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Abstract—With the rapid development of remote sensing
technology, high-resolution remote sensing images (HRRSIs)
are becoming increasingly prevalent in various applications.
HRRSIs contain a large amount of information on ground
objects, exhibiting both diversity and complexity. The semantic
segmentation of HRRSIs is a rapidly evolving field, emerging
with the development of remote sensing technology. However,
HRRSIs are typically captured from high altitudes, have a wide
imaging range, and present a number of challenges, including
foreground-background imbalance, multi-scale ground objects,
large intra-class variance and small inter-class variance, all of
which contribute to the difficulty of semantic segmentation. To
address these challenges, this paper proposes an end-to-end
semantic segmentation model named APNet, short for Attention
Mechanism with Point Sampling Loss Network, which uses
attention mechanism, multi-scale feature fusion, and a point sam-
pling loss function. APNet aims to address the aforementioned
challenges and improve the accuracy of semantic segmentation.
We conducted comparative experiments with several classic
methods on the LoveDA dataset. The results demonstrate the
effectiveness of our proposed method in improving the results of
semantic segmentation.

Index Terms—Remote Sensing, Semantic Segmentation, Atten-
tion Mechanism, Point Sampling

I. INTRODUCTION

Fueled by advances in computer vision, the semantic seg-
mentation of high-resolution remote sensing images (HRRSIs)
is developing in the direction of intelligence. As an application
scenario of semantic segmentation, the purpose of semantic
segmentation of HRRSIs is to assign each pixel in the image
to a specific category. It is an important part of applications
such as land planning, barren land identification, and landmark
extraction.

Among various semantic segmentation methods, Convolu-
tional Neural Networks (CNNs) have been widely used for
various segmentation tasks [1] [2]. CNNs for image segmenta-
tion typically operate on regular grids: the input is a pixel-level
regular grid, which is processed through multiple convolutions

to obtain a regular grid containing feature information. Finally,
various upsampling methods are used to obtain a regular grid
containing labels. The ”encoder-decoder” structure is a basic
architecture of CNNs, where the encoder extracts features from
the input image, and the decoder predicts the results based
on the extracted features. However, convolution operations
can reduce the resolution of the image, causing fine-grained
details to be ignored, which poses a challenge to achieving
fine-grained segmentation. Therefore, enriching the receptive
field of the model and improving its feature extraction ability
are crucial. In recent years, attention mechanism and multi-
scale feature fusion have been commonly used in CNNs to
achieve fine-grained semantic segmentation results with good
performance.

Unlike general images, HRRSIs are usually captured from
high altitudes, containing a large amount of object information,
with significant scale variations of objects. Due to the large
intra-class variance and small inter-class variance, the segmen-
tation results have ”salt and pepper” phenomenon and edge
discontinuity problems. Meanwhile, the foreground pixels ac-
count for a much smaller proportion than the background,
leading to poor segmentation quality of the foreground and an
imbalanced foreground-background problem.To address these
issues, advanced methods have been proposed. For example,
multi-modal data like digital surface models (DSMs) can be
used to increase the richness of feature information. Weighted
focal loss [3] and dice loss [4] can be utilized to solve the
class imbalance problem in HRRSIs. Incorporating object edge
information [5] as prior knowledge in the model can also help
tackle the edge discontinuity problem in segmentation results.
These methods improve on a certain problem of HRRSIs, but
it is difficult to achieve fine-grained segmentation of HRRSIs.
In order to improve the feature extraction capability of the
model and achieve fine-grained segmentation, we face three
challenges.
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• Foreground-background imbalance. In HRRSIs, some
objects occupy a small area relative to the background,
such as buildings in large forests or water in large agricul-
tural fields. This foreground-background imbalance issue
results in low segmentation accuracy of small objects,
leading to missed detection or false detection issues in
downstream tasks.

• Multi-scale. HRRSIs are usually observed from a high-
altitude perspective, and the objects on the ground typ-
ically exhibit large-scale variations. On the one hand,
different spatial resolutions can affect the features of the
objects. On the other hand, different object categories also
have significant differences in scale [6].

• Large intra-class variance and small inter-class vari-
ance. The texture and structure of objects in HRRSIs
vary greatly, resulting in significant differences in the
features of the same type of object on the same image.
At the same time, the objects in HRRSIs also have
some similar features, and the differences in appearance
between different objects are not significant. These two
issues lead to the common ”salt and pepper” phenomenon
(where some pixels of a certain type of object are labeled
as other categories) and non-smooth edges of objects in
existing segmentation methods.

In our work, we propose a semantic segmentation network
called APNet (Attention Mechanism with Point Sampling Loss
Network) for HRRSIs. APNet utilizes an attention mechanism,
multi-scale feature fusion, and a point-sampling loss function
to enhance semantic segmentation accuracy.

To address the foreground-background imbalance issue, we
modeled the network in both channel and spatial dimensions,
which enables the model to focus on important features and
suppress unimportant ones, thereby improving the recognition
of small target objects. To tackle the multi-scale problem,
we utilized atrous convolutions with multiple rates and two
global pooling methods to enrich the model’s receptive field,
capturing information of different object scales. To resolve
the problem of large intra-class variance and small inter-
class variance in HRRSIs, we proposed a point sampling
loss function to supervise the difficult-to-classify points in the
output, thereby improving the segmentation accuracy of the
edge parts and mitigating the ”salt and pepper” phenomenon.

The contributions of this study are as follows:
(1) We propose an attention block to address the small

object problem and foreground-background imbalance prob-
lem in HRRSIs. By modeling in both channel and spatial
dimensions, The model can pay more attention to the features
of objects that are easily overlooked or less noticeable.

(2) We propose a point sampling loss function to tackle the
issue of large intra-class variance and small inter-class variance
in HRRSIs. By calculating the uncertainty of the output results
and obtaining a set of difficult-to-classify points, the points are
further modified to make the object edges smoother.

(3)Experiments on LoveDA dataset [7] demonstrate com-
petitive results by learning representations for HRRSIs via

APNet and show remarkable performance improvements on
small objects and edge segmentation.

II. RELATED WORK

Existing semantic segmentation methods are usually divided
into two categories: traditional machine learning methods and
deep learning methods.

A. Traditional methods

Traditional methods are generally designed for medium to
low resolution images. Before the emergence of deep learning,
traditional image segmentation methods relied heavily on
expertise in digital image processing, topology, mathematics,
and related fields. These methods can be broadly classified into
three categories: threshold-based segmentation [8] [9], region-
based segmentation [10], and edge detection-based segmenta-
tion [11]. Image segmentation is currently defined as the pro-
cess of dividing an image into several non-overlapping regions
based on its grayscale, color, texture, shape, and other features.
The goal is to ensure consistency or similarity of these features
within the same region and to show significant differences
between different regions. However, it is important to note
that segmented images lack semantic information. Traditional
machine learning methods require manually designed features,
which can be limited when dealing with high-resolution and
multi-dimensional images.

B. Deep learning methods

In recent years, deep learning methods [12] [13] [14] have
become one of the primary techniques for solving image
segmentation problems. This is due to the availability of
various fundamental algorithm frameworks, such as the classic
models Fully Convolutional Networks (FCN) [15] and U-
Net [16]. Based on these frameworks, many methods have
been proposed to further improve the performance of semantic
segmentation. SENet [17] improves model performance by
modeling channels, while Dual Attention Network (DANet)
[18] and Convolutional Block Attention Module (CBAM) [19]
propose spatial and channel attention modules respectively to
model dependencies in the spatial and channel dimensions.
Object Context Network (OCNet) [20], inspired by the self-
attention mechanism, represents semantic features by calcu-
lating the weighted similarity between pixels. MaskFormer
[21] uses Transformer [22] structure to view semantic seg-
mentation as mask-level classification rather than pixel-level,
greatly improving accuracy but also resulting in significant
computational overhead. In addition, atrous convolution [13]
[14] and multi-level pooling [23] are also commonly used to
enrich model receptive fields and improve multi-scale feature
capture ability. Feature Pyramid Networks (FPN) [24] con-
struct a bottom-up and top-down structure to fuse high-level
features with low-level features, producing more expressive
fused features. Methods that were originally developed for
object detection have shown promising results in semantic
segmentation. For instance, Mask R-CNN [25] uses Region
Proposal Network (RPN) [26] to generate a set of candidate
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Fig. 1. Model structure

regions, and solves the problem of region mismatch caused by
pooling operations through the ROIAlign layer. Mask Scoring
R-CNN [27] further enhances the segmentation accuracy by
adding a MaskIoU Head to evaluate the segmentation quality,
building on the Mask R-CNN framework. However, most of
these methods are proposed based on general images and may
not perform optimally for HRRSIs.

Most existing segmentation methods for HRRSIs are based
on generic semantic segmentation methods. For instance,
[28] proposed a combined network based on ResNet and U-
Net to improve the segmentation accuracy of HRRSIs. [29]
introduced multispectral information into deep convolutional
neural networks (DCNNs) to improve HRRSIs segmentation
results. [30] built a convolutional neural network specifically
for the problem of small object recognition in urban areas. In
addition, many improved methods have been proposed focus
on extracting specific features, such as roads and buildings. For
example, [31] used dynamic labels to train CNNs to improve
the accuracy of CNNs decision functions for road extraction.
The above method usually only improves a specific problem
in HRRSIs and it is difficult to comprehensively improve the
fine segmentation results of HRRSIs.

III. METHODOLOGY

A. Model structure

The proposed model is composed of three parts: the back-
bone network, the encoder, and the decoder, as shown in
Figure 1. The input image is first processed by the backbone
network to extract features. The encoder further strengthens
the feature extraction, including attention block and multi-
scale feature extraction. In the decoder, the output of the en-
coder is concatenated and convolved with the low-level feature
maps from the backbone network to obtain the prediction
results. The loss is calculated based on the prediction and
the ground truth labels, as well as the point sampling loss.

In addition, to ensure the accuracy of the low-level feature
map from the backbone network, we also supervise it by loss
function.

B. Backbone for preliminary feature extraction

In this study, we used ResNet101 as the backbone [32] for
preliminary feature extraction. ResNet101 is one of the more
popular semantic segmentation networks, which effectively
alleviates the network degradation problem caused by network
depth by using multiple residual modules, and has achieved
good results in many semantic segmentation tasks. In our
research, ResNet101 initially extracts image features, which
have a total of 4 stages of output. The low-level features
contain more image detail information, while the high-level
features provide a more comprehensive understanding of im-
age features. Therefore, we use the outputs of the first and
fourth stages for subsequent processes.

C. Encoder with attention and multi-scale feature fusion

Fig. 2. Attention block structure

Attention block: We propose a method based on atten-
tion mechanism to solve the problem of small objects and
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foreground-background imbalance in HRRSIs. The feature
map F ∈ RC×H×W (where C, H , and W denote the number
of channels, the height, and the width of the feature map,
respectively) from the fourth stage of the backbone network
is used as input, and feature weighting is performed in the
channel and spatial dimensions through the attention block.
The structure of the attention block is shown in Figure 2. After
multiple convolutions, the channels of the feature map often
express different features, and these features have different
effects on the segmentation result. The channel attention
mechanism captures the dependency relationship between any
two channels, assigns weights between channels, and thereby
improves the model’s ability to represent target features.
Specifically, we first summarize the spatial features of F
through global max pooling and global average pooling to
generate two feature descriptors (C×1×1). We send them to
an MLP network to learn the parameters. Then, we element-
wise add the output features, obtain the attention weights
of each channel Fc after applying the sigmoid function, and
multiply them with F channel by channel to obtain F

′

c . The
calculation of the channel attention mechanism is shown in
Formula (1):

Fc = sigmoid(MLP (Avgpool(F )) +MLP (Maxpool(F )))

(1)

The purpose of spatial attention mechanism is to capture
the spatial dependency between any two positions. We first
generate two feature descriptions for each spatial position
through global average pooling and global max pooling. After
concatenating the two feature descriptions, a 5x5 convolution
operation is performed to obtain the spatial attention weight.
The resulting spatial attention feature map Fs, obtained after
passing through the sigmoid function, is then element-wise
multiplied with the input F

′

c to restore the original size. The
calculation of the spatial attention mechanism is shown in
Formula (2).

Fs = sigmoid(f([Avgpool(F
′

c) : Maxpool(F
′

c)]))

(2)

Multi-scale feature extraction: Inspired by DeepLabv3
[14], this study uses atrous convolution with different dilation
rates and two types of global pooling to enlarge the receptive
field and tackle the multi-scale problem in HRRSIs. In our
approach, the feature map F ′ output by the attention block
is fed into four atrous convolutions with dilation rates of
r0, r1, r2, and r3 to generate four feature maps of different
scales. Meanwhile, to capture global information, we use
global average pooling and global max pooling to obtain two
different global vectors, which are added element-wise and
then processed by a 1 × 1 convolution and upsampling to
restore the size. Finally, we concatenate and convolve the
outputs from the five sources and upsample the result to obtain
the output of the encoder Fen.

D. Decoder for refined segmentation

The encoder extracts features from the image, while the
decoder uses the feature map to make segmentation pre-
dictions. Generally, low-level features contain more image
detail information that may have been lost in higher-level
features. In the decoder, the output from the first stage of the
backbone network is first reduced in channel dimension via
1x1 convolution and then concatenated with Fen to supplement
the missing details. Subsequently, a 1x1 convolution is used
to map the concatenated feature map to K channels (K is the
number of classes), representing the predicted probability for
each class and used for calculating the loss function.

Point sampling loss: In semantic segmentation tasks, the
accuracy of object edges is often low [33]. To address the
problem of large intra-class variance and small inter-class vari-
ance in HRRSIs and achieve fine-grained segmentation results,
especially for edge segmentation, we propose a point sampling
loss method. Specifically, we calculate the uncertainty of each
pixel in the prediction results to obtain a set N ∈ RK×k

containing k difficult-to-classify points. Then, we perform
upsampling on the output results to match the size of the
label. We obtain the corresponding label point set Nl ∈ RK×k

from the label using the point set N and finally compute
the loss between N and Nl. This approach improves the
prediction accuracy while reducing computational costs. In the
output results, the numerical values represent the probability
of the pixel belonging to a certain category. The uncertainty
calculation method first selects the two largest predicted values
k1 and k2 for each class at each pixel in the output result and
calculates the difference between k1 and k2 for each pixel.
The smaller the difference, the greater the uncertainty of the
model for that pixel. The calculation of uncertainty is shown
in Formula (3):

uncertainty = |(P cmax1
i,j )− (P cmax2

i,j )|
(3)

Therefore, the loss function in APNet consists of three parts.
They are the loss calculation of the output result and the label
Loutput, the loss calculation of the difficult-to-classify point
set and the corresponding label point set Lpoint, and the loss
calculation of the low-level features of the backbone network
and the label Lbackbone. The calculation of the APNet loss
function is shown in Formula (4):

L = Loutput + Lpoint + Lbackbone

(4)

IV. EXPERIMNTS

A. Training dataset and evaluation metrics

The dataset we used is LoveDA [7]. LoveDA has a spa-
tial resolution of 0.3 meters and is divided into seven land
cover classes (including the background class): background,
building, road, water, barren, forest, and agriculture. Each
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TABLE I
COMPARISON OF EXPERIMENTAL RESULTS ON TEST DATASET OF LOVEDA

Models Mean (MIoU) building road water barren forest agriculture background
FPN [24] 48.83 53.43 53.17 75.69 14.89 43.69 57.38 43.58

FCN-8s [15] 49.34 54.61 53.43 77.09 14.67 44.15 57.48 43.98
PSPNet [23] 49.99 55.36 51.55 77.88 14.18 46.13 60.86 43.99
OCRNet [34] 48.85 55.04 53.41 76.91 16.26 44.03 55.05 41.27
UperNet [35] 47.56 51.46 51.84 74.51 11.06 43.82 58.72 41.51

DeepLabV3+ [36] 49.68 54.54 55.31 77.01 13.94 45.32 58.34 43.29
ours 52.79 59.08 58.75 80.13 18.4 46.33 61.31 45.52

TABLE II
INFLUENCE OF ATTENTION BLOCK AND POINT SAMPLING LOSS

Models Mean (MIoU) building road water barren forest agriculture background
ours 52.79 59.08 58.75 80.13 18.4 46.33 61.31 45.52
-POI 50.35 56.3 56.44 76.9 15.38 45.44 57.93 44.04
-ATT 51.34 57.49 57.11 78.0 14.96 46.71 61.32 43.77

-N 49.9 54.96 54.48 77.83 13.05 46.41 60.18 42.39

image has a size of 1024 × 1024, and there are 2522, 1669,
and 1796 images in the training, validation, and test sets,
respectively. Compared with existing datasets, LoveDA has
three main features: 1) Multi-scale objects. Land cover of the
same class exhibits different scale features in different scenes,
which increases the multi-scale variation characteristics of the
dataset. 2) Complex background. The diverse background is
an inevitable problem in HRRSIs segmentation tasks, which
is particularly evident in the LoveDA dataset. The high reso-
lution and diverse scenes bring richer detail information and
larger intra-class differences to the background, posing higher
demands on the models. 3) Class distribution inconsistency.
Urban and rural areas have different feature distributions.
Urban areas with high population density contain more man-
made buildings and roads, while rural areas contain more
natural landscapes, such as forests and water. LoveDA focuses
on the differences between urban and rural areas, bringing
special challenges to the models. It is worth noting that
LoveDA has class imbalance, with the barren class being
relatively underrepresented compared to other classes.

Like previous work, we use mean inter-section over union
(MIoU) as our evaluation criterion.

B. Implementation details

To improve the generalization ability of the model, we used
three data augmentation techniques: random cropping, image
flipping, and image distortion. The size of the random cropping
was 512× 512, and during cropping, the number of pixels for
each class did not exceed 0.75 times the total number of pixels
in the image. The probability of image flipping and distortion
was set at 50%.

We used popular models as baselines, including FPN,
FCN-8s, PSPNet, OCRNet, UperNet, and DeepLabV3+. They
all used ResNet-101 as the backbone network. The dilation
rates of APNet are 1, 12, 24, and 36, and the number of
sampling points is 2048. we set the learning rate of APNet
on the LoveDA dataset to 1e-2. All models adopt Adam as
the optimizer and cross-entropy as the loss function. And

the training epochs are set to 40000. Considering limited
computing resources, the batch size is set to 8. We conduct
all our experiments in the Tensorflow platform with NVIDIA
3090Ti GPU and the model training took 21 hours.

C. Experiments results and analysis

1) Experiments results: Table I shows the experiment re-
sults of our model on the LoveDA dataset. The results show
that we achieve good results on LoveDA dataset. Compared
with classical methods, the model using attention mechanism
and point sampling loss performs better in the semantic
segmentation task of HRRSIs. Compared with FPN which
uses feature pyramids, APNet has an 8.1% improvement in
the MIoU metric. Compared with OCRNet which uses self-
attention mechanism, APNet has an 8.07% improvement in the
MIoU metric. Compared with PSPNet which uses multi-level
pooling, APNet has a 5.6% improvement in the MIoU metric.
Additionally, we found that APNet also has a good effect on
solving the problem of class imbalance, such as increasing the
IoU value of the barren class to 18.4.

Figure 3 shows the visualization results of APNet and the
best-performing PSPNet in the baseline models. As can be
seen, APNet can effectively improve the accuracy of small
object segmentation and greatly alleviate the problem of non-
smooth edges of objects.

2) Further analysis: We use the model without attention
block and point sampling loss for further analysis of the model
to show the effect of attention mechanism and point sampling
loss. In addition, we also discuss the impact of the position of
the attention block and the number of sampling points on the
performance of the model. We also discuss the inference speed
and parameter count of APNet. The following experiments are
conducted on the LoveDA dataset.

a) Ablation study: After we added attention block and
point sampling loss to the model, we tested the gains they
can bring, and the experiment results are shown in Table
II. APNet-ATT is the APNet model without point sampling
loss, APNet-POI is the APNet model without attention block,
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and APNet-N is the model without both point sampling loss
and attention block. By observing the results, We can find
that the attention block and point sampling loss both have
a positive impact on the model, with progressive growth in
MIoU. The attention block models the spatial and channel
dimensions to make the model focus on more important
features. From the results, it can be seen that compared to
APNet-N, APNet-ATT with the addition of the attention block
effectively improves the classification accuracy of various land
objects, especially in the recognition of small objects such
as buildings and roads, APNet-ATT performs surprisingly
well, indicating that the attention mechanism is important for
improving the recognition of small targets. The model APNet-
POI with the addition of point sampling loss also has better
segmentation performance on small targets such as roads and
buildings compared to APNet-N. In addition, it increases the
MIoU value of the barren class, indicating that point sampling
loss also has a certain effect on dealing with class imbalance
problems in the dataset.

b) Sensitivity Analysis: We conducted a sensitivity anal-
ysis to investigate the impact of attention block position on
model performance based on APNet-ATT, and the impact of
the number of sampling points in point sampling loss on model
performance based on APNet-POI.

Fig. 3. Visualization results of the LoveDA dataset. From left to right, from
top to bottom: original image, ground truth, PSPNet output results, and ours.

The position of attention block: The attention mechanism
plays an important role in improving model performance, and
its position in the model can also affect the segmentation
results. In APNet, we place the attention block after the
backbone network and before the multi-scale feature fusion,
with the aim of enabling the subsequent processes of the model
to operate on the feature map after attention weighting, so as
to fully utilize the weighted information. In the experimental
section, we discuss the impact of the attention block’s position
in the model on the performance, based on APNet-ATT. The
results, as shown in Figure 4(a), indicate that the closer the
attention block is to the front of the encoder, the better the
model performance. The attention block is located respectively
before multi-scale feature fusion after backbone (P-F), before

convolution after concatenating multi-scale features (P-M),
and before upsampling after multi-scale feature fusion (P-L).
The experimental results show that the MIoU is 3.8% higher
at location P-F than at location P-L.

The number of sampling points: The number of sampling
points k in point sampling loss has an impact on the model’s
performance in our experiments. Therefore, we tested the
performance of the model with different values of k based
on APNet-POI. We set k to 2048, 8192, 12544, 16384,
and the results are shown in Figure 4(b). According to the
experimental results, a larger k value does not necessarily lead
to better model performance. The optimal number of sampling
points may be related to the data structure. In the dataset used
in this study, good results were obtained when k was set to
2048 and 12544.

(a) The the influence of attention block posi-
tion

(b) The the influence of sampling points num-
ber

Fig. 4. The the influence of attention block position and sampling points
number

TABLE III
INFERENCE SPEED AND PARAMETER COMPARISON

Models Time(s) Parameter(Mb)
FPN 6 47.49

FCN-8s 5 66.12
PSPNet 6 65.6
OCRNet 7 55.51
UperNet 7 83.04

DeepLabV3+ 6 62.19
ours 6 61.14

c) Inference speed: In order to compare the performance
of our proposed model with the baseline model, we analyzed
the number of parameters and the time required for predicting
a single image. The experimental results are presented in Table
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III. From the results, it can be seen that APNet achieves
faster inference speeds while also having a smaller number of
parameters. This indicates that APNet not only delivers better
prediction results but also operates more efficiently.

V. CONCLUSION

In this study, we propose a semantic segmentation method
for high-resolution remote sensing images (HRRSIs). Our
approach employs an attention block, multi-scale feature
fusion, and point sampling loss to tackle the challenges
of foreground-background imbalance, multi-scale, and large
intra-class variance and small inter-class variance. The atten-
tion block models relationships between any two positions in
both channel and spatial dimensions, capturing correlations
between different features and enhancing the feature extraction
capability of the model. The attention block is effective in
extracting small objects. The point sampling loss function
calculates the uncertainty values of the model’s final stage
prediction results, obtains the set of difficult-to-classify points,
and calculates the loss function corresponding to the point set
of the label, thereby improving the segmentation results of
difficult-to-classify points, and addressing the problem of ”salt
and pepper” phenomenon and non-smooth edges of segmented
objects. In addition, our model also uses atrous convolution
and global pooling to obtain multi-scale information, and
combines high-level and low-level features to refine the seg-
mentation results. To verify the performance of the model,
we conduct experiments on the public LoveDA dataset to
compare with other models, and perform ablation learning and
sensitivity analysis for each innovative structure and parameter
in our model, demonstrating the effectiveness of our model.
In future research, we will attempt to utilize self-attention
to further enhance the model’s ability to capture contextual
information. Moreover, the multimodal data of HRRSIs, such
as geographic coordinates, has the potential to improve the
semantic segmentation results.
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