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Abstract—Service (API) discovery and recommendation is key 
to the wide spread of service oriented architecture and service 
oriented software engineering. Service recommendation typically 
relies on service linkage prediction calculated by the semantic 
distances (or similarities) among services based on their collection 
of inherent attributes. Given a specific context (mashup goal),
however, different attributes may contribute differently to a
service linkage. In this paper, instead of training a model for all 
attributes as a whole, a novel approach is presented to
simultaneously train separate models for individual attributes.
Meanwhile, a latent attribute modeling method is developed to
reveal context-aware attribute distribution. Experiments over 
real-world datasets have demonstrated that this fine-grained
method yields higher link prediction accuracy.

Keywords—Context-aware service recommendation; attribute 
model training; latent attribute distribution; mashup 
recommendation

I. INTRODUCTION

Computer-supported service (API) discovery and 
composition (mashup) has become a critical topic in the field of 
services computing. Earlier work on service discovery focuses 
on keyword-oriented text mining techniques to identify 
interested service candidates [1]. Semantic web techniques are 
applied to add fuzzy search and semantics-powered search 
ability [2]. Inspired by Amazon’s recommendation scenarios as 
“people buy item A usually buy item B,” Collaborative 
Filtering technique is applied in service discovery to 
recommend services used by peers with similar background and 
profiles [3].

In our previous work, we proposed to treat software services 
as social entities and build service social networks (SSN) [4].
By studying the social behaviors of services from their usage 
history (i.e., provenance), we developed algorithms to 
recommend and predict future service usages using social 
network analysis techniques. From then on, dozens of papers 
have appeared to report various approaches to study service 
usage provenance and rank service candidates under contextual 
conditions. For example, Zhong et al. [5] consider time series 
of service usages when recommending mashup components.

In recent years, researchers have started to leverage machine 
learning techniques to analyze service usage history. Zhong et 
al. [5] leverage the Latent Dirichlet Allocation (LDA) [6]
technique from the information retrieval field to summarize 
topic distribution from API description documents. Gao et al. 
[7] apply the LDA technique to mine service co-occurrence 

relationships from past mashup history.
In this project, we aim to further study how to apply 

machine learning techniques, in a service social network, to
incrementally train models from service provenance to better 
predict service linkages at runtime. Be more specific, given a 
mashup design purpose with some APIs already decided to be 
used in the mashup, how to recommend other APIs to co-exist 
in the mashup? In contrast to related work, we aim to study how 
fine-grained level attributes may contribute to context-aware 
API linkage prediction.

The motivation of this research comes from our Apache 
Incubator project - Climate Model Diagnostic Analyzer 
(CMDA) [8]. In the CMDA project, we originally constructed 
a CMDA REST service social network. Its comprising nodes 
are individual CMDA APIs that encapsulate inherent attributes. 
Using such a class-level model, the carried attributes may 
contribute to the connections among services; however, the
relationship may be implicit. Fig. 1 shows an example of 
finding a subsequent API ܵ2 following ܵ1 in a mashup. Say 
that a user intends to design a mashup to calculate the zonal 
mean of an anomaly of a variable. This task can be achieved by 
a mashup that links the anomaly calculation API and the zonal 
mean calculation API. For the second step, there are two zonal-
mean calculation API candidates with similar functions: one is 
for 2-dimensional variables; the other is for 3-dimensional 
variables. The attribute about the output data variable
dimension from the first API (anomaly calculation) will be a 
determining factor to choose which zonal-mean calculation API
to use in the second stage of the mashup, while other attributes 
do not contribute as such in this mashup-aware API
recommendation problem. This example shows the necessity of 

Fig. 1. Motivating example of the importance of attributes on service 
recommendation.
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treating individual attributes as first-class citizen instead of 
hiding them under the surface of APIs.

Our contributions are summarized in three-fold. First is that 
we have developed a scalable attribute-level data model, 
featuring scalability and extensibility. We have extended 
Multiplicative Attribute Graph (MAG) [9] model to represent 
node profiles featuring rich categorical attributes, while 
relaxing its constraint of requiring a priori knowledge of 
predefined attributes. LDA is leveraged to dynamically identify 
attributes based on attribute modeling, and multiple Gaussian 
fit is applied to find global optimal values.

The second contribution is that we have seamlessly 
integrated the latent relationships between API attributes as 
well as observed network structure based on historical API
usage data. Such a layered information model enables us to 
predict the probability of a link between two APIs based on 
their attribute link affinities carrying a variety of information 
including meta data, semantic data, historical usage data, as 
well as crowdsourcing user comments and annotations.

The third contribution is that we have developed a fine-
grained context-aware mashup-API recommendation
technique. On top of individual models trained for separate 
attributes, a dedicated layer is trained to represent the latent 
attribute distribution regarding mashup purpose, i.e., sensitivity 
of attributes to context. Thus, given the description of an 
intended mashup, the attributes sensitive to the goal will be 
identified, and corresponding attribute models will be exploited 
to compute the possibility of API linkages under the context. 
Such a layered model increases search accuracy.

The remainder of the paper is organized as follows. In 
Section II, we discuss related work. In Section III, we present 
our basic attibute-level model. In Sections IV and V, we explain 
the details of individual attribute model training and context-
aware latent attribute distribution learning, respectively. In
Section VI, we describe our service recommendation technique. 
In Section VII, we present experimental studies and analysis. In 
Section VIII, we draw conclusions.

II. RELATED WORK

Link prediction remains a hot topic in social network study,
aiming to infer interactions that would probably occur in the 
future given a snapshot of the current network. While all link 
prediction methods assigning a weight score for each pair of 
nodes, Liben-Nowell and Kleiberg summarize them into three
categories [10]: methods based on node neighborhood, methods 
based on the ensemble of all paths and higher-level methods 
such as Unseen Bigrams, and methods based on clustering and 
low-rank approximation.

Most of research in the literature focus on examining
similarity between nodes to provide an estimation whether they 
may be connected to each other. A number of algorithms are 
proposed to calculate profile similarity among nodes,
leveraging information from various sources to form a vector of
attributes for each node [11]. While each node is profiled as a 
vector of attributes, these attributes are typically used as
features to classify nodes into clusters based on specific
patterns. Such methods work well in many cases; however,
similarity is just one way to study the connections between 
nodes [9].

To predict the link between two nodes, Kim and Leskovec 
[9] believe it is necessary to consider not only the similarity 
between them, but also the possibility that they connect to each 
other due to dissimilarity. Proposing the Multiplicative 
Attribute Graph (MAG) model [9], they estimate affinity 
matrices for node attributes. To simplify the problem, the
original MAG assumes that each attribute is in binary format.
Later researchers raise the bar a little and assume that every 
attribute of each node is drawn from a Bernoulli distribution
[12]. This assumption still may not work in our science 
knowledge graph, however. Nodes in a service social network 
are usually profiled with crowdsourcing or information retrieval 
mechanism. Thus, their profiles contain a large amount of 
unstructured data in the form of text content, such as 
descriptions, and structured attributes that cannot be easily 
converted to a binary value to be estimated by Bernoulli 
distribution. Therefore, in our project we propose to further 
raise the bar and learn individual models for node attributes.
Instead of using affinity matrix, we estimate affinity 
distribution covering continuous values.

Some recent studies consider network structure could help 
profile nodes, as such information represents the property, 
history and behaviors of the nodes. A social-attribute network 
was developed which integrates network structure and node 
attributes by introducing attributes nodes into the graph [13].
Some researchers focus on extracting hidden attributes from 
nodes to create latent feature vectors [14]. In contrast to their 
work, we aim to study how individual attributes may contribute 
to context-aware API (node) connections in an SSN.

III. INFORMATION MODEL

A. Basic Attribute-Level Model
To study fine-grained API link prediction, we propose to

link physical world and virtual world in a service social 
network, which we call Basic Attribute-Level Model (B-ALM).
As shown in Fig. 2, B-ALM can be viewed as a two-layer graph: 
an overlay probabilistic adjacency graph is built on top of a 
provenance graph.

Definition 1: A basic attribute-level model (ALM) is a 5-
tuple ܯ = (ܸ, ,ܧ ,ᇱܧ ,{௨ܨ} ܸ where ,({ߔ} is a set of vertices 
and {௨ܨ} is a collection of categorical attribute vectors for each 
ݑ ∈ ܸ, ܭ is a collection of link-affinity matrices over all {ߔ}
attributes (݇ ∈ ܭ ), each representing the probability of two 
vertices to link to each other based on the values of one 
particular attribute. ܧ and ܧ′ are both sets of edges. ܧ

Fig. 2. Basic Attribute-Level Model overview.

ݑ = ܰ, ,ܦ ,ܣ ܫ

ݑ = { ܰ, ,ܦ ,ܣ {ܫ

ܲ ,ೕ

ݑ = ܰ, ܦ , ܣ , ܫ
     = ,ଵܨ} ,ଶܨ ,ଷܨ … , {ܨ

ߙ ߚ

ߚ ߛ

ܸ = [{݊ܽ݉݁,  ,݁ݐܽ݀
,ݕܿ݊݁݃ܽ [{ݐ݊݁݉ݑݎݐݏ݊݅

,ݑ ݁ݎℎ݁ݓ ݑ ∈ ܸ

݇ ∈ ܭ
߶
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comprises actual links each representing an existing linkage 
between a pair of vertices. ′ܧ comprises virtual links each 
representing the probability of a linkage between a pair of 
vertices.

Example: Consider a B-ALM comprising five nodes as 
shown in Fig. 2, where a node represents a data service carrying 
four attributes: name, date, agency, and instrument. Thus, node 

ܸ has an attribute vector ܨ = { ܰ, ,ܦ ,ܣ {ܫ with four 
categorical attributes associated. 

A link-affinity matrix ߔ is used to bridge the gap between 
attribute values {ܨ௨} and the probability ௨ܲ,௨ೕ of a link between 
a pair of nodes, say ݑ, ܨ . Each attributeݑ is associated with a 
link-affinity matrix ߶.

B. Link Affinity
Link affinity can be categorized into four types: homophily, 

heterophily, core-periphery, and randomness [9]. Some node 
attributes may have positive affinities with other attributes. For 
example, each CMDA API possesses an attribute “sponsored 
project.” APIs yielded from the same project have higher 
probability to be used together in a large-scale data analytics 
workflow. Thus, we can claim that attribute “sponsored 
project” has positive affinities (i.e., Homophily). 

Some nodes attributes may also have negative affinities 
(Heterophily) with other attributes. For example, some APIs
can plot a graph regarding rainforests temperature, whereas 
some APIs would benefit research on desert air humidity. These 
APIs may rarely be combined with each other; in other words, 
they do not have high probability to be linked together. We can 
claim that the attributes “focus on rainforest temperature?” and 
“focus on desert humidity?” have negative affinities (i.e., 
Heterophily). Core-periphery means values are relatively larger 
near a cohesion core and decrease as they locate further from 
the core. Randomness means values do not follow specific 
patterns.

A simple binary link-affinity matrix template is shown in 
Fig. 2 on the lower right part, where the attribute value is in
binary. If both nodes bear the same value “0” or “1” for the nth
attribute, their probability to link together will be ߙ and ߛ ,
respectively.

In building a B-ALM network, for each attribute type ࡲ ,
the corresponding link-affinity matrix  ∈ {} can be 
generated. With matrixes generated, the probabilistic values of 
edges between every pair of nodes can be calculated through:

         ௨ܲ,௨ೕ = ෑ ߔ


ୀଵ

,ܨൣ  ൧                              (1)ܨ

IV. AFFINITY DISTRIBUTION LEARNING USING SEMANTIC 
DATA

MAG assumes that all attributes are predefined, and their 
values are discrete (either binary [9] in the earlier work or 
enumerable [14] in recent work). Since SSN is incrementally 
built, such binary or Bernoulli distribution assumptions will not 
reflect various conditions. Therefore, instead of using affinity 
matrix carrying discrete values, we decide to build affinity 
distribution carrying continuous values.

A. Model Definition
Equation (1) illustrates how to calculate link probability

between every pair of nodes based on predefined affinity 
matrices provided by domain experts. It is yet to be considered 
how to estimate the affinity matrix if there is no prior 
knowledge that can be easily obtained and utilized to assign the 
value of affinity matrices. In addition, what if the attributes are 
not discrete, such as length, weight, and possibilities? Instead 
of presenting affinity relation with a 2 × 2 matrix shown in Fig.
2, we use a Bivariate Normal Distribution to capture such latent 
information for each attribute and use the Probability Density 
Function (PDF) value of learned distribution to indicate how 
relevant two nodes are, based on the attribute values of the two
nodes and actual link between them. Rather than considering 
only True/False values for each attribute, we propose to use real 
number values instead. We thus revise Definition 1 as follows 
to reflect such a change.

Definition 1’: An attribute-level model (ALM) is a 6-tuple 
ܯ = (ܸ, ,ܧ ,ܣ ܲ, ,{௨ܨ} ܸ where ,({௧߆} is a set of vertices, and 
{F௨} is a collection of vectors of |T| attributes for each ݑ ∈ ܸ ,
{Θ௧} is a collection of link-affinity distributions over T ݐ) ∈ ܶ),
each representing the probability of two vertices to link to each 
other based on the value of one attribute of two nodes. ܧ, ܲ and 
ܣ are all sets of edges. ܧ comprises actual links each 
representing an existing linkage between a pair of vertices; ܲ
comprises virtual links each representing probability of a 
linkage between a pair of vertices; and A comprises virtual links 
predicted with link probability larger than a certain threshold.

While our ALM covers APIs as nodes in a service social 
network, it is intuitive to leverage their parameters and 
properties as attributes. However, things may become more 
complicated due to several significant reasons. First, although 
some APIs provide attributes, most of them are categorical and 
hence could not provide the quantifiable information of how 
each attribute contributes to an API. Second, the attributes
provided by API metadata may not be accurate without 
considering description from service providers. Third, attribute
extraction should be decided based on the targeted API sets for 
scalability and comparison efficiency. Fourth, manual labeling 
is labor intensive. In summary, when studying relationships 
among a collection of APIs, the actual properties used as 
attributes should be dynamically derived from the API
description set. 

B. Affinity Distribution Estimation
Therefore, we apply machine learning technique to predict 

network relationships inside of ALM, considering both API
descriptions and historical API connections. Latent Dirichlet 
Allocation (LDA) [6] is applied to API description to extract 
API attributes and consider probability of each attribute as 
attribute value in ALM. Afterwards, attribute values and 
historical linkage information are used for learning link-affinity 
distribution. Our approach is illustrated in Fig. 3 using the plate
notation, which is widely used to represent repeated variables 
by grouping them in a subgraph with a rectangle called ‘plate’
[15]. Each subgraph is duplicated many times with its 
comprising variables indexed by the repetition marked at the 
corner of a rectangle. Table I summarizes the notations used in 
our model.

The overall generative process of our API-based edge 
probability with network adjacency matrix can be described as 
follows:
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1) For each attribute ݐ = 1: ܶ
Draw ߮௧~ܿ݅ݎ݅ܦℎ݈݁(ߚ)ݐ

2) For each API description ݀ = 1: ܦ
a) Draw ߞ(ௗ)~ܿ݅ݎ݅ܦℎ݈݁ݐ( )
b) For each word token ݅ = 1: ܰ

Draw an attribute ݖ
(ௗ) ~ ݈ܽ݅݉݊݅ݐ݈ݑܯ(ζ(ୢ))

Draw a word ݓ
(ௗ) ~݈ܽ݅݉݊݅ݐ݈ݑܯ(߮௧)

c) ࣮(ୢ) = ቀ߬ଵ
(ௗ), ߬ଶ

(ௗ), … , ்߬
(ௗ) ቁ = (ௗ)ߞ 

3) For each attribute t′ = 1: T′
For each API description pair (d, d′) ∈ ܦ × ܦ

Draw ቀ߬௧
(ௗ), ߬௧

൫ௗ ൯ቁ (Θ)ࣨ ݁ݐܽ݅ݎܽݒ݅ܤ ~ 
With the trained model, the probabilistic score indicating two 

APIs with description ݀ and ݀′ can be calculated as follows:

ܲௗ,ௗ  = ෑ ߔ

்

ୀଵ

ൣ߬
ௗ, ߬

ௗ ൧

Given a threshold we can predict if two APIs may have a 
connection in the future:

Aௗ,ௗ = ൜
1,   ݂݅ܲௗ,ௗ  > ݈݀ℎݏ݁ݎℎݐ
0,  ݁ݏ݅ݓݎℎ݁ݐܱ                    

1) Learning Distribution over API Attributes

To tackle the issue of utilizing unstructured text data and 
transforming it to node attributes, we first apply a topic model 
following Dirichlet distribution. The affinity distribution is 
estimated based on the node attributes and known relationships
between nodes. 

A topic model is a type of statistical model for discovering 
abstract "topics" that occur in a collection of documents. Topic 
modeling is a frequently used text mining tool for discovering
hidden semantic structures in a text body. Among others, Latent 
Dirichlet Allocation (LDA) [6] is a known generative statistical 
model allowing sets of textual observations to be explained by 
unobserved topics. In case of service discovery and 
recommendation, the relation between the attributes of services 
to service description is analogous to the topics to documents. 
We thus apply the LDA concept to mine attribute distribution 
over services.

As the first step, we present our idea as a probabilistic 
graphical model in Fig. 3. The parameters ߙ and ߚ are
repository-level parameters, assumed to be sampled once in the 
process of generating a service repository. The variable ߞ is a
service-level variable, sampled once per service. Finally, the 
variables ܼ and ܹ are word-level variables and are sampled 
once for each word in each service description.

As the second step, we integrate in past API connections. 
As shown in Fig. 3, for each pair of APIs whose attribute 
distributions are ߞ(ௗ) and (ௗᇲ)ߞ , respectively, let us consider 
how each of their attribute contributes to their actual connection 
(visible connection ܣ). For every attribute, over a distribution 
of Θ, the affinity values (τ and ) from the two APIs form a 
probability of their connection ܲ.

In our model, we aim to learn the collection of latent
parameters from provenance data. Expectation Maximization
(EM) is applied to estimate the Generative Model. Our goal is
to reason about the full joint distribution:

             P(w, z, φ, ζ|α, β) = P(w, z|φ, ζ)P(φ|β)P(ζ|α)         (2)

We marginalize the model parameters out of the joint 
distribution, so that we can focus on the words in the repository
and their assigned attributes (ݓ) :(ݖ)

,ݓ)ܲ ,ߙ|ݖ (ߚ = න නܲ(ݓ, ,ߔ|ݖ ߮݀ߞ݀(ߙ|ߞ)ܲ(ߚ|߮)ܲ(ߞ
ః

 

According to Bayes Rules we have:
P(w, z|α, β) = P(w|α, β)P(z|w, α, β)                   (3)

For inference of the model, Gibbs sampling [16] is used to 
approximate the distribution of P(z|w, α, β) , which is the 
attribute assignment given the word observation. By sampling 
each ,ݖ complete (or full) conditionals can be derived for each 
ݖ in :ݖ

ݖ)ܲ = ,ିݖ|݆ ;ݓ ,ߙ (ߚ =
,ݖ)ܲ ,ିݖ ;ݓ ,ߙ (ߚ

,ିݖ)ܲ ;ݓ ,ߙ (ߚ        

                                 ∝
݊ି,

(௪) + ,ߚ

݊ି,
(∙) + ߚܶ

⋅
݊ି,

(ௗ) + ,ߙ

݊ି୧,(∙)
(ௗ) + ߙܦ

        (4)  

where: ݀ is the API description where word ݓ occurs; ݖ is 
the attribute assignment for word ݓ; ݊ି,

(∙)  denotes a count of
words under attribute ݆ which does not include the current 

Table 1. Notation used in affinity distribution estimation.
Symbol Description
ࡰ Number of descriptions
 Number of words
ࢀ Number of attributes
′ࢀ Number of attributes
,ࢻ ࢼ The parameters of Dirichlet priors to the multinomial 

distribution ߞ(ௗ)  and ߮()

(ࢆ)࣐ The parameters of multinomial distribution over 
words specific to description z

(ࢊ)ࣀ The parameters of multinomial distribution over 
attributes specific to description ݀

(ᇲࢊ)ࣀ The parameters of multinomial distribution over 
attributes specific to another description ݀’

()ࢠ The attribute assign to word ݊
࢝ The word token in API description
࣎ Probabilistic value of one attribute from ߞ(ௗ)

࣎ Probabilistic value of the same attribute as ߬ from 
(ௗᇲ)ߞ

ࢨ The parameters of Bivariate Normal Distribution over 
߬ ܽ݊݀ ߬′

ࡼ The probabilistic adjacency matrix
A The network generated given ܲ with a series of coin 

flips

Fig. 3 Plate notation for generative process of edge probability in SSN.

(ௗ)ߞ 

ߙ 

ݖ 

߮  ݓ 

 Θ

ߚ

ܣ 

ܶ

ܶ′

 ߬

 ߬′

(‘ௗ)ߞ 
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assignment ݖ ; ݊ି,
(௪) is the number of times (ignoring position 

݅ ) word ݓ is assigned to attribute ݆ ; ݊ି,
(ௗ) is the number of 

times (ignoring position ݅) attribute j is used in API description
݀ ;  ݊ି,(∙)

(ௗ) is the number of times (ignoring position ݅ ) all 
attributes are used in API description ݀ . Intuitively, we can 
interpret the first ratio as the probability of word ݓ under 
attribute ݆ considering the number of words under attribute ݆;
and the second ratio as the probability of attribute ݆ in document 
݀ considering other attributes that are used in it.

At this stage, we only consider ALM when each attribute is
conditionally independent from each other. Each attribute 
assigned to an API description would be given a probability,
indicating the importance of the attribute over the API and there 
is no dependency between two attributes of one API
description. Attributes with dependency will be studied in our 
future research.

However, traditional LDA is an unsupervised algorithm that 
models each document as a mixture of topics.  We adopt the 
Labeled LDA (L-LDA) [6, 17], which is a supervised LDA by
constraining the topic model to use only the topics that 
correspond to a document’s (observed) label set. In our case, 
(ௗ)ߞ is restricted to be defined only over the attributes that 
correspond to its labels Λ(d).

2) Learning Distribution over Affinity Values
We then assume each affinity distribution θ୪ follows 

Bivariate normal distribution, θ୪~ࣨ(ߤ, Σ), ݈ = 1,2, … , ܮ ,
where ܮ is the number of attributes. ܣ is the adjacency matrix 
of the graph: 

ܣ = ൜
1, ℎ݁݉ݐ ݊݁݁ݓݐܾ݁ ݈݇݊݅ ܽ ݁ݒℎܽ ݆ ݀݊ܽ ݅ ݁݀݊ ݂݅

0, ݈݇݊݅ ݊ ݁ݒℎܽ ݆ ݀݊ܽ ݅ ݁݀݊ ݂݅ ℎ݁݉ݐ ݊݁݁ݓݐܾ݁
Node attribute vector, ܨ = { ݂, ݊ = 1,2, … , ܰ, ݈ =

1,2, … , ,{ܮ is obtained after applying the L-LDA method to the 
original node profiles in form of text content, which in our case 
is the API description. The likelihood given a graph can be 
represented as below:

(Θ|ܣ)ܲ = ෑ ܲ
ೕୀଵ

ෑ (1 − ܲ)
ೕୀ

       = ෑ ෑ ]ߠ ݂, ݂]


ୀଵೕୀଵ

ෑ (1 − ෑ ]ߠ ݂, ݂]


ୀଵ

)
ೕୀ

                (5)

,ߤ)ࣨ~ߠ ݁ݎℎ݁ݓ Σ୪)

The calculation of ߠ can be presented as:

ൣߠ ݂, ݂൧ =
1

ඥ4ߨଶߑ
−) ݔ݁

1
2

ቀ൫ ݂, ݂൯ − ቁߤ
்

ߑ
ିଵ ቀ൫ ݂, ݂൯ −  ቁ)  (6)ߤ

ߤ ݁ݎℎ݁ݓ = ]ܧ) ଵ݂], ]ܧ ଶ݂]) 

ߑ = ቀݒܥ൫ ݂, ݂൯ቁ , ݅ = 1,2, ݆ = 1,2  

As part of the learning process, we can use maximum 
likelihood estimation to find affinity matrix distribution:

arg max (Θ|ܣ)ܲ

Representing likelihood with ℒ(Θ) = ℒ(ߤ, Σ) , we aim to 
find ߤ = ,ଵߤ} ,ଶߤ … , } ܽ݊݀ Σߤ = {Σଵ, Σଶ, … , Σ} to maximize:

ℒ(Θ) = ℒ(ߤ, Σ) 

= )݃ܮ ෑ ෑ ൣߠ ݂୪, ݂൧


ୀଵೕୀଵ

ෑ (1 − ෑ ൣߠ ݂, ݂൧


ୀଵ

))
ೕୀ

           (7) 

With such a likelihood function, we intend to find the 
parameters for the bivariate normal distributions of each 
attribute. It would maximize the edge probability if a pair of
nodes can form a link between them, and minimize the edge 
probability if otherwise.

However, the above likelihood function could be hard to 
maximize when many attributes are related. Given any two
nodes in an SSN, the possibility for them to be connected is
rather small: ܣ)# = 1) ≪ ܣ)# = 0) , which makes the 
adjacency matrix of the graph very sparse. To make the training 
process more effective, we consider only the attributes of 
adjacent nodes instead, so the likelihood equation can be
simplified as follows:

ℒ(Θ) = ℒ(ߤ, Σ) = ݃ܮ ቌ ෑ ෑ ൣߠ ݂, ݂൧


ୀଵೕୀଵ

ቍ             (8)

V. LEARNING CONTEXT-AWARE LATENT ATTRIBUTE 
DISTRIBUTION

Based on the individual models trained for each attribute, 
ALM can provide service linkage recommendation, that is, 
given one API of interest, it can provide the link probability of 
any known API. However, given a mashup query context, not 
every attribute contributes the same. Take Fig. 4 as an example, 
two API nodes have nine attributes whose values are assigned 
by API L-LDA model. Our general ALM takes all attributes to 
calculate the link probability score, which is the production of 
corresponding value of each attribute from affinity distribution 
PDF. In contrast, we have developed a context-aware ALM 
learning model that takes into consideration the description of 
mashup and use only selected attributes and regard others as 
irrelevant. As shown in Fig. 4, five attributes are selected.

Each attribute of APIs will have an affinity distribution after 
the pre-training process. Our idea is to train a dedicated model 
to understand the different importance of the attributes to 
various mashup context, which we call attribute sensitivity to 
context. Like in the L-LDA model, we assume that attributes as 

Fig. 4 Context-Aware ALM learning.
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labels are predefined and conditionally independent. To clarify,
we call it mashup L-LDA model in the following sections.
Given a mashup with description text, we aim to train a model 
to infer how related each attribute of APIs will contribute to
linkage prediction. An attribute weight vector ℱ(୫) is defined 
to indicate the importance of attributes of APIs to the context of 
mashup ݉. As summarized in Fig. 5, the generative process of 
attribute weight vector can be described as follows. The 
notations used are summarized in Table 2.

1) For each attribute of mashup ݐ = 1: ܶ
Draw ߮̇௧~ܿ݅ݎ݅ܦℎ݈݁(ߚ̇)ݐ

2) For each mashup description ݉ = 1: ܯ
a) Draw ̇ߞ()~ܿ݅ݎ݅ܦℎ݈݁ݐ( ̇ )
b) For each word token ݅ = 1: ܰ̇

Draw an attribute ̇ݖ
() ~݈ܽ݅݉݊݅ݐ݈ݑܯ(ζ̇(୫))

Draw a word ̇ݓ
() ~݈ܽ݅݉݊݅ݐ݈ݑܯ(߮̇௧)

c) Attribute weight vector:
ℱ(୫) = ቀ ଵ݂

(), ଶ݂
(), … , ்݂ ᇲ

() ቁ =  ζ̇(୫),

݂ ݁ݎℎ݁ݓ
(ௗ) ∈ [0,1], ݆ ∈ ܶ′

Assume that each mashup implies an attribute distribution 
.()̇ߞ Each word in the description is selected over an attribute-
word distribution, after a specific attribute is selected. Learning 
process related to L-LDA is similar to the method mentioned in 
section IV.B thus will not be elaborated here.

Instead of considering all attributes equal, context-aware 
latent attribute learning would consider only attributes with 

their weight values larger than a predefined threshold or the top-
k largest values:

ܲ,ᇲ 
 = ෑ ௧ߔ


வ௧௦ௗ

ൣ߬௧
, ߬௧

ᇲ
൧, ݐ ∈ ܶ′

VI. MASHUP RECOMMENDATION TECHNIQUE

Now that we have described our two-layer framework, in 
this section, we will present our context-aware mashup
recommendation technique. To ensure scalability and runtime 
performance, the training processes would be divided into 
offline and online phases, as shown in Fig. 6.

During the offline phase, known mashups information 
would be leveraged to extract their services components and 
descriptions through a mashup crawler. API components of 
mashups would be identified and analyzed through a service 
crawler to extract their descriptions and labels. Mashup labels 
comprise labels of their corresponding services. 

Using API parameters and properties as its labels in the L-
LDA training process, and service description from service 
providers as documents, the ALM linkage prediction model can 
generate a probability for any link between two APIs based on 
attributes values from the L-LDA model and attribute affinity 
distribution from the ALM model. Mashup L-LDA model will
leverage the labels of the comprising API components in
mashups, and mashup descriptions as document. Trained 
mashup L-LDA model could provide an attribute weight vector, 
given a new mashup description. 

At runtime, a user can input natural language description of 
demanded mashup. The description will be put into the trained 
mashup model of L-LDA to calculate attribute weight vector, 
which indicates important attributes for linkage prediction 
based on the context of the mashup. Given the candidate 
services, the ALM model will provide the link probability 
between any user’s API candidates and any known optional 
APIs, considering only sensitive attributes. The results will be 
shown to the users in the form of a ranked list of recommended 
services or yes-or-no threshold based prediction with 
information learned by the entire model.

VII. EXPERIMENTS AND ANALYSIS

We have designed a collection of experiments to evaluate 
our ALM model, utilizing unstructured attributes to predict 
future affinity linkage.

Fig. 5 Generative process of sensitivity probability of attributes.
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ܯ
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Fig. 6 Training of context-aware latent attribute distribution learning.

Table 2. Notation used in context-aware latent attribute affinity 
distribution learning.

Symbol Description
ࡹ Number of mashup descriptions
̇ࡺ Number of words in one mashup description
ࢀ Number of attributes
′ࢀ Number of attributes
,ࢻ̇ ࢼ̇ The parameters of Dirichlet priors to the multinomial 

distribution ̇ߞ(ௗ)  and ߮̇()

(̇ࢆ)࣐̇ The parameters of multinomial distribution over 
words specific to attribute ̇ݖ

()ࣀ̇ The parameters of multinomial distribution over 
attributes specific to description m

(̇)ࢠ̇ The attribute assign to word ݊̇
̇࢝ The word token in mashup description
ܜࢌ

() Attribute weight value specific to attribute ݐ in 
context of mashup ݉
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A. Experimental Design on Real World Dataset
Each scientific publication typically contains a software 

implementation, in other words, a publication can be viewed as
a special service (which is also the ultimate goal of the runnable 
paper initiative). Therefore, we treat a collection of scientific 
papers in the field of services computing as our testbed, where 
each paper represents a service node in a service social network.
It is thus intuitive to model their topics as attributes, their 
content as service descriptions, the taxonomy of Services 
Computing as allowable labels, and the keywords in papers as 
pre-assigned labels. When a paper cites another one, it implies 
to exploit the program/software published in the other paper. In 
other words, (1) each paper represents an API; and (2) a paper 
also represents the context of a mashup that leverages other 
APIs (i.e., papers).

We crawled all ICWS (starting from 2003), SCC (starting 
from 2004), and TSC (starting from 2008) papers as our testbed. 
The total number of papers collected for experiments is about 
2,500 and the number of internal citation relations within the 
papers is 1,140. We adopted the first-level entities in the
taxonomy as the labels to feed the L-LDA model in Stanford 
Topic Modeling Toolbox1. For the testbed, we thus have 11 
topics in total, which means the number of attributes for each 
paper is 11 in our ALM model. Terms that do not belong to the 
11 topics were assigned to a special topic called ‘others.’

Based on Formula (8), we tried to maximize the 
loglikelihood by selecting proper parameters for Bivariate 
Normal Distributions of 11 attributes, ࣨ(ߤ, Σ୪), ݈ = 1,2,3, … , l.
For each attribute, we tried to find the proper parameters to 
maximize the loglikelihood:

ℒ(Θ୪) = ℒ(ߤ, Σ୪) = ݃ܮ ቌ ෑ ൣߠ ݂ , ݂൧
ೕୀଵ

ቍ            (9)

Normalized PDF value in [0,1] was used as factors to 
calculate the link probability for each pair of nodes based on 
Formula (1). For each pair of nodes that have no link connecting 
them, we can get a predicted value ܣመ:

መܣ = ൜
1,     ݂݅ ܲ > ݈݀ℎݏ݁ݎℎݐ
       ݁ݏ݅ݓݎℎ݁ݐ              ,0

Following the method described in section V, we used the 
context of the current paper as mashup description and infer its 
topic weight vector. From the vector, the topics with top three
weights were selected for inferring the link probability between 
the current paper and any other candidates for citation. Because 
the number of topics for different papers varies, an average 

                                                          
1 https://nlp.stanford.edu/software/tmt/tmt-0.4/

value of all PDF values was served as the final score. After
normalization, the final score indicating the link probability 
falls into the interval [0,1] , which was also be used as the 
interval for threshold. In the training stage, we split the data 
samples randomly for 10-fold cross validation, and use 90% of 
samples for training and the rest 10% samples for testing. This
strategy intends to better estimate the performance of our 
algorithms and to limit overfitting.

B. Computational Complexity
In this section, we discuss the computational complexity of 

our ALM method. We assume that the number of papers is ܦ
and the total number of topics is ܮ, and there are ܰ words in one 
paper.

For the L-LDA method, running one iteration of Gibbs 
Sampling takes ܱ(ܰܮ) steps. Since there are multiple papers, it 
takes ܱ(ܰܦܮ) steps to scan all of them. To guarantee the 
convergence of probability distributions, it is necessary to run 
Gibbs sampler for sufficient number of iterations, which makes 
the overall running time to be ܱ(ܰܫܯܭ). Here  is the number ܫ
of iterations. We used the parameters from L-LDA method as 
attributes vectors.
1)Evaluation

To evaluate the performance of our ALM model, several 
related algorithms were used as comparison. TF/IDF was used 
as a method to measure the importance of tokens in text and 
then to generate a term vector for each paper. Given term 
vectors of all papers, Cosine similarity was used to measure the 
distance of one paper to another. If the similarity between two 
papers is larger than a certain threshold, we assume it is very 
likely for them to form a link connecting each other in the 
future. For TF/IDF-Cosine method, the angle ߠ is considered to
be the threshold to determine whether two papers have citation 
relation. To make the experiment result consistent, the 
threshold interval [0, [2/ߨ is projected to [0,1].

The K-means algorithm was applied to cluster papers and it 
is then assumed that links would exist between papers in the 
same cluster. By tuning the number of clusters from 1 to 2,500, 
we expected the performance of prediction varying. To make 
the experiment result consistent, the cluster K interval [1,2500]
was projected to [0,1].

We also used the parameters of Multinomial Distribution as
vectors of papers to calculate the distance and used a threshold 
to determine if there would be a link in the future. Using such 
similarity measurement to infer link probability, different 

Fig. 7 Comparison of our method with state of the art approaches.
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distance measurements would lead to different precision and 
recall over all. Both Euclid metric and Cosine similarity metric 
were used for comparison.

Fig. 7 shows the precision and recall comparison between 
different algorithms. The ground truth is the true references of 
the test dataset. If one paper is predicted to refer to another 
paper and in fact it does refer, such a test sample will be 
considered as true positive.

2) Results and Discussions
It is necessary to consider that the probability for two nodes

to form a link is not proportional to the similarity in value, but 
to the patterns of values of the two nodes we are viewing. 
Simple classification or clustering based on attributes values 
similarity is insufficient to capture the complex patterns when 
we consider a pair of nodes as one unit.

Methods like Cosine similarity, K-means clustering and
distance calculation do not consider the historical linkage 
information. They consider only the attributes values and the
similarity between two nodes. It can be observed from Fig. 7
that when the recall is higher than 0.4, the precision of our 
method is the highest, which means even after using parameters 
of Multinomial Distribution - the output from L-LDA model -
our method still outperforms LLDA-Cosine, LLDA-Euclid and 
K-means. The results prove the merit of our method in fine-
grained link prediction.

Some intermediate results deserve discussion as those 
reflect interesting patterns or latent information in reality. Fig. 
8 shows the distribution of publication data samples of each 
attribute. The x-axis represents the referrer’s value of each 
attribute, which, in the case of publications, is the value of each 
topic. The y-axis represents the referee’s value of attributes. It 
can be noted that quite some data samples are distributed near 
the point (0,0), which indicates that when two papers have a 
citation relationship between them, it is likely that the attribute 
values for one topic of both papers are close to 0.

If one paper is related to a topic and the other paper is not at 
all related to it, we consider there should be another topic which 
contributes to the connection between two papers. Hence, it is 
cogent to remove those data samples during the training and 

prediction phases. The side effect of it, however, is that the data 
samples previously intended for training the link affinity 
distribution would be downscaled. That could intensify the 
issue of data sparsity.

Fig. 9 is a precision-recall comparison graph of different 
algorithms. As we know precision and recall are typically 
inverse related and there is always a trade-off between them. It 
can be noted that the performance of our algorithm is the best 
compared to other algorithms under the condition that we 
consider the recall to be of more importance. This is because 
our evaluation criterion is that a link prediction algorithm 
should be capable of inferring unknown citation relationship 
based on the training data, without losing current information 
from history records. Given a test data set where the real citation 
relationship is known, the algorithm should have a relatively 
high recall, which indicating its ability of learning human 
research behavior and citing the reasonable paper as a part of 
references. The precision is not among evaluation criterion in 
that the truth set can only show what is the current paper citation 
information, but not what is the correct citation information. It 
is assumed that the current paper citation is not very complete 
due to limitation of cognition scope of researchers, which 
happens to be part of the motivation of our algorithm, to assist 
researchers in their study. 

As shown in Fig. 9, the recall rates for most algorithms 
decrease rapidly as the precision increase. To reach the recall of 
0.8, for instance, our algorithm remains its precision of more 
than 0.003. However, other algorithms only have a precision 
which is half of ours.

VIII. CONCLUSIONS

In this paper, we have demonstrated that fine-grained 
attribute-oriented model training can help predict the possibility 
of API linkage more accurately. The L-LDA model is used 
twice in our method: one is to extract information from 
unstructured data such as text description and papers, while the 
other one is to leverage latent information in the mashup 
context to provide context-aware predictions. Experimental 
results have proved that our model is able to prediction API 

Fig. 8 Learned models for topics. The x-axis and y-axis denote the topic 
probability of API1 and API2, respectively.

Fig. 9 Precision-recall impact comparison.
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linkage with a high recall.
In our future work, we plan to further study attribute 

modeling taking into consideration their dependency. 
Meanwhile, we plan to study the approximation approach for 
parameter estimation. Furthermore, we plan to apply our 
approach to a larger testbed for user study.
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