
A Fine-Grained API Link Prediction Approach Supporting
Mashup Recommendation

1 Qihao Bao, 1 Jia Zhang, 1Xiaoyi Duan, 2Rahul Ramachandran, 3Tsengdar J. Lee, 1Yankai Zhang, 1Yuhao
Xu,4Seungwon Lee, 4Lei Pan, 2Patrick Gatlin, 2Manil Maskey

1Carnegie Mellon University -Silicon Valley, USA
2NASA/MSFC, USA

3Science Mission Directorate, NASA Headquarters, USA
4Jet Propulsion Laboratory, California Institute of Technology, USA

{qihao.bao, jia.zhang, xiaoyi.duan, yankai.zhang, yuhao@sv.cmu.edu, {rahul.ramachandran, patrick.gatlin, manil.maskey}@nasa.gov,
tsengdar.j.lee@nasa.gov, {seungwon.lee, lei.pan}@jpl.nasa.gov

Abstract—Service (API) discovery and recommendation is key
to the wide spread of service oriented architecture and service
oriented software engineering. Service recommendation typically
relies on service linkage prediction calculated by the semantic
distances (or similarities) among services based on their collection
of inherent attributes. Given a specific context (mashup goal),
however, different attributes may contribute differently to a
service linkage. In this paper, instead of training a model for all
attributes as a whole, a novel approach is presented to
simultaneously train separate models for individual attributes.
Meanwhile, a latent attribute modeling method is developed to
reveal context-aware attribute distribution. Experiments over
real-world datasets have demonstrated that this fine-grained
method yields higher link prediction accuracy.

Keywords—Context-aware service recommendation; attribute
model training; latent attribute distribution; mashup
recommendation

I. INTRODUCTION

Computer-supported service (API) discovery and
composition (mashup) has become a critical topic in the field of
services computing. Earlier work on service discovery focuses
on keyword-oriented text mining techniques to identify
interested service candidates [1]. Semantic web techniques are
applied to add fuzzy search and semantics-powered search
ability [2]. Inspired by Amazon’s recommendation scenarios as
“people buy item A usually buy item B,” Collaborative
Filtering technique is applied in service discovery to
recommend services used by peers with similar background and
profiles [3].

In our previous work, we proposed to treat software services
as social entities and build service social networks (SSN) [4].
By studying the social behaviors of services from their usage
history (i.e., provenance), we developed algorithms to
recommend and predict future service usages using social
network analysis techniques. From then on, dozens of papers
have appeared to report various approaches to study service
usage provenance and rank service candidates under contextual
conditions. For example, Zhong et al. [5] consider time series
of service usages when recommending mashup components.

In recent years, researchers have started to leverage machine
learning techniques to analyze service usage history. Zhong et
al. [5] leverage the Latent Dirichlet Allocation (LDA) [6]
technique from the information retrieval field to summarize
topic distribution from API description documents. Gao et al.
[7] apply the LDA technique to mine service co-occurrence

relationships from past mashup history.
In this project, we aim to further study how to apply

machine learning techniques, in a service social network, to
incrementally train models from service provenance to better
predict service linkages at runtime. Be more specific, given a
mashup design purpose with some APIs already decided to be
used in the mashup, how to recommend other APIs to co-exist
in the mashup? In contrast to related work, we aim to study how
fine-grained level attributes may contribute to context-aware
API linkage prediction.

The motivation of this research comes from our Apache
Incubator project - Climate Model Diagnostic Analyzer
(CMDA) [8]. In the CMDA project, we originally constructed
a CMDA REST service social network. Its comprising nodes
are individual CMDA APIs that encapsulate inherent attributes.
Using such a class-level model, the carried attributes may
contribute to the connections among services; however, the
relationship may be implicit. Fig. 1 shows an example of
finding a subsequent API ܵ2 following ܵ1 in a mashup. Say
that a user intends to design a mashup to calculate the zonal
mean of an anomaly of a variable. This task can be achieved by
a mashup that links the anomaly calculation API and the zonal
mean calculation API. For the second step, there are two zonal-
mean calculation API candidates with similar functions: one is
for 2-dimensional variables; the other is for 3-dimensional
variables. The attribute about the output data variable
dimension from the first API (anomaly calculation) will be a
determining factor to choose which zonal-mean calculation API
to use in the second stage of the mashup, while other attributes
do not contribute as such in this mashup-aware API
recommendation problem. This example shows the necessity of

Fig. 1. Motivating example of the importance of attributes on service
recommendation.

2017 IEEE 24th International Conference on Web Services

978-1-5386-0752-7/17 $31.00 © 2017 IEEE

DOI 10.1109/ICWS.2017.36

220

Authorized licensed use limited to: SOUTHERN METHODIST UNIV. Downloaded on October 19,2024 at 04:05:12 UTC from IEEE Xplore. Restrictions apply.

treating individual attributes as first-class citizen instead of
hiding them under the surface of APIs.

Our contributions are summarized in three-fold. First is that
we have developed a scalable attribute-level data model,
featuring scalability and extensibility. We have extended
Multiplicative Attribute Graph (MAG) [9] model to represent
node profiles featuring rich categorical attributes, while
relaxing its constraint of requiring a priori knowledge of
predefined attributes. LDA is leveraged to dynamically identify
attributes based on attribute modeling, and multiple Gaussian
fit is applied to find global optimal values.

The second contribution is that we have seamlessly
integrated the latent relationships between API attributes as
well as observed network structure based on historical API
usage data. Such a layered information model enables us to
predict the probability of a link between two APIs based on
their attribute link affinities carrying a variety of information
including meta data, semantic data, historical usage data, as
well as crowdsourcing user comments and annotations.

The third contribution is that we have developed a fine-
grained context-aware mashup-API recommendation
technique. On top of individual models trained for separate
attributes, a dedicated layer is trained to represent the latent
attribute distribution regarding mashup purpose, i.e., sensitivity
of attributes to context. Thus, given the description of an
intended mashup, the attributes sensitive to the goal will be
identified, and corresponding attribute models will be exploited
to compute the possibility of API linkages under the context.
Such a layered model increases search accuracy.

The remainder of the paper is organized as follows. In
Section II, we discuss related work. In Section III, we present
our basic attibute-level model. In Sections IV and V, we explain
the details of individual attribute model training and context-
aware latent attribute distribution learning, respectively. In
Section VI, we describe our service recommendation technique.
In Section VII, we present experimental studies and analysis. In
Section VIII, we draw conclusions.

II. RELATED WORK

Link prediction remains a hot topic in social network study,
aiming to infer interactions that would probably occur in the
future given a snapshot of the current network. While all link
prediction methods assigning a weight score for each pair of
nodes, Liben-Nowell and Kleiberg summarize them into three
categories [10]: methods based on node neighborhood, methods
based on the ensemble of all paths and higher-level methods
such as Unseen Bigrams, and methods based on clustering and
low-rank approximation.

Most of research in the literature focus on examining
similarity between nodes to provide an estimation whether they
may be connected to each other. A number of algorithms are
proposed to calculate profile similarity among nodes,
leveraging information from various sources to form a vector of
attributes for each node [11]. While each node is profiled as a
vector of attributes, these attributes are typically used as
features to classify nodes into clusters based on specific
patterns. Such methods work well in many cases; however,
similarity is just one way to study the connections between
nodes [9].

To predict the link between two nodes, Kim and Leskovec
[9] believe it is necessary to consider not only the similarity
between them, but also the possibility that they connect to each
other due to dissimilarity. Proposing the Multiplicative
Attribute Graph (MAG) model [9], they estimate affinity
matrices for node attributes. To simplify the problem, the
original MAG assumes that each attribute is in binary format.
Later researchers raise the bar a little and assume that every
attribute of each node is drawn from a Bernoulli distribution
[12]. This assumption still may not work in our science
knowledge graph, however. Nodes in a service social network
are usually profiled with crowdsourcing or information retrieval
mechanism. Thus, their profiles contain a large amount of
unstructured data in the form of text content, such as
descriptions, and structured attributes that cannot be easily
converted to a binary value to be estimated by Bernoulli
distribution. Therefore, in our project we propose to further
raise the bar and learn individual models for node attributes.
Instead of using affinity matrix, we estimate affinity
distribution covering continuous values.

Some recent studies consider network structure could help
profile nodes, as such information represents the property,
history and behaviors of the nodes. A social-attribute network
was developed which integrates network structure and node
attributes by introducing attributes nodes into the graph [13].
Some researchers focus on extracting hidden attributes from
nodes to create latent feature vectors [14]. In contrast to their
work, we aim to study how individual attributes may contribute
to context-aware API (node) connections in an SSN.

III. INFORMATION MODEL

A. Basic Attribute-Level Model
To study fine-grained API link prediction, we propose to

link physical world and virtual world in a service social
network, which we call Basic Attribute-Level Model (B-ALM).
As shown in Fig. 2, B-ALM can be viewed as a two-layer graph:
an overlay probabilistic adjacency graph is built on top of a
provenance graph.

Definition 1: A basic attribute-level model (ALM) is a 5-
tuple ܯ = (ܸ, ,ܧ ,ᇱܧ ,{௨ܨ} ܸ where ,({ߔ} is a set of vertices
and {௨ܨ} is a collection of categorical attribute vectors for each
ݑ ∈ ܸ, ܭ is a collection of link-affinity matrices over all {ߔ}
attributes (݇ ∈ ܭ), each representing the probability of two
vertices to link to each other based on the values of one
particular attribute. ܧ and ܧ′ are both sets of edges. ܧ

Fig. 2. Basic Attribute-Level Model overview.

ݑ = ܰ, ,ܦ ,ܣ ܫ

ݑ = { ܰ, ,ܦ ,ܣ {ܫ

ܲ ,ೕ

ݑ = ܰ, ܦ , ܣ , ܫ
 = ,ଵܨ} ,ଶܨ ,ଷܨ … , {ܨ

ߙ ߚ

ߚ ߛ

ܸ = [{݊ܽ݉݁, ,݁ݐܽ݀
,ݕܿ݊݁݃ܽ [{ݐ݊݁݉ݑݎݐݏ݊݅

,ݑ ݁ݎℎ݁ݓ ݑ ∈ ܸ

݇ ∈ ܭ
߶

221

Authorized licensed use limited to: SOUTHERN METHODIST UNIV. Downloaded on October 19,2024 at 04:05:12 UTC from IEEE Xplore. Restrictions apply.

comprises actual links each representing an existing linkage
between a pair of vertices. ′ܧ comprises virtual links each
representing the probability of a linkage between a pair of
vertices.

Example: Consider a B-ALM comprising five nodes as
shown in Fig. 2, where a node represents a data service carrying
four attributes: name, date, agency, and instrument. Thus, node

ܸ has an attribute vector ܨ = { ܰ, ,ܦ ,ܣ {ܫ with four
categorical attributes associated.

A link-affinity matrix ߔ is used to bridge the gap between
attribute values {ܨ௨} and the probability ௨ܲ,௨ೕ of a link between
a pair of nodes, say ݑ, ܨ . Each attributeݑ is associated with a
link-affinity matrix ߶.

B. Link Affinity
Link affinity can be categorized into four types: homophily,

heterophily, core-periphery, and randomness [9]. Some node
attributes may have positive affinities with other attributes. For
example, each CMDA API possesses an attribute “sponsored
project.” APIs yielded from the same project have higher
probability to be used together in a large-scale data analytics
workflow. Thus, we can claim that attribute “sponsored
project” has positive affinities (i.e., Homophily).

Some nodes attributes may also have negative affinities
(Heterophily) with other attributes. For example, some APIs
can plot a graph regarding rainforests temperature, whereas
some APIs would benefit research on desert air humidity. These
APIs may rarely be combined with each other; in other words,
they do not have high probability to be linked together. We can
claim that the attributes “focus on rainforest temperature?” and
“focus on desert humidity?” have negative affinities (i.e.,
Heterophily). Core-periphery means values are relatively larger
near a cohesion core and decrease as they locate further from
the core. Randomness means values do not follow specific
patterns.

A simple binary link-affinity matrix template is shown in
Fig. 2 on the lower right part, where the attribute value is in
binary. If both nodes bear the same value “0” or “1” for the nth
attribute, their probability to link together will be ߙ and ߛ ,
respectively.

In building a B-ALM network, for each attribute type ࡲ ,
the corresponding link-affinity matrix ∈ {} can be
generated. With matrixes generated, the probabilistic values of
edges between every pair of nodes can be calculated through:

 ௨ܲ,௨ೕ = ෑ ߔ

ୀଵ

,ܨൣ ൧ (1)ܨ

IV. AFFINITY DISTRIBUTION LEARNING USING SEMANTIC
DATA

MAG assumes that all attributes are predefined, and their
values are discrete (either binary [9] in the earlier work or
enumerable [14] in recent work). Since SSN is incrementally
built, such binary or Bernoulli distribution assumptions will not
reflect various conditions. Therefore, instead of using affinity
matrix carrying discrete values, we decide to build affinity
distribution carrying continuous values.

A. Model Definition
Equation (1) illustrates how to calculate link probability

between every pair of nodes based on predefined affinity
matrices provided by domain experts. It is yet to be considered
how to estimate the affinity matrix if there is no prior
knowledge that can be easily obtained and utilized to assign the
value of affinity matrices. In addition, what if the attributes are
not discrete, such as length, weight, and possibilities? Instead
of presenting affinity relation with a 2 × 2 matrix shown in Fig.
2, we use a Bivariate Normal Distribution to capture such latent
information for each attribute and use the Probability Density
Function (PDF) value of learned distribution to indicate how
relevant two nodes are, based on the attribute values of the two
nodes and actual link between them. Rather than considering
only True/False values for each attribute, we propose to use real
number values instead. We thus revise Definition 1 as follows
to reflect such a change.

Definition 1’: An attribute-level model (ALM) is a 6-tuple
ܯ = (ܸ, ,ܧ ,ܣ ܲ, ,{௨ܨ} ܸ where ,({௧߆} is a set of vertices, and
{F௨} is a collection of vectors of |T| attributes for each ݑ ∈ ܸ ,
{Θ௧} is a collection of link-affinity distributions over T ݐ) ∈ ܶ),
each representing the probability of two vertices to link to each
other based on the value of one attribute of two nodes. ܧ, ܲ and
ܣ are all sets of edges. ܧ comprises actual links each
representing an existing linkage between a pair of vertices; ܲ
comprises virtual links each representing probability of a
linkage between a pair of vertices; and A comprises virtual links
predicted with link probability larger than a certain threshold.

While our ALM covers APIs as nodes in a service social
network, it is intuitive to leverage their parameters and
properties as attributes. However, things may become more
complicated due to several significant reasons. First, although
some APIs provide attributes, most of them are categorical and
hence could not provide the quantifiable information of how
each attribute contributes to an API. Second, the attributes
provided by API metadata may not be accurate without
considering description from service providers. Third, attribute
extraction should be decided based on the targeted API sets for
scalability and comparison efficiency. Fourth, manual labeling
is labor intensive. In summary, when studying relationships
among a collection of APIs, the actual properties used as
attributes should be dynamically derived from the API
description set.

B. Affinity Distribution Estimation
Therefore, we apply machine learning technique to predict

network relationships inside of ALM, considering both API
descriptions and historical API connections. Latent Dirichlet
Allocation (LDA) [6] is applied to API description to extract
API attributes and consider probability of each attribute as
attribute value in ALM. Afterwards, attribute values and
historical linkage information are used for learning link-affinity
distribution. Our approach is illustrated in Fig. 3 using the plate
notation, which is widely used to represent repeated variables
by grouping them in a subgraph with a rectangle called ‘plate’
[15]. Each subgraph is duplicated many times with its
comprising variables indexed by the repetition marked at the
corner of a rectangle. Table I summarizes the notations used in
our model.

The overall generative process of our API-based edge
probability with network adjacency matrix can be described as
follows:

222

Authorized licensed use limited to: SOUTHERN METHODIST UNIV. Downloaded on October 19,2024 at 04:05:12 UTC from IEEE Xplore. Restrictions apply.

1) For each attribute ݐ = 1: ܶ
Draw ߮௧~ܿ݅ݎ݅ܦℎ݈݁(ߚ)ݐ

2) For each API description ݀ = 1: ܦ
a) Draw ߞ(ௗ)~ܿ݅ݎ݅ܦℎ݈݁ݐ()
b) For each word token ݅ = 1: ܰ

Draw an attribute ݖ
(ௗ) ~ ݈ܽ݅݉݊݅ݐ݈ݑܯ(ζ(ୢ))

Draw a word ݓ
(ௗ) ~݈ܽ݅݉݊݅ݐ݈ݑܯ(߮௧)

c) ࣮(ୢ) = ቀ߬ଵ
(ௗ), ߬ଶ

(ௗ), … , ்߬
(ௗ) ቁ = (ௗ)ߞ

3) For each attribute t′ = 1: T′
For each API description pair (d, d′) ∈ ܦ × ܦ

Draw ቀ߬௧
(ௗ), ߬௧

൫ௗ ൯ቁ (Θ)ࣨ ݁ݐܽ݅ݎܽݒ݅ܤ ~
With the trained model, the probabilistic score indicating two

APIs with description ݀ and ݀′ can be calculated as follows:

ܲௗ,ௗ = ෑ ߔ

்

ୀଵ

ൣ߬
ௗ, ߬

ௗ ൧

Given a threshold we can predict if two APIs may have a
connection in the future:

Aௗ,ௗ = ൜
1, ݂݅ܲௗ,ௗ > ݈݀ℎݏ݁ݎℎݐ
0, ݁ݏ݅ݓݎℎ݁ݐܱ

1) Learning Distribution over API Attributes

To tackle the issue of utilizing unstructured text data and
transforming it to node attributes, we first apply a topic model
following Dirichlet distribution. The affinity distribution is
estimated based on the node attributes and known relationships
between nodes.

A topic model is a type of statistical model for discovering
abstract "topics" that occur in a collection of documents. Topic
modeling is a frequently used text mining tool for discovering
hidden semantic structures in a text body. Among others, Latent
Dirichlet Allocation (LDA) [6] is a known generative statistical
model allowing sets of textual observations to be explained by
unobserved topics. In case of service discovery and
recommendation, the relation between the attributes of services
to service description is analogous to the topics to documents.
We thus apply the LDA concept to mine attribute distribution
over services.

As the first step, we present our idea as a probabilistic
graphical model in Fig. 3. The parameters ߙ and ߚ are
repository-level parameters, assumed to be sampled once in the
process of generating a service repository. The variable ߞ is a
service-level variable, sampled once per service. Finally, the
variables ܼ and ܹ are word-level variables and are sampled
once for each word in each service description.

As the second step, we integrate in past API connections.
As shown in Fig. 3, for each pair of APIs whose attribute
distributions are ߞ(ௗ) and (ௗᇲ)ߞ , respectively, let us consider
how each of their attribute contributes to their actual connection
(visible connection ܣ). For every attribute, over a distribution
of Θ, the affinity values (τ and) from the two APIs form a
probability of their connection ܲ.

In our model, we aim to learn the collection of latent
parameters from provenance data. Expectation Maximization
(EM) is applied to estimate the Generative Model. Our goal is
to reason about the full joint distribution:

 P(w, z, φ, ζ|α, β) = P(w, z|φ, ζ)P(φ|β)P(ζ|α) (2)

We marginalize the model parameters out of the joint
distribution, so that we can focus on the words in the repository
and their assigned attributes (ݓ) :(ݖ)

,ݓ)ܲ ,ߙ|ݖ (ߚ = න නܲ(ݓ, ,ߔ|ݖ ߮݀ߞ݀(ߙ|ߞ)ܲ(ߚ|߮)ܲ(ߞ
ః

According to Bayes Rules we have:
P(w, z|α, β) = P(w|α, β)P(z|w, α, β) (3)

For inference of the model, Gibbs sampling [16] is used to
approximate the distribution of P(z|w, α, β) , which is the
attribute assignment given the word observation. By sampling
each ,ݖ complete (or full) conditionals can be derived for each
ݖ in :ݖ

ݖ)ܲ = ,ିݖ|݆ ;ݓ ,ߙ (ߚ =
,ݖ)ܲ ,ିݖ ;ݓ ,ߙ (ߚ

,ିݖ)ܲ ;ݓ ,ߙ (ߚ

 ∝
݊ି,

(௪) + ,ߚ

݊ି,
(∙) + ߚܶ

⋅
݊ି,

(ௗ) + ,ߙ

݊ି୧,(∙)
(ௗ) + ߙܦ

 (4)

where: ݀ is the API description where word ݓ occurs; ݖ is
the attribute assignment for word ݓ; ݊ି,

(∙) denotes a count of
words under attribute ݆ which does not include the current

Table 1. Notation used in affinity distribution estimation.
Symbol Description
ࡰ Number of descriptions
 Number of words
ࢀ Number of attributes
′ࢀ Number of attributes
,ࢻ ࢼ The parameters of Dirichlet priors to the multinomial

distribution ߞ(ௗ) and ߮()

(ࢆ)࣐ The parameters of multinomial distribution over
words specific to description z

(ࢊ)ࣀ The parameters of multinomial distribution over
attributes specific to description ݀

(ᇲࢊ)ࣀ The parameters of multinomial distribution over
attributes specific to another description ݀’

()ࢠ The attribute assign to word ݊
࢝ The word token in API description
࣎ Probabilistic value of one attribute from ߞ(ௗ)

࣎ Probabilistic value of the same attribute as ߬ from
(ௗᇲ)ߞ

ࢨ The parameters of Bivariate Normal Distribution over
߬ ܽ݊݀ ߬′

ࡼ The probabilistic adjacency matrix
A The network generated given ܲ with a series of coin

flips

Fig. 3 Plate notation for generative process of edge probability in SSN.

(ௗ)ߞ

ߙ

ݖ

߮ ݓ

 Θ

ߚ

ܣ

ܶ

ܶ′

 ߬

 ߬′

(‘ௗ)ߞ

223

Authorized licensed use limited to: SOUTHERN METHODIST UNIV. Downloaded on October 19,2024 at 04:05:12 UTC from IEEE Xplore. Restrictions apply.

assignment ݖ ; ݊ି,
(௪) is the number of times (ignoring position

݅) word ݓ is assigned to attribute ݆ ; ݊ି,
(ௗ) is the number of

times (ignoring position ݅) attribute j is used in API description
݀ ; ݊ି,(∙)

(ௗ) is the number of times (ignoring position ݅) all
attributes are used in API description ݀ . Intuitively, we can
interpret the first ratio as the probability of word ݓ under
attribute ݆ considering the number of words under attribute ݆;
and the second ratio as the probability of attribute ݆ in document
݀ considering other attributes that are used in it.

At this stage, we only consider ALM when each attribute is
conditionally independent from each other. Each attribute
assigned to an API description would be given a probability,
indicating the importance of the attribute over the API and there
is no dependency between two attributes of one API
description. Attributes with dependency will be studied in our
future research.

However, traditional LDA is an unsupervised algorithm that
models each document as a mixture of topics. We adopt the
Labeled LDA (L-LDA) [6, 17], which is a supervised LDA by
constraining the topic model to use only the topics that
correspond to a document’s (observed) label set. In our case,
(ௗ)ߞ is restricted to be defined only over the attributes that
correspond to its labels Λ(d).

2) Learning Distribution over Affinity Values
We then assume each affinity distribution θ୪ follows

Bivariate normal distribution, θ୪~ࣨ(ߤ, Σ), ݈ = 1,2, … , ܮ ,
where ܮ is the number of attributes. ܣ is the adjacency matrix
of the graph:

ܣ = ൜
1, ℎ݁݉ݐ ݊݁݁ݓݐܾ݁ ݈݇݊݅ ܽ ݁ݒℎܽ ݆ ݀݊ܽ ݅ ݁݀݊ ݂݅

0, ݈݇݊݅ ݊ ݁ݒℎܽ ݆ ݀݊ܽ ݅ ݁݀݊ ݂݅ ℎ݁݉ݐ ݊݁݁ݓݐܾ݁
Node attribute vector, ܨ = { ݂, ݊ = 1,2, … , ܰ, ݈ =

1,2, … , ,{ܮ is obtained after applying the L-LDA method to the
original node profiles in form of text content, which in our case
is the API description. The likelihood given a graph can be
represented as below:

(Θ|ܣ)ܲ = ෑ ܲ
ೕୀଵ

ෑ (1 − ܲ)
ೕୀ

 = ෑ ෑ]ߠ ݂, ݂]

ୀଵೕୀଵ

ෑ (1 − ෑ]ߠ ݂, ݂]

ୀଵ

)
ೕୀ

 (5)

,ߤ)ࣨ~ߠ ݁ݎℎ݁ݓ Σ୪)

The calculation of ߠ can be presented as:

ൣߠ ݂, ݂൧ =
1

ඥ4ߨଶߑ
−) ݔ݁

1
2

ቀ൫ ݂, ݂൯ − ቁߤ
்

ߑ
ିଵ ቀ൫ ݂, ݂൯ − ቁ) (6)ߤ

ߤ ݁ݎℎ݁ݓ =]ܧ) ଵ݂],]ܧ ଶ݂])

ߑ = ቀݒܥ൫ ݂, ݂൯ቁ , ݅ = 1,2, ݆ = 1,2

As part of the learning process, we can use maximum
likelihood estimation to find affinity matrix distribution:

arg max (Θ|ܣ)ܲ

Representing likelihood with ℒ(Θ) = ℒ(ߤ, Σ) , we aim to
find ߤ = ,ଵߤ} ,ଶߤ … , } ܽ݊݀ Σߤ = {Σଵ, Σଶ, … , Σ} to maximize:

ℒ(Θ) = ℒ(ߤ, Σ)

=)݃ܮ ෑ ෑ ൣߠ ݂୪, ݂൧

ୀଵೕୀଵ

ෑ (1 − ෑ ൣߠ ݂, ݂൧

ୀଵ

))
ೕୀ

 (7)

With such a likelihood function, we intend to find the
parameters for the bivariate normal distributions of each
attribute. It would maximize the edge probability if a pair of
nodes can form a link between them, and minimize the edge
probability if otherwise.

However, the above likelihood function could be hard to
maximize when many attributes are related. Given any two
nodes in an SSN, the possibility for them to be connected is
rather small: ܣ)# = 1) ≪ ܣ)# = 0) , which makes the
adjacency matrix of the graph very sparse. To make the training
process more effective, we consider only the attributes of
adjacent nodes instead, so the likelihood equation can be
simplified as follows:

ℒ(Θ) = ℒ(ߤ, Σ) = ݃ܮ ቌ ෑ ෑ ൣߠ ݂, ݂൧

ୀଵೕୀଵ

ቍ (8)

V. LEARNING CONTEXT-AWARE LATENT ATTRIBUTE
DISTRIBUTION

Based on the individual models trained for each attribute,
ALM can provide service linkage recommendation, that is,
given one API of interest, it can provide the link probability of
any known API. However, given a mashup query context, not
every attribute contributes the same. Take Fig. 4 as an example,
two API nodes have nine attributes whose values are assigned
by API L-LDA model. Our general ALM takes all attributes to
calculate the link probability score, which is the production of
corresponding value of each attribute from affinity distribution
PDF. In contrast, we have developed a context-aware ALM
learning model that takes into consideration the description of
mashup and use only selected attributes and regard others as
irrelevant. As shown in Fig. 4, five attributes are selected.

Each attribute of APIs will have an affinity distribution after
the pre-training process. Our idea is to train a dedicated model
to understand the different importance of the attributes to
various mashup context, which we call attribute sensitivity to
context. Like in the L-LDA model, we assume that attributes as

Fig. 4 Context-Aware ALM learning.

Affinity Distribution of Attr_1

ࢂ,ࢂࡼ

= ෑ ࢶ
ૢ

ୀ
,࢚࢚࢘ ࢚࢚࢘

ࢂ,ࢂࡼ

ࢻ_࢛ࢎ࢙ࢇࡹ

= ෑ ࢶ

ୀ
,࢚࢚࢘ ࢚࢚࢘

:Model trained for Attr_1ࢶ ࢶ

ࢶ

ࢶࢶࢶ
ࢂ,ࢂࡼ

ࢂ,ࢂࡼ

ࢻ_࢛ࢎ࢙ࢇࡹ

ࢶ ࢶ ࢶૠࢶૡࢶ ૢࢶ

224

Authorized licensed use limited to: SOUTHERN METHODIST UNIV. Downloaded on October 19,2024 at 04:05:12 UTC from IEEE Xplore. Restrictions apply.

labels are predefined and conditionally independent. To clarify,
we call it mashup L-LDA model in the following sections.
Given a mashup with description text, we aim to train a model
to infer how related each attribute of APIs will contribute to
linkage prediction. An attribute weight vector ℱ(୫) is defined
to indicate the importance of attributes of APIs to the context of
mashup ݉. As summarized in Fig. 5, the generative process of
attribute weight vector can be described as follows. The
notations used are summarized in Table 2.

1) For each attribute of mashup ݐ = 1: ܶ
Draw ߮̇௧~ܿ݅ݎ݅ܦℎ݈݁(ߚ̇)ݐ

2) For each mashup description ݉ = 1: ܯ
a) Draw ̇ߞ()~ܿ݅ݎ݅ܦℎ݈݁ݐ(̇)
b) For each word token ݅ = 1: ܰ̇

Draw an attribute ̇ݖ
() ~݈ܽ݅݉݊݅ݐ݈ݑܯ(ζ̇(୫))

Draw a word ̇ݓ
() ~݈ܽ݅݉݊݅ݐ݈ݑܯ(߮̇௧)

c) Attribute weight vector:
ℱ(୫) = ቀ ଵ݂

(), ଶ݂
(), … , ்݂ ᇲ

() ቁ = ζ̇(୫),

݂ ݁ݎℎ݁ݓ
(ௗ) ∈ [0,1], ݆ ∈ ܶ′

Assume that each mashup implies an attribute distribution
.()̇ߞ Each word in the description is selected over an attribute-
word distribution, after a specific attribute is selected. Learning
process related to L-LDA is similar to the method mentioned in
section IV.B thus will not be elaborated here.

Instead of considering all attributes equal, context-aware
latent attribute learning would consider only attributes with

their weight values larger than a predefined threshold or the top-
k largest values:

ܲ,ᇲ
 = ෑ ௧ߔ

வ௧௦ௗ

ൣ߬௧
, ߬௧

ᇲ
൧, ݐ ∈ ܶ′

VI. MASHUP RECOMMENDATION TECHNIQUE

Now that we have described our two-layer framework, in
this section, we will present our context-aware mashup
recommendation technique. To ensure scalability and runtime
performance, the training processes would be divided into
offline and online phases, as shown in Fig. 6.

During the offline phase, known mashups information
would be leveraged to extract their services components and
descriptions through a mashup crawler. API components of
mashups would be identified and analyzed through a service
crawler to extract their descriptions and labels. Mashup labels
comprise labels of their corresponding services.

Using API parameters and properties as its labels in the L-
LDA training process, and service description from service
providers as documents, the ALM linkage prediction model can
generate a probability for any link between two APIs based on
attributes values from the L-LDA model and attribute affinity
distribution from the ALM model. Mashup L-LDA model will
leverage the labels of the comprising API components in
mashups, and mashup descriptions as document. Trained
mashup L-LDA model could provide an attribute weight vector,
given a new mashup description.

At runtime, a user can input natural language description of
demanded mashup. The description will be put into the trained
mashup model of L-LDA to calculate attribute weight vector,
which indicates important attributes for linkage prediction
based on the context of the mashup. Given the candidate
services, the ALM model will provide the link probability
between any user’s API candidates and any known optional
APIs, considering only sensitive attributes. The results will be
shown to the users in the form of a ranked list of recommended
services or yes-or-no threshold based prediction with
information learned by the entire model.

VII. EXPERIMENTS AND ANALYSIS

We have designed a collection of experiments to evaluate
our ALM model, utilizing unstructured attributes to predict
future affinity linkage.

Fig. 5 Generative process of sensitivity probability of attributes.

(ௗ̇)ߞ

ߙ̇

ݖ̇

̇߮ ݓ̇

ߚ̇

ܰ̇
ܯ

ܶ

ܶ′
 ݂

Fig. 6 Training of context-aware latent attribute distribution learning.

Table 2. Notation used in context-aware latent attribute affinity
distribution learning.

Symbol Description
ࡹ Number of mashup descriptions
̇ࡺ Number of words in one mashup description
ࢀ Number of attributes
′ࢀ Number of attributes
,ࢻ̇ ࢼ̇ The parameters of Dirichlet priors to the multinomial

distribution ̇ߞ(ௗ) and ߮̇()

(̇ࢆ)࣐̇ The parameters of multinomial distribution over
words specific to attribute ̇ݖ

()ࣀ̇ The parameters of multinomial distribution over
attributes specific to description m

(̇)ࢠ̇ The attribute assign to word ݊̇
̇࢝ The word token in mashup description
ܜࢌ

() Attribute weight value specific to attribute ݐ in
context of mashup ݉

225

Authorized licensed use limited to: SOUTHERN METHODIST UNIV. Downloaded on October 19,2024 at 04:05:12 UTC from IEEE Xplore. Restrictions apply.

A. Experimental Design on Real World Dataset
Each scientific publication typically contains a software

implementation, in other words, a publication can be viewed as
a special service (which is also the ultimate goal of the runnable
paper initiative). Therefore, we treat a collection of scientific
papers in the field of services computing as our testbed, where
each paper represents a service node in a service social network.
It is thus intuitive to model their topics as attributes, their
content as service descriptions, the taxonomy of Services
Computing as allowable labels, and the keywords in papers as
pre-assigned labels. When a paper cites another one, it implies
to exploit the program/software published in the other paper. In
other words, (1) each paper represents an API; and (2) a paper
also represents the context of a mashup that leverages other
APIs (i.e., papers).

We crawled all ICWS (starting from 2003), SCC (starting
from 2004), and TSC (starting from 2008) papers as our testbed.
The total number of papers collected for experiments is about
2,500 and the number of internal citation relations within the
papers is 1,140. We adopted the first-level entities in the
taxonomy as the labels to feed the L-LDA model in Stanford
Topic Modeling Toolbox1. For the testbed, we thus have 11
topics in total, which means the number of attributes for each
paper is 11 in our ALM model. Terms that do not belong to the
11 topics were assigned to a special topic called ‘others.’

Based on Formula (8), we tried to maximize the
loglikelihood by selecting proper parameters for Bivariate
Normal Distributions of 11 attributes, ࣨ(ߤ, Σ୪), ݈ = 1,2,3, … , l.
For each attribute, we tried to find the proper parameters to
maximize the loglikelihood:

ℒ(Θ୪) = ℒ(ߤ, Σ୪) = ݃ܮ ቌ ෑ ൣߠ ݂ , ݂൧
ೕୀଵ

ቍ (9)

Normalized PDF value in [0,1] was used as factors to
calculate the link probability for each pair of nodes based on
Formula (1). For each pair of nodes that have no link connecting
them, we can get a predicted value ܣመ:

መܣ = ൜
1, ݂݅ ܲ > ݈݀ℎݏ݁ݎℎݐ
 ݁ݏ݅ݓݎℎ݁ݐ ,0

Following the method described in section V, we used the
context of the current paper as mashup description and infer its
topic weight vector. From the vector, the topics with top three
weights were selected for inferring the link probability between
the current paper and any other candidates for citation. Because
the number of topics for different papers varies, an average

1 https://nlp.stanford.edu/software/tmt/tmt-0.4/

value of all PDF values was served as the final score. After
normalization, the final score indicating the link probability
falls into the interval [0,1] , which was also be used as the
interval for threshold. In the training stage, we split the data
samples randomly for 10-fold cross validation, and use 90% of
samples for training and the rest 10% samples for testing. This
strategy intends to better estimate the performance of our
algorithms and to limit overfitting.

B. Computational Complexity
In this section, we discuss the computational complexity of

our ALM method. We assume that the number of papers is ܦ
and the total number of topics is ܮ, and there are ܰ words in one
paper.

For the L-LDA method, running one iteration of Gibbs
Sampling takes ܱ(ܰܮ) steps. Since there are multiple papers, it
takes ܱ(ܰܦܮ) steps to scan all of them. To guarantee the
convergence of probability distributions, it is necessary to run
Gibbs sampler for sufficient number of iterations, which makes
the overall running time to be ܱ(ܰܫܯܭ). Here is the number ܫ
of iterations. We used the parameters from L-LDA method as
attributes vectors.
1)Evaluation

To evaluate the performance of our ALM model, several
related algorithms were used as comparison. TF/IDF was used
as a method to measure the importance of tokens in text and
then to generate a term vector for each paper. Given term
vectors of all papers, Cosine similarity was used to measure the
distance of one paper to another. If the similarity between two
papers is larger than a certain threshold, we assume it is very
likely for them to form a link connecting each other in the
future. For TF/IDF-Cosine method, the angle ߠ is considered to
be the threshold to determine whether two papers have citation
relation. To make the experiment result consistent, the
threshold interval [0, [2/ߨ is projected to [0,1].

The K-means algorithm was applied to cluster papers and it
is then assumed that links would exist between papers in the
same cluster. By tuning the number of clusters from 1 to 2,500,
we expected the performance of prediction varying. To make
the experiment result consistent, the cluster K interval [1,2500]
was projected to [0,1].

We also used the parameters of Multinomial Distribution as
vectors of papers to calculate the distance and used a threshold
to determine if there would be a link in the future. Using such
similarity measurement to infer link probability, different

Fig. 7 Comparison of our method with state of the art approaches.

226

Authorized licensed use limited to: SOUTHERN METHODIST UNIV. Downloaded on October 19,2024 at 04:05:12 UTC from IEEE Xplore. Restrictions apply.

distance measurements would lead to different precision and
recall over all. Both Euclid metric and Cosine similarity metric
were used for comparison.

Fig. 7 shows the precision and recall comparison between
different algorithms. The ground truth is the true references of
the test dataset. If one paper is predicted to refer to another
paper and in fact it does refer, such a test sample will be
considered as true positive.

2) Results and Discussions
It is necessary to consider that the probability for two nodes

to form a link is not proportional to the similarity in value, but
to the patterns of values of the two nodes we are viewing.
Simple classification or clustering based on attributes values
similarity is insufficient to capture the complex patterns when
we consider a pair of nodes as one unit.

Methods like Cosine similarity, K-means clustering and
distance calculation do not consider the historical linkage
information. They consider only the attributes values and the
similarity between two nodes. It can be observed from Fig. 7
that when the recall is higher than 0.4, the precision of our
method is the highest, which means even after using parameters
of Multinomial Distribution - the output from L-LDA model -
our method still outperforms LLDA-Cosine, LLDA-Euclid and
K-means. The results prove the merit of our method in fine-
grained link prediction.

Some intermediate results deserve discussion as those
reflect interesting patterns or latent information in reality. Fig.
8 shows the distribution of publication data samples of each
attribute. The x-axis represents the referrer’s value of each
attribute, which, in the case of publications, is the value of each
topic. The y-axis represents the referee’s value of attributes. It
can be noted that quite some data samples are distributed near
the point (0,0), which indicates that when two papers have a
citation relationship between them, it is likely that the attribute
values for one topic of both papers are close to 0.

If one paper is related to a topic and the other paper is not at
all related to it, we consider there should be another topic which
contributes to the connection between two papers. Hence, it is
cogent to remove those data samples during the training and

prediction phases. The side effect of it, however, is that the data
samples previously intended for training the link affinity
distribution would be downscaled. That could intensify the
issue of data sparsity.

Fig. 9 is a precision-recall comparison graph of different
algorithms. As we know precision and recall are typically
inverse related and there is always a trade-off between them. It
can be noted that the performance of our algorithm is the best
compared to other algorithms under the condition that we
consider the recall to be of more importance. This is because
our evaluation criterion is that a link prediction algorithm
should be capable of inferring unknown citation relationship
based on the training data, without losing current information
from history records. Given a test data set where the real citation
relationship is known, the algorithm should have a relatively
high recall, which indicating its ability of learning human
research behavior and citing the reasonable paper as a part of
references. The precision is not among evaluation criterion in
that the truth set can only show what is the current paper citation
information, but not what is the correct citation information. It
is assumed that the current paper citation is not very complete
due to limitation of cognition scope of researchers, which
happens to be part of the motivation of our algorithm, to assist
researchers in their study.

As shown in Fig. 9, the recall rates for most algorithms
decrease rapidly as the precision increase. To reach the recall of
0.8, for instance, our algorithm remains its precision of more
than 0.003. However, other algorithms only have a precision
which is half of ours.

VIII. CONCLUSIONS

In this paper, we have demonstrated that fine-grained
attribute-oriented model training can help predict the possibility
of API linkage more accurately. The L-LDA model is used
twice in our method: one is to extract information from
unstructured data such as text description and papers, while the
other one is to leverage latent information in the mashup
context to provide context-aware predictions. Experimental
results have proved that our model is able to prediction API

Fig. 8 Learned models for topics. The x-axis and y-axis denote the topic
probability of API1 and API2, respectively.

Fig. 9 Precision-recall impact comparison.

227

Authorized licensed use limited to: SOUTHERN METHODIST UNIV. Downloaded on October 19,2024 at 04:05:12 UTC from IEEE Xplore. Restrictions apply.

linkage with a high recall.
In our future work, we plan to further study attribute

modeling taking into consideration their dependency.
Meanwhile, we plan to study the approximation approach for
parameter estimation. Furthermore, we plan to apply our
approach to a larger testbed for user study.

IX. ACKNOWLEDGMENT

This work is partially supported by National Aeronautics
and Space Administration and National Science Foundation,
under grants NNX16AB22G, NNX16AE15G, and NSF ACI-
1443069.

X. REFERENCES
[1] X. Dong, A. Halevy, J. Madhavan, E. Nemes, and J.

Zhang, "Similarity Search for Web Services," in
Proceedings of 30th International Conference on Very
Large Data Bases (VLDB), 2004, pp. 372–383.

[2] A.V. Paliwal, B. Shafiq, J. Vaidya, H. Xiong, and N.
Adam, "Semantics-Based Automated Service Discovery,"
IEEE Transactions on Services Computing (TSC), 5(2),
2012, pp. 260-275.

[3] Z. Zheng, H. Ma, M.R. Lyu, and I. King, "QoS-Aware
Web Service Recommendation by Collaborative
Filtering," IEEE Transactions on Services Computing,
4(2), 2011, pp. 140-152.

[4] J. Zhang, W. Tan, J. Alexander, I. Foster, and R. Madduri,
"Recommend-As-You-Go: A Novel Approach
Supporting Services-Oriented Scientific Workflow
Reuse," in Proceedings of IEEE International Conference
on Services Computing (SCC), Washington DC, USA,
2011, pp. 48-55.

[5] Y. Zhong, Y. Fan, K. Huang, W. Tan, and J. Zhang,
"Time-Aware Service Recommendation for Mashup
Creation," IEEE Transactions on Services Computing
(TSC), 8(3), 2015, pp. 356-368.

[6] D.M. Blei, A.Y. Ng, and M.I. Jordan, "Latent Dirichlet
Allocation," Journal of Machine Learning Research, vol.
3, 2003, pp. 993-1022.

[7] Z. Gao, Y. Fan, C. Wu, W. Tan, J. Zhang, Y. Ni, B. Bai,
and S. Chen, "SeCo-LDA: Mining Service Co-occurrence
Topics for Recommendation," in Proceedings of IEEE
International Conference on Web Services (ICWS), San
Francisco, CA, USA, 2016, pp. 25-32.

[8] S. Lee, L. Pan, C. Zhai, B. Tang, T. Kubar, J. Zhang, and
W. Wang, "Climate Model Diagnostic Analyzer," in
Proceedings of IEEE International Conference on Big
Data (Big Data), Santa Clara, CA, USA, 2015, pp. 1887-
1891.

[9] M. Kim and J. Leskovec, "Multiplicative Attribute Graph
Model of Real-World Networks," in Proceedings of
International Workshop on Algorithms and Models for the
Web-Graph, Stanford, CA, USA. 2010, pp. 62-73.

[10] D. Liben-Nowell and J. Kleinberg, "The Link Prediction
Problem for Social Networks," Journal of the American
Society for Information Science and Technology, 58(7),
2007, pp. 1019-1031.

[11] M.A. Hasan, V. Chaoji, S. Salem, and M. Zaki, "Link
Prediction Using Supervised Learning," in Proceedings of
Workshop on Link Analysis, Counter-Terrorism and
Security (SDM), 2006.

[12] M. Kim and J. Leskovec, "Modeling Social Networks with
Node Attributes Using the Multiplicative Attribute Graph
Model," in Proceedings of the Twenty-Seventh
Conference on Uncertainty in Artificial Intelligence,
2011, pp. 400-409.

[13] N.Z. Gong, A. Talwalkar, L. Mackey, L. Huang, E.C.R.
Shin, E. Stefanov, E.R. Shi, and D. Song, "Joint Link
Prediction and Attribute Inference Using A Social-
Attribute Network," ACM Transactions on Intelligent
Systems and Technology (TIST), 5(2), 2014, pp. 27.

[14] K. Palla, Z. Ghahramani, and D.A. Knowles, "An Infinite
Latent Attribute Model for Network Data," in
Proceedings of the 29th International Conference on
Machine Learning, 2012, pp. 1607-1614.

[15] W.L. Buntine, "Operations for Learning with Graphical
Models," Journal of Artificial Intelligence Research,
1994.

[16] Thomas L Griffiths and M. Steyvers, "Finding Scientific
Topics," in Proceedings of the National Academy of
Sciences, vol. 101, supp. 1, 2004, pp. 5228-5235.

[17] D. Ramage, D. Hall, R. Nallapati, and C.D. Manning,
"Labeled LDA: A Supervised Topic Model for Credit
Attribution in Multi-Labeled Corpora," in Proceedings of
The Conference on Empirical Methods in Natural
Language Processing, 2009, pp. 248-256.

228

Authorized licensed use limited to: SOUTHERN METHODIST UNIV. Downloaded on October 19,2024 at 04:05:12 UTC from IEEE Xplore. Restrictions apply.

