking. |ytestu | is the number of

service used by the user u in the test set.

3) Baselines: To evaluate the performance of the Top-

K recommendation, we compared our A-HSG with the

following five baseline methods:
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• BPR [12]: This method optimizes the matrix factoriza-

tion (MF) model with the BPR objective function for

implicit feedback-based service recommendation.

• SBPR [4]: This is a ranking model assuming that users

tend to assign higher ranks to items their friends prefer.

• NCF [13]: This method is the state-of-the-art deep

learning based framework combining matrix factoriza-

tion (MF) with a multilayer perceptron model.

• SocialMF [5]: This is a classical model considering the

trust information and its propagation into the matrix

factorization model for recommender systems.

• SAMN [7]: This is a state-of-the-art deep learning

method, which unifies the strengths of memory net-

works and attention mechanisms to address the prob-

lems in social-aware recommendations.

Our method aims to model the social relationship in

the service recommendation. However, to the best of our

knowledge, few research has explored the effect of the social

influence in service recommendation. Thus we adjusted

many general social recommendation methods to compare

with our A-HSG on the Steam game service dataset.

Table II
OVERALL PERFORMANCE COMPARISON

HR@10 NDCG@10 NDCG@20
SocialMF 0.4360±0.0059 0.4138±0.0111 0.5575±0.0040

BPR 0.4706±0.0051 0.4360±0.0082 0.6262±0.0027

SBPR 0.4902±0.0070 0.4425±0.0085 0.6538±0.0038

NCF 0.5294±0.0016 0.4753±0.0053 0.6463±0

SAMN 0.5882±0.0086 0.5567±0.0100 0.6617±0.0027

A-HSG 0.6471±0.0066 0.6136±0.0086 0.7070±0.0030

4) Experiment Details: We implemented A-HSG on the

basis of Pytorch [14], a widely used Python library for neural

networks. We randomly split the dataset into training set

(70%), validation set(20%) and test set(10%). During the

tuning process, we found that 0.005 can be a good initial

learning rate with an embedding size of 64 respectively.

Borrowing the idea of autoencoder, the transformation size

sequence should be non-increasing. By shrinking the trans-

formation size, each propagation process can learn more ab-

stractive features. Empirically, we halved the transformation

size for each successive propagation layer.

B. Comparative Analysis on Overall Performance

The empirical results of our A-HSG and the baselines on

the Steam game service dataset are summarized in Table

II. We conducted one-sample t-tests and p − value < 0.05
indicates that the improvements of A-HSG over the strongest

baseline are statistically significant. From the results, we

drew the following conclusions:

• The methods integrating social information perform

better than the ones without it. For example, in Table

II for most metrics, SBPR shows a better performance

than BPR, while the state-of-the-art SAMN and our A-

HSG outperform BPR and NCF. The experiment results

provide trustworthy evidence for introducing the social

information into the service recommendation.

• We noticed that the methods assigning different weights

to different neighbors bear better performances than

those which do not. Compared to SBPR and SocialMF,

the performance of SAMN and A-HSG proves that at-

tention mechanisms on the friend level improve the user

representation learning. It might because the influence

strength of a user’s friends should be different.

• A-HSG consistently yields the best performance on

the Steam dataset, which improves over the strongest

baseline SAMN with respect to NDCG@10 by 9.54%.

In our model, we stack multiple propagation layers to

extract the high-order social similarity in an explicit

way, while the state-of-the-art SAMN only considers

the directed friends. This result strongly supports that

the high-order social similarity can improve the user

representation learning in the service ecosystem.

C. Effect of Hop time and Transformation Size

A-HSG-1 A-HSG-2 A-HSG-3 A-HSG-4

Hop Time

0.2

0.3

0.4

0.5

0.6

0.7

N
D
C
G
@
1
0

Transformation64

Transformation48

Transformation32

Transformation16

Figure 4. Performance comparison on models of different hop times
w.r.t. different transformation sizes of 1st propagation layer

Since the multi-hop propagation module plays a key role

in A-HSG, we varied the model depth and the size of

each layer to investigate how A-HSG benefits from multiple

propagation layers. HR and NDCG show similar patterns,

thus we focus our analysis on NDCG. The experiment results

are shown in Figure 4, wherein the term A-HSG-# indicates

the A-HSG method with # propagation layers. Since we set

the transformation size of each layer to reduce by half, in

Figure 4, we only display the transformation size of the first

propagation layer. From Figure 4 and Table II, we have the

following observations:

• The general trend shows that the increase of the

hop time can improve the service recommendation

performance. From Figure 4, we notice that under
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different transformation sizes, A-HSG-2 and A-HSG-

3 consistently show better performance than A-HSG-1.

Combining above-mentioned analysis in section IV-B,

we attribute this improvement to the increased level of

the ability to extract the high-order social similarity.

• When we added more propagation layers on A-HSG-

3, the NDCG@10 of the model started to decrease,

which might be caused in two aspects. First, too deep

architecture introduce noises into the learning process.

Second, the neighbors far away from the user have little

influence on the user. Thus the marginal improvement

brought by the far neighbors is insufficient to offset the

noises. When further stacking a propagation layer on

A-HSG-4, the model becomes extremely unstable due

to the gradient explosion. Stated thus, in most service

systems, three hops provide sufficient capacity to model

the complex general preference of users.

• Figure 4 portrays a steady improvement as the

1st-transformation size increases, where the 1st-

transformation size of around 48 shows peak perfor-

mance followed by a degradation due to overfitting.

At 1st-transformation size of 16 shows an unusual rise

in performance, which might be the contribution of

the layer-aggregation mechanism. Although each size

less than 16 seems unable to carry much information,

when concatenating all layers’ outputs together, the

final representation has a strong ability to encode the

social similarity of each order and thus improves the

general preference modeling.
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Figure 5. Performance of variants of A-HSG
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D. Effect of the Neighbor-level Attention

We further evaluated the key component of the model -

Neighbor-level Attention, by conducting experiments with

the following variants of A-HSG:

• A-HSG-S A variant model of A-HSG without ag-

gregating the neighbors’ representations with the final

representation of the user.

• A-HSG-A A variant model of A-HSG in which the

weights of the neighbors in Equation 13 are set equal.

Figure 5 shows the performances of A-HSG and its two

variants. Due to space limitation, we show only the results

of the NDCG@10 and HR@10 on our Steam dataset. From

Figure 5, two observations are made:

1) When the neighbor-level attention mechanism is ap-

plied, the performances achieve significant improve-

ment compared to A-HSG-S and the constant weight

method A-HSG-A. This may because the user repre-

sentation from the propagation module only explicitly

encodes the user’s general preference without con-

sidering the user’s specific preference towards the

target service. The result also shows that the attention

mechanism can learn an adaptive weight to make

sure that when interacting with different services, the

neighbors who share common preference can be more

prominent in the user’s final representation.

2) A-HSG-A performs the worst among the variant mod-

els since it does not consider the high-order social

difference. Even worse, by setting all weights equal

and then aggregating the weighted sum with the user’s

representation from the propagation module, it disturbs

the representation of the user’s general preference.

To better understand how attention mechanisms help treat

the influence intensities of neighbors in a user’s social net-

work, in Figure 6, we randomly select 39 neighbors of a user

(#6565) to see their contribution in his final representation,

when interacting with random service #52. We have the

following observations: (1) The attention weights of a user’s

neighbors are different. For example, the attention weights

of neighbors No.1 and No.32 are relatively high, which

may because they have both consumed service #52. (2) The

neighbors with more invocation histories tend to have high

attention weights. For example, neighbors No.30 and No.34

both consume over 10 game services which makes their

attention weights also a bit higher then others.

V. RELATED WORK

Our study is closely related to a large and growing body

of literature on service recommendation. With the explosive

development of service ecosystem, service recommendation

is one key issue in the field of service oriented computing

due to the information overload problem.

Semantic-aware methods mainly focus on information

retrieval and similarity calculation. Existing methods usually
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extract semantic information, e.g., keywords and labels, and

calculate relevance scores represented by semantic distance.

Li et al. represented users and services as vectors of words

and calculated the cosine similarity between corresponding

vectors [15]. Based on latent dirichlet allocation (LDA), [16]

revealed a correlation between services and words extracted

from related WSDL documents.

Quality-of-Service (QoS) is widely employed to represent

the nonfunctional performance of web services and has been

adopted as a key factor in service selection. Zheng et al.

[17] proposed a user-collaborative mechanism for collecting

historical QoS data of Web services from different service

users. Ahmed et al. [18] proposed a model predicting web

service’s behaviors by predicting the status of underlying

hidden states in terms of response time.

Network-aware methods exploit network analysis to make

service recommendation. Huang et al. [1] provided both a

methodology to quantify a service-mashup ecosystem and an

empirical study on ProgrammableWeb, a service repository.

However, the aforementioned works on service recom-

mendation assume that all the service users are independent.

They mainly focus on modeling the feedback order by using

service users’ positive and negative feedback, but do not

investigate how the feedback from users’ friends can be used

to model users’ preference on services.

With the prevalence of social media, social influence is

everywhere around us, not only in our daily physical life but

also on the virtual Web space. Some researchers proposed

to enhance the reliability of service recommendation by

integrating users’ social connections. Tang et al. [2] adapted

the conventional CF technique by choosing recommending

users for the target user in regard to both similarity and

trust between them. Kalai et al. [19] proposed a web service

discovery process by taking into account the best social

friendships of the current user and the past invocation

histories with satisfactory web services of one’s friends.

Previous published studies, though inspiring, are limited

to users’ direct friends without considering the high-order
connectivity from user-user interaction. Moreover, the social

influence strength in most of the works is usually set equally

for the social connections or relied on a predefined static

function, which should be different [7].

VI. CONCLUSIONS

Social information has shown a great potential to improve

the performance of service recommender systems. In this

paper, we have presented a novel model which unifies

graph convolutional techniques and attention mechanisms,

to seamlessly integrate the high-order social similarity and

difference into user representations for more accurate ser-

vice recommendation. Our main ideas includes: 1) applying

graph convolution to model the multi-hop propagation pro-

cess of the social information; 2) developing a neighbor-

level attention instrument to assign dynamic weights to

user’s neighbors in the context of various services. Exten-

sive experiments have proved that A-HSG outperforms the

baseline methods in prediction accuracy on the real-world

game service dataset.

In our future work, we plan to extend A-HSG to incor-

porate the content and context information of service users

to deal with the service-side cold-start problem.
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