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Abstract—With the widespread application of Service-
Oriented Architecture, the quantity of web services keeps
increasing rapidly over the Internet. Providing personalized
service recommendation to users remains to be an important
research topic. Recent studies have proved social connections
helpful for modeling users’ potential preference thus improving
the performance of service recommendation. To date, however,
one special type of social relation, called high-order social
relation, has not been thoroughly studied. In reality, a user’s
preference may not only be affected by the user’s direct
neighbors, but also indirect ones. Furthermore, such influences
may not remain static in the context of various attentions.
To tackle such issues, we have developed a novel neural
Attentive network based on High-order Social Graph (A-HSG)
toward offering social-aware service recommendation. First,
a graph convolution-based, multi-hop propagation module is
devised to extract the high-order similarity signals from users’
local social networks, and inject them into the users’ general
representations. Second, a neighbor-level attention module is
constructed to adaptively select informative neighbors to model
the users’ specific preference. Extensive experiments over a
real-life service dataset show that A-HSG outperforms baseline
methods in terms of prediction accuracy.

Keywords-Service Recommendation; Social Network; Atten-
tion; Graph Convolution; High-order Connectivity

I. INTRODUCTION

With the rapid advancement of the Service Oriented
Computing (SOC) and Cloud Computing techniques [1],
numerous services have been published onto the Internet.
Such services offer users a broad range of choices for
fulfilling their demands without building everything from
scratch. In this context, service recommendation technology
is widely recognized as an important instrument to help
users select suitable web services among vast amounts
of candidates. In recent years, due to the prosperity of
social media, increasingly more service-oriented systems
have seamlessly integrated social features, such as Epinions,
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Yelp, Steam and Amazon. Meanwhile, traditional service
repositories, such as ProgrammableWeb, also allow users
to join communities and establish friendships with other
users [2]. On these service platforms, users usually share
their preference of services with their friends. For example,
on the largest game service platform Steam, users can post
comments about the game services on their profile pages or
share game experiences with their friends through instant
messages, which can potentially affect the game service
selection of their friends. Thus, to accurately recommend
web services to users, not only their historical preference
should be considered, the social connections between the
users and their friends also demand concerns.
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Figure 1.  An illustration of users’ high-order social relation. The
left part shows the high-order similarity among users in service system,
in which the profiles of user B and C indicate similar general preference
between them. The right part describes the high-order difference existing in
the service system. When interacting with Map service, the user’s specific
preference is getting influence of different intensities from its neighbors.
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However, integrating social information into service rec-
ommendation is not a trivial task, especially when it comes
to high-order influence, because users’ preference may not



only be influenced by their own friends, but also result from
their friends’ social network. According to the social correla-
tion theory [3], we adopt the term high-order social relation
to describe such a common phenomenon in most service
systems, which embodies two concepts. Figure 1 shows an
example on a service platform to illustrate the definitions
of these two concepts and how they may influence users’
preference:

o High-order social similarity (general preference).
High-order social similarity refers to a common case
when a user and the friends of his friends tend to share
similar general preference. For example, in the left part
of Figure 1, User A loves to stay indoor playing games
and watching tourism videos, which makes him become
a social friend of two vloggers B and C on a service
platform. So intuitively users B and C may share many
common characters, which leads to the similar general
preference for them. For example, both users B and C
will use map service when travelling. However, such
relationship cannot be reflected by only considering
the first-order social relation. Therefore, when learn-
ing a user’s representation, considering the similarity
between the user and his high-order neighbors (like the
similarity between B and C) may lead to significant
gain in the accuracy of the user’s representation.
High-order social difference (specific preference).
High-order social difference reflects users’ specific
preference influenced diversely by the users in their
social networks. In other words, for a specific re-
quirement, different users in the social network may
contribute different influence intensities. The right part
in Figure 1 shows an example when choosing a map
service, a user tends to follow those neighbors who
love traveling. This means that when modeling a user’s
specific preference on a service, it is necessary to treat
the influence of the user’s neighbors differently, which
helps to distill significant preference signal towards the
specific service among all the user’s neighbors.

Considering these two unique features, we believe the
social connections among users are beneficial to improve
the quality of service recommendation.

To the best of our knowledge, there is not yet a rec-
ommendation approach considering the high-order social
relation in web service domain. However, we notice that
in some advanced machine learning technology, the social
relation has been partially utilized to grain strides. For
example, SBPR [4] and SocialMF [5] utilize users’ social
connections to improve the recommendation accuracy. But
they do not consider both the similarity and the difference
of the high-order social relation, which might easily lead to
incompleteness of the representation but still provide good
bases. Some methods like Deepinf [6] explicitly encode the
high-order social similarity but with the social influence set
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equal or relied on predefined static functions. Some other
methods like SAMN [7] only model the social difference
of direct social friends, failing to exploit the high-order
neighbors and integrate their features. Therefore, the social
relation in service ecosystem still cannot be fully exploited.

In this work, we propose a neural Attentive network
based on High-order Social Graph (A-HSG), which utilizes
the recent advances in graph convolution [8][9] and neural
attention mechanism [7] to simultaneously model both the
general preference and the specific preference. Applying
the idea of Graph Neural Network (GNN), we first devise
an social embedding propagation layer, which refines
the user’s representation by aggregating the embeddings
of its connected friends. By stacking multiple embedding
propagation layers, the model is able to extract the high-
order similarity signals from the social network and encode
them into the user’s general preference representation. After-
wards, to obtain the user’s specific preference towards some
service, a neighbor-level attention module places higher
weights on the representations of the neighbors sharing
similar preference on the same service, and then aggregates
their weighted sum with the user’s representation to get the
final representation. Finally, a linear interaction between the
user’s final representation and the service embedding derives
a ranking score. Over the real-life Steam game service
dataset, our extensive experimental results show that our
A-HSG model consistently outperforms the state-of-the-art
methods in terms of prediction accuracy.

Our main contributions are three-fold:

1) We propose A-HSG, a novel service recommendation
framework, which highlights the noteworthy signifi-
cance of the high-order social relation in most service
systems carrying both high-order social similarity
and high-order social difference.

We employ a multi-hop propagation module to ex-
plicitly integrate the high-order social similarity into
a user’s representation, which enhances the capability
of encoding his general preference.

We develop a neighbor-level attention module to adap-
tively measure the dynamic social influence strength
in the context of different services, which enriches a
user’s representation with the specific preference.

2)

3)

The remainder of this paper is organized as follows. Sec-
tions II, III, and IV introduces preliminaries, describes our
model framework and discusses experiments respectively.
Section V compares with related work, and Section VI draws
conclusions.

II. PRELIMINARIES

A. Notation Definitions

In a service system, we use U = {uq,us,...,up} and
S = {s1, $2,...,sn} to denote the set of users and the set
of services, respectively. Let G = (U, E) represent a static
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Model Framework. Prior to the model framework, our model firstly samples important neighbors from the social network G to form a

sub-network for every user in the batch. Following the sampling, the data process framework comprises two main components: (1) a multi-hop propagation
module to enforce the sampled users’ embeddings to capture the high-order social signal; and (2) a neighbor-level attention module to assign non-uniform

weights to the user and his sampled neighbors.

social network, where E is the edge set in a graph that
denotes the social interactions between the users, such as
friends in an undirected social network and followers in a
directed social network. Note that we do not focus on the dif-
ferences between these two types of networks in this project.
For each user u;, its neighbors are denoted as w1, u;2, ...,
with whom user u; is directly or indirectly connected. We
also define F(i) for each user u;, which denotes the set of
users with whom wu; is directly connected. According to the
graph theory, D (%) denotes the “degree” of user u; in a social
graph, which is calculated by D (i) = |F(¢)| representing the
number of users in the set F(i). To simplify the notation,
we use the above notations to denote the same terms in the
local social interaction graphs in the remainder of this paper.

B. Construction of local sub-network

For a specific user u;, to represent his social features,
the best way is to extract his sub-network from the social
network G. So we preform Breadth-First-Search (BFS)
starting from the user u; to sample a fixed number of
neighbors N(Z) = {’Uq;l, Us2, u7L} with a fixed length L,
thus ensuring that the most influential neighbors are included
in the sample list. For the ease of notation, we denote the
user u; itself as u;p and also put it in the sample list. Thus
the final sampled users in the local sub-network become
N(Z) = {ui(), Us1, Ui2, UzL}

III. MODEL FRAMEWORK

In this section, we will first introduce our A-HSG frame-
work, then discuss its optimization. As illustrated in Figure
2, the architecture of A-HSG contains two consecutive
components: a social embedding propagation module, and
a neighbor-level attention module. The input of the A-HSG
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is a social interaction network, divided into a batch of
local sub-networks through the sample process. The social
embedding propagation module learns embedding matrices
for users, and stacks multiple propagation layers to learn
high-order social similarity signals and merge them into the
user’s general preference. The attention module learns high-
order social difference signals and merge them into the user’s
specific preference. The final output of A-HSG is the learned
user preference representation.

A. Social Embedding Propagation Module

Following the recent emergence of representation learning
technique, we encode the user u; and the target service s;
into a low-dimension latent space with embedding vectors
ey, € R% and e, € R%, where d; is the initial embedding
size. The embedding layer learns an embedding matrix E €
R(EA1D*do a5 a Jook-up table, with each row corresponding
to the representation of a user in the sample list:

6]

where e,,,, represents the embedding of the user u;, € N (7).

According to the social correlation theory [3], users’ gen-
eral preference is influenced by their high-order neighbors.
We thus build a multi-hop propagation module to model
the social information flow. Figure 3 shows a two-hop
propagation process. Here we will first show the information
propagation of one single user in a sub-network. Then we
extend the propagation to a matrix-form, which can operate
layer-wise propagation over the entire sub-network. Finally,
we generalize the layer-wise propagation to multiple stacked
layers.

1) Propagation Process of a single user: For a user u;
and one of his connected friends wu;, we define the social

E = [eui07 euv‘,l ’ eUi,Z? "'euiLL
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Figure 3. Illustration of second-order embedding propagation for user
;0. Each node in the figure denotes the corresponding embedding of each
user. After the Ist-hop propagation layer, u;o and its neighbors integrate
the social similarity of their 1st-order neighbors into their embedding. Then
after the 2nd-hop propagation layer, u;o again integrates its neighbors’ new
embeddings and thus indirectly encodes the high-order social similarity
signals. By doing so, the Ist and the 2nd order social information diffuses
to u;o during the corresponding embedding propagation operation. We
concatenate all the embeddings of each hop to get the final representation.

information flow from uj to w; as:
2

where p,,;; is the decay factor of the propagation. Intuitively,
the more connected friends e,, or e,, has, the smaller
puk should be, since they will have less influence on their
every single friend. Applying the concept of neural graph
collaborative filtering [9], we set f(-) as:

1

muﬂ—uk :—(

ID@@)[[D (k)]
Winte'r (equ ©) euk ))’

Moy ¢y = f(eukveulapik)v

Wselfeuk+

3)

1

ID@)|D (k)]
R xd1 are independent weight matrices of this propagation
process, and d; is the transformation size. We use e,, ©®e,,
to represent the interaction between both u; and uj, where
©® denotes the element-wise product. This operation ensures
that the connected friends with higher similarity to user u;
will pass more information to u;.

where is the coefficient pyr, Waerr, Winter €

By exploiting the social information flows from user u;’s
all connected friends, we can update the representation of
u; after one round of propagation process as:

e7(,t];/) = ReLU(muM—uz + Z muﬁ—uk))
ur €F/ ()

“4)

where ReLU is a nonlinear activation function. In order
to keep the original information of w;, we insert the term
m,, ., in the function, which can be represented as:

®)

Moy, u; = W sel f€u,;-
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Here W € R *d1 ghares the same values as the weight
matrix in Equation(3).

2) Matrix form of the Propagation Process: To carry
out the propagation process for all users in the network, we
transform Equation (3), (4), and (5) into a matrix form as:

E(l) = ReLU((,C + I)Ewself + EE ® EWinter) (6)

where E(!) is the propagation result of the initial embedding
matrix E, and £ is the Laplacian matrix of the sub-graph,
which can be calculated as follows:

L=D iR(i)D"%, @)

where D is the diagonal degree matrix with each of its
diagonal elements D;; = D(:). The diagonal element

L;; = 0 and the off-diagonal element L;; = m.

By implementing the matrix form, we can not only
update all the user representations in the same sub-network
simultaneously, but also facilitate the batch calculation. Fur-
thermore, it enables us to easily stack multiple propagation
processes to extract the high-order social signals, which will
be discussed in the next part.

3) Multi-hop Propagation: By stacking more propaga-
tion layers, the module can explore the high-order social
similarity information. In the [-th step of propagation, Equa-
tion (6) can be reformulated as:

E® =ReLU((£ + DEYW +
LECD o EC-DOWD ),

inter

where E()) ¢ R(E+1) X are the representations of the users
in N(i) after | times of propagation steps, and E(~1 is
the representation from previous steps. WEZ f,wgﬁfm €
R%-1Xdt are the transformation matrices for the I-th step.
We assign different weight matrices for the transformation
in each step, and thus the dimension of E() is changed after
every propagation. E(9) is set as E in Equation (1).

After propagating ! times, we receive [+ 1 representations
for each user in N(¢). According to above analysis, those
representations focus on diverse social information flows
and manifold preference. Thus to construct a comprehensive
embedding, we add a hidden layer on the concatenated
embedding matrix:

E* = Concat(E,E', E?, .., EY)W,
w0 € €uigr € s ©)
where W, ¢ R(otdit..+di)xdo j5 the transformation
matrix regulating the final size, and ej,  denotes the final

embedding of user u;;, in N(¢) and it is also one row of the
matrix E*.

®

e’

= [e UG L,

B. Neighbor-level Attention Mechanism

The main purpose of neighbor-level attention is to assign
different weights to a user’s sample neighbors when the user



is interacting with a specific service and thus help model the
specific preference. First, we use the element-wise product
of the final user embedding and the service embedding to
represent the “opinion” that the user has on the service:

0, =€;Oq, 10)

where e] is the final representation of user i. Given the
opinion of the user and his neighbors, we implement a
concatenate operation to learn the joint opinion of the user
and each of his neighbors. Then a two-layer network is
applied to compute the attention weights o) (1 <7 < L):

an

where o; is the opinion of the j-th user in the sample set
(the O-th one is the target user). Note that W € R2doxdo
h” are model parameters.

Afterwards, we normalize the neighbor-level attention
scores with a softmax function, which can make the attention
network a probabilistic interpretation:

ajj) = h" ReLU(WConcat(0o, 0;) + b),

exp(af,)
21§i§L CXP(O‘E')) '
Then the final representation of the user can be formulated

as:
ok a¥
Uzieuw{'} E : a(ﬂ)euij’
1<5<L

12)

Qi) =

13)

where Uj is final representation of user u;.

C. Learning

1) Prediction: After obtaining the representation of user
u;, we then apply the Matrix Factorization (MF) technique
to model the implicit feedback and rating prediction:

where ?ij is the predicted score for the unused services,
which will then be ranked in descending order to provide
Top-K service recommendation list.

2) Optimization: The core of the optimization process is
to learn the relevance-based ranking of services. Existing
researches usually apply Bayesian Personalized Ranking
(BPR), which compares the score of the positive service
with several sampled services. However, in this case, we
found that BPR is unstable in optimization. Hidasi et al.
proposed Topl [10], a regularized approximation of the
relative rank of the relevant item. For each positive user-
service pair < u;,s; >, we randomly sample a negative
service from the unobserved services of the user, which is
denoted as sj. The Top1 pairwise ranking loss is as follows:

Lropr= Y o(Yu—Yi)+0(Y5) 15)
(i,7,k)€ED
where o(z) = m is the logistic sigmoid function

and ® represents the set of pairwise training instances. The
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second term of equation (15) is a regularization term.

IV. EXPERIMENTS

A. Experimental Settings

1) Dataset Description: Steam is a platform providing
game and software service, which includes services from
over 1,200 publishers and over 75 million active Steam
users. In addition to its service store, Steam provides numer-
ous social networking features such as profile pages, friends,
groups, instant messaging, and voice chats. According to [1]
and [11], the game service shows a high level of similarity to
web services with three unique features: (1) The friendship
connections are sparse compared to other social networks;
(2) There are long tail behaviors in their distributions; and
(3) Services on heterogeneous platforms are massive and
varied.

To test and verify our A-HSG, we randomly crawled 7,043
Steam accounts, along with the friendship lists, and a total
of 16,112 game services to construct a real-world dataset,
where the social network is built according to Section IL.B.
Table I summarizes the numerical properties.

Table 1
STATISTICS OF THE DATASETS

Item Number
User 7,043
Service 16,112
Invocations 6,700
Density(Invocations) 0.0059%
Social Interaction 8,509
Density(Social Interaction) 0.0172%

2) Evaluation Metrics: To evaluate the performance of
all algorithms, we adopted two popular metrics, namely
Normalized Discounted Cumulative Gain (NDCG) and Hit
Ratio (HR). The NDCG @K metric is position-aware, which
accounts for the position of the hits by assigning higher
scores to hits at top ranks. The HR@K metric measures
whether the test item is present on the recommendation list.
Both the adopted metrics can be formulated as follows:

1 N 2reli71
NDCGAQK = — _— 16
Ry ;logz(lJri) (16)
K
K el
HRQK = %jl’;e (17)
yﬁeél

Where K is the size of the recommendation list, rel; = 0 or
1 denotes whether the service at the rank ¢ is in the test set,
and the R term indicates the maximum possible cumulative
component through ideal ranking. |y‘¢%!| is the number of
service used by the user u in the test set.

3) Baselines: To evaluate the performance of the Top-
K recommendation, we compared our A-HSG with the

following five baseline methods:



« BPR [12]: This method optimizes the matrix factoriza-
tion (MF) model with the BPR objective function for
implicit feedback-based service recommendation.

« SBPR [4]: This is a ranking model assuming that users
tend to assign higher ranks to items their friends prefer.

o NCF [13]: This method is the state-of-the-art deep
learning based framework combining matrix factoriza-
tion (MF) with a multilayer perceptron model.

o SocialMF [5]: This is a classical model considering the
trust information and its propagation into the matrix
factorization model for recommender systems.

e SAMN [7]: This is a state-of-the-art deep learning
method, which unifies the strengths of memory net-
works and attention mechanisms to address the prob-
lems in social-aware recommendations.

Our method aims to model the social relationship in
the service recommendation. However, to the best of our
knowledge, few research has explored the effect of the social
influence in service recommendation. Thus we adjusted
many general social recommendation methods to compare
with our A-HSG on the Steam game service dataset.

Table 11
OVERALL PERFORMANCE COMPARISON
HR@10 NDCG@10 NDCG @20
SocialMF | 0.436040.0059 | 0.4138+0.0111 | 0.557540.0040
BPR 0.4706+0.0051 | 0.4360+0.0082 | 0.6262+0.0027
SBPR 0.490240.0070 | 0.4425+0.0085 | 0.6538+0.0038
NCF 0.5294+0.0016 | 0.4753+0.0053 0.6463+0
SAMN 0.5882+0.0086 | 0.5567+0.0100 | 0.6617+0.0027
A-HSG 0.6471+0.0066 | 0.6136+0.0086 | 0.7070-+0.0030

4) Experiment Details: We implemented A-HSG on the
basis of Pytorch [14], a widely used Python library for neural
networks. We randomly split the dataset into training set
(70%), validation set(20%) and test set(10%). During the
tuning process, we found that 0.005 can be a good initial
learning rate with an embedding size of 64 respectively.
Borrowing the idea of autoencoder, the transformation size
sequence should be non-increasing. By shrinking the trans-
formation size, each propagation process can learn more ab-
stractive features. Empirically, we halved the transformation
size for each successive propagation layer.

B. Comparative Analysis on Overall Performance

The empirical results of our A-HSG and the baselines on
the Steam game service dataset are summarized in Table
II. We conducted one-sample t-tests and p — value < 0.05
indicates that the improvements of A-HSG over the strongest
baseline are statistically significant. From the results, we
drew the following conclusions:

o The methods integrating social information perform
better than the ones without it. For example, in Table
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II for most metrics, SBPR shows a better performance
than BPR, while the state-of-the-art SAMN and our A-
HSG outperform BPR and NCF. The experiment results
provide trustworthy evidence for introducing the social
information into the service recommendation.

« We noticed that the methods assigning different weights
to different neighbors bear better performances than
those which do not. Compared to SBPR and SocialMF,
the performance of SAMN and A-HSG proves that at-
tention mechanisms on the friend level improve the user
representation learning. It might because the influence
strength of a user’s friends should be different.

¢ A-HSG consistently yields the best performance on
the Steam dataset, which improves over the strongest
baseline SAMN with respect to NDCG@10 by 9.54%.
In our model, we stack multiple propagation layers to
extract the high-order social similarity in an explicit
way, while the state-of-the-art SAMN only considers
the directed friends. This result strongly supports that
the high-order social similarity can improve the user
representation learning in the service ecosystem.

C. Effect of Hop time and Transformation Size
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Figure 4. Performance comparison on models of different hop times
w.r.t. different transformation sizes of 1st propagation layer

Since the multi-hop propagation module plays a key role
in A-HSG, we varied the model depth and the size of
each layer to investigate how A-HSG benefits from multiple
propagation layers. HR and NDCG show similar patterns,
thus we focus our analysis on NDCG. The experiment results
are shown in Figure 4, wherein the term A-HSG-# indicates
the A-HSG method with # propagation layers. Since we set
the transformation size of each layer to reduce by half, in
Figure 4, we only display the transformation size of the first
propagation layer. From Figure 4 and Table II, we have the
following observations:

o The general trend shows that the increase of the

hop time can improve the service recommendation
performance. From Figure 4, we notice that under



different transformation sizes, A-HSG-2 and A-HSG-
3 consistently show better performance than A-HSG-1.
Combining above-mentioned analysis in section IV-B,
we attribute this improvement to the increased level of
the ability to extract the high-order social similarity.
When we added more propagation layers on A-HSG-
3, the NDCG@10 of the model started to decrease,
which might be caused in two aspects. First, too deep
architecture introduce noises into the learning process.
Second, the neighbors far away from the user have little
influence on the user. Thus the marginal improvement
brought by the far neighbors is insufficient to offset the
noises. When further stacking a propagation layer on
A-HSG-4, the model becomes extremely unstable due
to the gradient explosion. Stated thus, in most service
systems, three hops provide sufficient capacity to model
the complex general preference of users.

Figure 4 portrays a steady improvement as the
Ist-transformation size increases, where the 1st-
transformation size of around 48 shows peak perfor-
mance followed by a degradation due to overfitting.
At 1st-transformation size of 16 shows an unusual rise
in performance, which might be the contribution of
the layer-aggregation mechanism. Although each size
less than 16 seems unable to carry much information,
when concatenating all layers’ outputs together, the
final representation has a strong ability to encode the
social similarity of each order and thus improves the
general preference modeling.
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D. Effect of the Neighbor-level Attention

We further evaluated the key component of the model -
Neighbor-level Attention, by conducting experiments with
the following variants of A-HSG:

o A-HSG-S A variant model of A-HSG without ag-
gregating the neighbors’ representations with the final
representation of the user.

¢« A-HSG-A A variant model of A-HSG in which the
weights of the neighbors in Equation 13 are set equal.

Figure 5 shows the performances of A-HSG and its two
variants. Due to space limitation, we show only the results
of the NDCG@10 and HR@10 on our Steam dataset. From
Figure 5, two observations are made:

1) When the neighbor-level attention mechanism is ap-
plied, the performances achieve significant improve-
ment compared to A-HSG-S and the constant weight
method A-HSG-A. This may because the user repre-
sentation from the propagation module only explicitly
encodes the user’s general preference without con-
sidering the user’s specific preference towards the
target service. The result also shows that the attention
mechanism can learn an adaptive weight to make
sure that when interacting with different services, the
neighbors who share common preference can be more
prominent in the user’s final representation.
A-HSG-A performs the worst among the variant mod-
els since it does not consider the high-order social
difference. Even worse, by setting all weights equal
and then aggregating the weighted sum with the user’s
representation from the propagation module, it disturbs
the representation of the user’s general preference.

2)

To better understand how attention mechanisms help treat
the influence intensities of neighbors in a user’s social net-
work, in Figure 6, we randomly select 39 neighbors of a user
(#6565) to see their contribution in his final representation,
when interacting with random service #52. We have the
following observations: (1) The attention weights of a user’s
neighbors are different. For example, the attention weights
of neighbors No.l and No.32 are relatively high, which
may because they have both consumed service #52. (2) The
neighbors with more invocation histories tend to have high
attention weights. For example, neighbors No.30 and No.34
both consume over 10 game services which makes their
attention weights also a bit higher then others.

V. RELATED WORK

Our study is closely related to a large and growing body
of literature on service recommendation. With the explosive
development of service ecosystem, service recommendation
is one key issue in the field of service oriented computing
due to the information overload problem.

Semantic-aware methods mainly focus on information
retrieval and similarity calculation. Existing methods usually



extract semantic information, e.g., keywords and labels, and
calculate relevance scores represented by semantic distance.
Li et al. represented users and services as vectors of words
and calculated the cosine similarity between corresponding
vectors [15]. Based on latent dirichlet allocation (LDA), [16]
revealed a correlation between services and words extracted
from related WSDL documents.

Quality-of-Service (QoS) is widely employed to represent
the nonfunctional performance of web services and has been
adopted as a key factor in service selection. Zheng et al.
[17] proposed a user-collaborative mechanism for collecting
historical QoS data of Web services from different service
users. Ahmed et al. [18] proposed a model predicting web
service’s behaviors by predicting the status of underlying
hidden states in terms of response time.

Network-aware methods exploit network analysis to make
service recommendation. Huang et al. [1] provided both a
methodology to quantify a service-mashup ecosystem and an
empirical study on ProgrammableWeb, a service repository.

However, the aforementioned works on service recom-
mendation assume that all the service users are independent.
They mainly focus on modeling the feedback order by using
service users’ positive and negative feedback, but do not
investigate how the feedback from users’ friends can be used
to model users’ preference on services.

With the prevalence of social media, social influence is
everywhere around us, not only in our daily physical life but
also on the virtual Web space. Some researchers proposed
to enhance the reliability of service recommendation by
integrating users’ social connections. Tang et al. [2] adapted
the conventional CF technique by choosing recommending
users for the target user in regard to both similarity and
trust between them. Kalai et al. [19] proposed a web service
discovery process by taking into account the best social
friendships of the current user and the past invocation
histories with satisfactory web services of one’s friends.
Previous published studies, though inspiring, are limited
to users’ direct friends without considering the high-order
connectivity from user-user interaction. Moreover, the social
influence strength in most of the works is usually set equally
for the social connections or relied on a predefined static
function, which should be different [7].

VI. CONCLUSIONS

Social information has shown a great potential to improve
the performance of service recommender systems. In this
paper, we have presented a novel model which unifies
graph convolutional techniques and attention mechanisms,
to seamlessly integrate the high-order social similarity and
difference into user representations for more accurate ser-
vice recommendation. Our main ideas includes: 1) applying
graph convolution to model the multi-hop propagation pro-
cess of the social information; 2) developing a neighbor-
level attention instrument to assign dynamic weights to
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user’s neighbors in the context of various services. Exten-
sive experiments have proved that A-HSG outperforms the
baseline methods in prediction accuracy on the real-world
game service dataset.

In our future work, we plan to extend A-HSG to incor-
porate the content and context information of service users
to deal with the service-side cold-start problem.
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