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Abstract—Current cloud data centers (CDCs) provide highly
scalable, flexible, and cost-effective services to meet the
performance needs of emerging applications. It is critical for CDC
providers to predict future incoming workloads such that they
can perform accurate resource provisioning in CDCs. Prediction
accuracy is important and its improvement has been pursued
in much existing work. This work adopts two different real-life
Google data traces, based on which such prediction is conducted.
Specifically, this work first gives a novel prediction mechanism
that integrates wavelet decomposition, Savitzky–Golay (SG) filter,
and autoregressive integrated moving average (ARIMA) to real-
ize workload prediction in each time interval. The time series of
the workload is smoothed with an SG filter and further divided
into several components with wavelet decomposition. Then, an
integrated approach is developed to predict statistical trends and
their detail components. Real-life trace-driven experiments are
done and the results suggest that the proposed method provides
higher accuracy of prediction than its existing peers.

Index Terms—Autoregressive integrated moving average
(ARIMA), cloud computing, data centers, wavelet decomposition,
workload prediction.

I. INTRODUCTION

CLOUD data centers (CDCs) aim to provide highly
scalable, cost-effective, and flexible services to meet

performance requirements for users. A growing number of
cloud applications of users have been developed and efficiently
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executed in CDCs. Users’ data are enabled to be kept and
analyzed in third-party CDCs [1], [2]. To achieve it, CDC
providers have to fast allocate the optimal number of infras-
tructure resources to do users’ tasks. Therefore, workload
preprocessing and prediction are highly needed for dynamic
resource provisioning [3], [4], [5], which relies on multiple
factors, e.g., user count, future events, past resource usage, and
system states. In addition, accurate prediction of future work-
load can further improve the performance related to energy
consumption and resource utilization. Then, operation cost of
CDCs, and violations of service level agreements (SLAs) can
be reduced greatly [6].

Nevertheless, it is challenging to precisely predict future
workload due to nonlinear patterns in users’ tasks. Currently,
many existing studies design different workload prediction
approaches [7], [8], [9], [10], [11], [12], [13], [14]. They
propose several prediction models for different types of work-
load for networks, server clusters, and high-performance
platforms [7], [8], [9]. The average or maximum number
of tasks for a given time interval is measured accordingly.
Nevertheless, they mainly focus on the analysis of these tasks
executed in data centers in a statistical way and fail to provide
high-quality prediction of future tasks. The workload of CDCs
changes rapidly, and therefore, it is difficult to accurately cap-
ture its characteristics due to large magnitude differences, and
existence of noise. The amount of data we collect from CDCs
is not suitable for deep learning, which usually requires enor-
mous training time to obtain a high-quality prediction model.
It is worth noting that the training time is also a critical consid-
eration for CDC providers in addition to prediction accuracy.
Different from the existing studies, this work proposes an
integrated prediction approach to better understand the char-
acteristics of tasks and increase the accuracy of prediction. It
adopts past tasks as training data to predict the future tasks in
CDCs. It analyzes two different real-life tasks collected from
a realistic production data center of Google [15].

The data collected by CDCs contain salt and pepper noise,
which can be removed without distorting a shape of the orig-
inal data with a Savitzky–Golay (SG) filter. The workload
request arriving rate we have collected from CDCs is not large
enough to train deep learning models. Therefore, autoregres-
sive integrated moving average (ARIMA) is adopted because
of its easy training and implementation. By considering the
complexity of signals contained in data, we adopt a method
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of wavelet decomposition to eliminate the data noise. It can
decompose irregular data into multiple sequences with cer-
tain rules. Decomposed signals with fixed information from
the original signal are more suitable for training prediction
models. The proposed approach predicts future tasks in the
next time interval. It adopts a Savitzky–Golay filter, wavelet
decomposition [16] (SW), and ARIMA [17], thus leading to
SWARIMA to predict future tasks in CDCs. This work aims
to make the following new contributions.

1) We compare different sequence smoothing approaches to
remove noise points in realistic task data and conclude
that the SG filter achieves the best result.

2) We adopt the wavelet decomposition to analyze the
detail information of data at multiple resolutions, based
on which a novel prediction method is constructed. More
specifically, we adopt the Symlet wavelet with more
orthogonality and symmetry to achieve better results.

3) We design SWARIMA for producing a prediction model
for task data, and the best parameters of this model are
obtained according to the Akaike information criterion
(AIC).

We evaluate SWARIMA on real-life task data, and com-
pare it with several state-of-the-art peers [11], [18], [19].
Experimental results demonstrate that it outperforms them in
terms of various evaluation criteria.

Section II briefs related work. Section IV introduces the data
preprocessing of the Google cluster workload traces 2011 and
2019. Section V describes the proposed method. Section VI
shows the results of experiments. Section VII summarizes this
work and points out future work.

II. RELATED WORK

A. Integrated Algorithms-Based Prediction

Many studies focus on the prediction of workload in CDCs.
Classical approaches include hidden Markov model (HMM),
ARIMA, and auto-regression (AR). The work in [20] designs
a multidimensional and layered HMM to manage time-limited
streaming applications. Based on predicted results, a frame-
work is proposed to realize efficient resource scaling for big
data applications in clouds. The work in [11] designs a model
to capture relationships among virtual machines by using pre-
dicted resource requirements with ARIMA. Then, it is used
to investigate utilization volatility of resources, and an algo-
rithm for virtual machine placement is designed accordingly.
Saxena et al. [8] designed a framework of resource man-
agement, which predicts the resource utilization of servers
and achieves load balance. An online prediction system of
resources is developed in virtual machines to minimize SLA
violations and performance degradation. Huang et al. [21] used
seasonal ARIMA to predict and analyze the traffic of message
passing interfaces in virtual clusters. It allows users to inves-
tigate patterns of iterative movement of data without knowing
programming details of simulations. Then, a cross-layer mid-
dleware system is developed to dynamically schedule network
resources in virtual clusters. Fanjiang et al. [12] applied
genetic programming to evolve multiple predictors, each of
which is used to forecast future quality of service (QoS).

Two techniques, including hybrid evolution and elite individual
composition, are proposed to improve the prediction accuracy
of multistep-ahead time series of QoS. Xie et al. [22] proposed
a hybrid prediction model by integrating ARIMA and triple
exponential smoothing. It predicts both linear and nonlinear
relations in the container workload sequence built in a cloud
platform. Sun et al. [23] combined a support vector machine
(SVM) with a backpropagation neural network (BPNN) by
using the optimal weighting rule for predicting workload. It
effectively tackles shortcomings of models, including SVM
and BPNN, and improves the prediction accuracy of physical
machines in clouds.

However, it is difficult and inaccurate to model the original
data of CDCs with the aforementioned methods. Table I pro-
vides the results of comparing this work with them. Although
some studies consider data smoothing, they do not consider
data filtering and decomposition to improve the prediction
accuracy. Different from these existing studies, we investigate
short-time span changes of tasks and achieve timely prediction.
The proposed method is very fast and suitable for realistic
CDCs that can quickly execute tasks with the optimal number
of resources. This work also applies feedback from newly col-
lected tasks to update the proposed model running in CDCs.
SWARIMA well avoids the occurrence of one-step delay and
achieves better performance than ARIMA.

B. Machine Learning-Based Prediction

Different machine learning methods are used to predict
the time series [24]. They mainly include the variants of
prediction models, e.g., convolutional neural networks [25],
long short-term memory (LSTM) [26], [27], BPNN [18], and
deep belief networks [28]. Singh et al. [10] gave an evo-
lutionary quantum neural network for predicting workload
in CDCs. It uses the efficiency of quantum computing with
encoded workload information and predicts resource or work-
load demands for higher accuracy. Feng et al. [13] presented
an ensembling model to predict workloads by integrating an
adaptive sliding window and the time locality. The sliding win-
dow mechanism jointly integrates trend and time correlations,
and random workload fluctuations for online regression, and
yields higher accuracy with lower overhead. A time locality
mechanism is proposed for behaviors of local predictors and
a multiclass regression approach for integration of models is
designed. Ding et al. [14] adopted online learning and trans-
fer learning to design an integrated forecasting model for the
prediction of container workloads, thereby providing higher
adaptivity, availability and generality. The work in [18] pro-
vides a self-adaptive differential evolution method to train a
neural network-based workload prediction model. It obtains
high prediction accuracy for workload bursts by determin-
ing the optimal crossover rate. Zhang et al. [29] proposed a
proactive prediction algorithm for Docker container workloads
by integrating LSTM and triple exponential smoothing. They
investigate both long-term and short-term dependencies in the
time series of container resources and remove data noise in
container resource utilization. Tuli et al. [19] used LSTM to
realize the average workload prediction over successive time
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TABLE I
COMPARISON AMONG THIS WORK AND ITS STATE-OF-THE-ART STUDIES

intervals in the future, and adopt two real-life data to evaluate
its performance. Lu et al. [30] presented a forecasting model
by combining a K-means algorithm and BPNN with random
learning rates to predict the arrival trend of future workload
demands. It exploits unclear characteristics of latency sensi-
tivity of dynamic cloud workloads. Gupta et al. [26] adopted
a gradient descent mechanism and a Levenberg–Marquardt
adaptation method to predict dynamic resource utilization. An
online multivariate sparse framework is proposed to realize the
fast prediction of resource usage in a cloud.

Most of the above-mentioned workload prediction
approaches use nonlinear regression and neural networks, and
are difficult to cope with irregular and catastrophic bursts
of workload. Most state-of-the-art studies do not consider
the stationarity of data. These methods do not adopt data
filtering and decomposition to investigate data features, thus
disenabling them to well handle fast-changing workloads.
Most studies require much training data, thereby demanding
substantial training time. Besides, deep learning approaches
demonstrate their good performance in large-scale workload
prediction for CDCs. However, their training time is usually
long when they are used to deal with large-scale data. To
evaluate the performance of SWARIMA, this work adopts
two different real-life Google workload traces within almost
one month in Google production computing clusters, and it is
collected from a single Borg cell with 12 500 machines. The
total size of the dataset is approximately 41 GB. However,
we find that the data about task arriving rates is suitable for
evaluating the performance of classical prediction methods.
The scale of data about task arriving rates is not large enough
to well train deep learning models, which often need much
more data for their training. In addition, we conduct many
experiments and find that given the Google workload traces,

classical methods perform better than deep learning ones in
terms of workload prediction accuracy. However, as discussed
above, there are several limitations in many existing classical
methods.

An SG filter can remove salt and pepper noise in the original
data, which makes features of the sequence easy to ana-
lyze. Wavelet decomposition methods can decompose irregular
data into several regular sequences. The decomposed data
are helpful to the construction of prediction models. Wavelet
decomposition can also improve the smoothing of data and
reduce its size, which is beneficial to ARIMA’s performance.
ARIMA is widely used in time-series analysis because it has
fewer parameters and is easy to train. Therefore, this work pro-
poses SWARIMA as an integrated machine learning approach
to achieve the prediction of workload in CDCs.

III. PROBLEM FORMULATION

This work aims to accurately predict the number of arriving
tasks in the next time slot in CDC based on historical data.
In time slot k + 1, tasks in previous k time slots provide the
input I ({I1, I2, . . . , Ik−1, Ik}). We need to predict the number
of tasks (ŷk+1) in time slot k + 1, i.e.,

ŷk+1 = f (I1, I2, . . . , Ik−1, Ik). (1)

The objective of training the proposed model is to minimize
the difference between ŷk+1 and its ground-truth one (yk+1).

IV. DATA PREPROCESSING

A. Data Normalization

To obtain the clear attributes of arriving workloads, we
adopt and investigate two different real-life Google cluster
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Fig. 1. Aggregated task arriving rate in Google workload trace 2011.

Fig. 2. Aggregated task arriving rate of each type in Google workload trace
2011.

workload traces over a month-long period in 20111 and 2019.2

In the Google workload trace 2011, each task represents an
attribute to indicate its importance. We group them into three
types: gratis (0–1), other (2–8), and production (9–11) in the
12 priorities [31]. Here, similar to [32], it is assumed that
resource requirements of tasks corresponding to each type of
applications are similar. For each group of tasks, the period
of 29 days is divided into 8352 time intervals. The length of
each time interval is five minutes. We calculate the number
of aggregated tasks in each time interval illustrated in Fig. 1.
Furthermore, Fig. 2 illustrates the aggregated task arriving rate
of each type in Google workload trace 2011. Similarly, more
details about the Google cluster workload trace 2019 can be
found [33].

To decrease the standard deviation of the actual workload,
we first perform the logarithmic operation on the task arriv-
ing rates. For example, in Figs. 1 and 2, the number of
arriving tasks for the Google workload dataset 2011 varies
significantly. Consequently, we standardize the workload to
effectively eliminate the heteroscedasticity of the actual work-
load. After the above process, we can obtain the workload with
a maximum fluctuation of 3.5208 and the average of 0.2347.
As shown in Figs. 3 and 4, after the normalization, the total
aggregated task arriving rate and that of each type on the 25th
day are relatively smooth.

B. SG Filter

The workload time series needs to be smoothed, and there-
fore, noise must be removed. To provide better prediction

1https://github.com/google/cluster-data/blob/master/ClusterData2011_2.md
2https://github.com/google/cluster-data/blob/master/ClusterData2019.md

Fig. 3. Aggregated task arriving rate (log) in Google workload trace 2011.

Fig. 4. Aggregated task arriving rates of different types (log) in Google
workload trace 2011.

results, this work adopts moving median (MM), moving aver-
age (MA), and SG filters to remove noise from the original
workload. The results show that the SG filter with a window
size of five achieves the best performance among these tested
ones.

The SG filter removes the noise from the original workload
(X), i.e.,

X = {x1, x2, . . . , xt}, t ∈ N+ (2)

where N+ denotes a set of positive integers, and xt denotes
the number of tasks arriving in time interval t.

Y denotes a subsequence of X with the size of 2m + 1, i.e.,

Yk = {xk−m, . . . , xk, . . . , xk+m}, k ∈ [m + 1, t − m]. (3)

In this work, m = 2 and R = 3. Polynomial p(n) is
obtained as

p(n) =
R∑

r=0

arnr, n ∈ [ − m, m]. (4)

E denotes the error of mean-squared approximation of the
subsequence, which is obtained as

E =
m∑

n=−m

(p(n) − xk+n)
2 =

m∑

n=−m

(
R∑

r=0

arnr − xk+n

)2

. (5)

We choose a central data point of the obtained polynomial as
the smoothed one in each time interval. Then, the least-square
estimation is used to update parameters for minimizing E [34].
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TABLE II
ADF TEST RESULTS

C. Augmented Dickey–Fuller Test

Given a nonstationary time series processed by an SG filter,
we need to check whether it is stationary by using differencing
operations; otherwise, ARIMA cannot be applied to it. We
adopt the augmented Dickey–Fuller (ADF) test [35] to do so.
It judges whether a given autoregressive process is stationary
by determining if there is a unit root in a time series. If there
is no unit root, the time series is stationary. Given (2), the AR
process with an order of p is given as

xt = φ1xt−1 + φ2xt−2 + · · · + φpxt−p (6)

where φi (i ∈ {1, 2, . . . , p}) denotes a coefficient in the AR
process, which is determined with the least-squares method.

Its characteristics equation is obtained as

λp − φ1λ
p−1 − · · · − φp = 0 (7)

where λ denotes an independent variable.
The workload is stationary if all of its eigenvalues fall into

a unit circle. However, the workload is nonstationary if a
characteristic root is 1 or larger.

Then, we perform the ADF test with the null assumption of
ρ = 0 and the other one of ρ < 0. ρ is obtained as

ρ = φ1 + φ2 + · · · + φp − 1. (8)

π means the value of the test statistic. It is compared with
its corresponding critical value in the ADF test. If π is smaller,
the null assumption is not accepted. Specifically, π is given as

π = ρ̂

S(ρ̂)
(9)

where S(ρ̂) denotes the standard deviation of ρ̂.
If the current time series does not pass the ADF test, its

difference is further calculated and the ADF test is conducted
repeatedly. Here, the ADF level is set to 1%, 5%, and 10%,
respectively. They mean the rejection degree of the original
assumption. For example, if an ADF value is smaller than the
critical value of 1%, the time series is stationary; otherwise,
it is not. Here, the significant level is 0.01 or 0.05, and we
need the differencing if p is larger than it. We then adopt the
test of ADF unit root to analyze the workload in the Google
cluster. Table II shows the result of the ADF test.

The obtained value of ADF is further compared with crit-
ical values to check whether the workload is stationary. It is
observed that the ADF value is smaller than the critical value
of 1%, and the order of p is also much smaller than the sig-
nificant level of 0.01. It demonstrates that the nonstationary
time series can be stationary with differencing, and therefore,
ARIMA can be further applied to its stationary version.

Fig. 5. Framework of the prediction model.

V. PREDICTION MODELS OF WORKLOAD

This section introduces the details of prediction models for
workload. We first preprocess the data with the method intro-
duced in Section IV. Then, the noise in the workload time
series is removed. We further decompose it into two splits
with the wavelet decomposition. One split includes the trend
information of the original time series, and the other one the
detail information. Then, these two splits are further smoothed
with an SG filter. Following this step, two time series are
obtained to contain different characteristics. We further adopt
ARIMA to build two prediction models for these two time
series. Then, we can obtain the trend and detail values in the
next time interval, respectively. At last, we obtain the num-
ber of tasks to arrive in the next time interval with wavelet
reconstruction. Fig. 5 shows the framework of the proposed
prediction model.

A. Haar Wavelet Decomposition

Wavelet decomposition is effective to process nonlinear
and nonstationary time series because it removes the nonsta-
tionary data from a time series and increases the prediction
accuracy. Wavelets (e.g., Daubechies wavelets, Mexican Hat
wavelets, and Morlet wavelets) can be used to obtain the
detail information at multiple resolution scales. However,
these wavelets are slower than Haar wavelets. Haar wavelets
only need additions and include many 0’s as their elements.
Therefore, their execution time is very short. Besides, they can
discover local information about the time series. Therefore, we
first adopt the Haar wavelet decomposition [36] to investigate
information of the time series with different scales of reso-
lution. For a time series with 2n numbers, we arrange every
two successive data into a group. It is further transformed
into a new time series with 2n−1 groups. We then obtain
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the sum and difference of any two successive data in each
group and produce two new time series. This step is named
one-stage wavelet transformation. It is recursively repeated to
obtain the final 2n−1 differences and sum. Here, we adopt the
Haar wavelet transformation, which is a typical type of wavelet
transformation. The Haar mother wavelet is

�(γ ) =
⎧
⎨

⎩

1, 0 ≤ γ ≤ 1/2
−1, 1/2 ≤ γ ≤ 1

0, otherwise
(10)

where γ denotes the support domain of Haar wavelet.
Then, we have the following scaling equation, i.e.,

θ(γ ) =
{

1, 0 ≤ γ ≤ 1
0, otherwise.

(11)

Here, we adopt the Haar matrix 	, which is shown as

	 =
[

1 1
1 −1

]
. (12)

Any time series (x1, x2, x3, x4, . . . , x2t, x2t+1) of the same
length can be transformed into a series of vectors ((x1, x2), (x3,
x4), . . . , (x2t, x2t+1)) by using a Haar matrix. Then, we calcu-
late the sum (s) and difference (d) of each vector, and record
them as ((s1, d1), (s2, d2), . . . , (st, dt)), which is transformed
with the Haar wavelet operation.

One-stage Haar wavelet decomposition is next performed
on the workload, and two new time series are obtained to
show several features of the original workload. The first time
series shows the changing trend in the original workload. In
the second time series, the detail information is adopted to
obtain the changes between any two successive observations
in the original workload. In this way, trends and details can
be further adopted to increase the prediction accuracy of the
proposed model.

B. Symlet Wavelet Decomposition

A Symlet wavelet function [37] is an approximate symmet-
ric one, and an improved variant of the Daubechies function.
A valid range of a Symlet wavelet is 2Z − 1 where Z is a
vanishing moment. Symlet wavelet has better regularity and
there is no stationary expression or wavelet base. Its discrete
expression is m0(α) = (1/

√
2)
∑2Z−1

v=0 hve−ivα , and its mod-
ulus square is |m0(α)|2 = [ cos2(α/2)]ZP[ sin2(α/2)] where
P(y) = ∑2Z−1

v=0 CZ−1+v
v yv. In addition, α is an angular vec-

tor, and hv is a given parameter. For clarity, W = |m0(α)|2
and U = eiα . Then, W can be decomposed into W(z) =
Q(U)Q(1/U). Here, U and (1/U) are pairs of roots, and Q(·)
denotes a decomposed function.

Symlet wavelet is the same as Daubechies wavelet [38]
with respect to continuity, support length and filter length,
but has better symmetry. Therefore, it can be used to decom-
pose and reconstruct a signal without phase distortion to a
certain extent. In this work, one-stage Sym4 wavelet decom-
position is performed on workload, and two new time series
are obtained to show several features of the original workload.
The first time series shows the changing trend information in
the original workload. In the second time series, the detail

information is adopted to obtain changes between any two suc-
cessive observations in the original workload. In this way, the
trend and detail information can be further adopted to increase
the prediction accuracy of the proposed method.

C. ARIMA

Following earlier studies [22], Chehelgerdi-Samani and
Safi-Esfahani [17] proposed a novel method to obtain ARIMA.
It contains three steps including diagnostic checking, param-
eter estimation, and model identification. In model identifica-
tion, a sequence is produced by ARIMA, and it has several
autocorrelation properties. By comparing theoretical patterns
and empirical ones, we might obtain several candidate mod-
els for a given workload. Box and Jenkins adopt a partial
autocorrelation function (PACF) and ACF of the given data to
determine the order of ARIMA. Then, the data in the future
is predicted based on present and past data in the sequence,
and therefore, it is commonly adopted to realize short-term
prediction.

The resulting model is expressed with ARIMA(p, d, q)

where p, q, and d denote the order of the AR model, the
order of the MA model, and the differencing degree, respec-
tively. ARIMA can be viewed as the combination of AR(p)

and MA(q). Note that AR(p) is the same as (6) of an AR
process with the order of p in Section IV-C. We adopt MA(q)

to process white noise in workload. Then, xt is obtained as

xt = εt + β1εt−1 + β2εt−2 + · · · + βqεt−q. (13)

In ARIMA, the predicted value of each variable is a lin-
ear combination of some random errors and past observations.
Specifically

xt = φ1xt−1 + · · · + φpxt−p + εt + β1εt−1 + · · · + βqεt−q.

(14)

In (14), εt and xt denote a random error and an actual value
at time interval t, respectively. βj ( j ∈ {1, 2, . . . , q}) is a coeffi-
cient of MA(q). We assume that random errors are identically
and independently distributed around the mean of zero.

AIC (AIC) [39] is a criterion to measure the quality of a
model. ARIMA includes an AR model with the order of p
and an MA model with the order of q. Following Akaike’s
theory, the number of parameters in ARIMA is p + q. AIC is
given as

AIC = 2k − 2ln
(̂
L
)

(15)

where k denotes the number of parameters, and L̂ denotes the
maximum-likelihood function value of the prediction model.

D. Training Steps

The training stage of our model is described as follows.
Given a nonstationary workload, p and q are affected by the
number of peaks in ACF and PACF. Consequently, p and q
cannot be determined by them. Then, we specify orders of
AR and MA through many experiments in Section VI-A. It
includes the following steps:

1) specify orders of AR and MA models;
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2) construct the ARIMA model with p and q, and obtain
its AIC;

3) select the ARIMA model with the smallest AIC.
After the above operations, the prediction model is obtained

for the original workload. We can easily realize the proposed
prediction in realistic CDCs if the workload is available in
each time slot. Here, the SG filter is adopted to smooth
workload and decompose it into detail and trend components
with wavelet decomposition. Then, ARIMA is applied to the
two components, and their predicted results are further recon-
structed with the wavelet reduction method. In this way, the
predicted number of tasks arriving in the next time slot is
obtained.

E. Wavelet Reconstruction and Prediction Results

The testing stage of our model is described as follows. At
each time slot k, the data from time slots k − 1 to k − q are
obtained. The data are first preprocessed and decomposed by
the wavelets to obtain the trend result [trend(k)] and the detail
one [detail(k)] in time slot k. The trained ARIMA model is
used for the prediction results, which are further processed by
wavelet reconstruction. The wavelet reconstruction process is
given as

ŷk = trend(k) + detail(k) (16)

where ŷk denotes the prediction result in time slot k.
Finally, the prediction result ŷk in time slot k is obtained.

The above steps are repeated in each time slot.

VI. PERFORMANCE EVALUATION

A. Data Preprocessing

This work chooses the workload in the first 20 days as the
training data. We choose the workload from the 21st to 25th
days as the test data and select the workload in the last four
days as the testing data. Fig. 6 illustrates changes of variance
and mean of the Google workload trace 2011. It is obvious
that the mean value changes greatly and the variance varies
between 0 and 1.5. Besides, they do not keep stable around
some constant, and therefore, this workload time series fails to
meet the stationarity constraint. To reduce the noise in the data,
this work adopts an SG filter. Fig. 7 illustrates the original and
smoothed data of the Google workload trace 2011. It is worth
noting that the aggregated task arriving rates are transformed
with the logarithm function. It is shown that the data smoothed
by the SG filter is smoother than the original one.

However, the operation of smoothing may eliminate the
valuable information in the original workload. Therefore, the
following experiments are conducted to demonstrate its effec-
tiveness. We adopt four types of workloads including the
original sequence, and sequences smoothed by SG, MA, and
MM filters, respectively. As shown in Table III, the window
sizes in them are set to 5 because the best filtering results are
obtained after multiple trials.

A separate prediction model is obtained for each of the
four sequences. The prediction accuracy is measured with the

Fig. 6. Mean and variance changes of the Google workload trace 2011.

Fig. 7. Original and smoothed data of the Google workload trace 2011.

TABLE III
MSE UNDER VARYING WINDOW SIZES

TABLE IV
MSE OF FOUR WORKLOADS

mean-squared error (MSE) [40], [41], i.e.,

MSE =
∑

ω=1(̂yω − yω)2


. (17)

In (17), yω and ŷω denote the original and predicted data,
respectively, at time slot ω, and  denotes the total num-
ber of observations. It is worth noting that a smaller value of
MSE means higher prediction accuracy. This work adopts three
datasets marked as A, B and C, respectively. Table IV shows
MSE of four sequences corresponding to them. It is observed
that the SG filter achieves the highest prediction accuracy.

Besides, as discussed in Section V-C, parameters, includ-
ing d, p, and q, need to be set in ARIMA. d is determined
in the smoothing operation. To determine p and q, this work
investigates the correlation by calculating ACF and PACF of
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Fig. 8. ACF and PACF of a sequence of the Google workload trace 2011.

Fig. 9. AIC of ARIMA with varying p.

Fig. 10. AIC of ARIMA with varying q.

the workload sequence with the Box–Jenkins approach in the
training time. Fig. 8 illustrates the results.

Fig. 8 shows that the lags of ACF and PACF for a sequence
of the Google workload trace 2011 are unable to cut off in
black lines. The curves of ACF and PACF fail to converge
to their specified thresholds, and therefore, exact values of p
and q cannot be obtained based on ACF and PACF. Then,
AIC is calculated to specify the best setting of p and q, which
provides the most accurate prediction model. Specifically, p
and q are limited to given ranges, and each ARIMA model can
have multiple combinations of parameter settings. Then, this
work determines the best model with the highest prediction
performance by using AIC. Fig. 9 shows the variations of AIC

of ARIMA with different values of p, and AIC is the least
if p = 31. Fig. 10 shows variations of AIC of ARIMA with
different values of q. AIC is the least if q = 30.

Figs. 9 and 10 show that the best ARIMA model with
the highest prediction accuracy is obtained when p = 31 and
q = 30. Table V shows the comparison of prediction results
of multiple ARIMA models with different combinations of

TABLE V
RESULTS OF ARIMA MODELS WITH DIFFERENT PARAMETER SETTINGS

TABLE VI
MSE OF THREE WAVELET DECOMPOSITION METHODS

p and q. The prediction result is evaluated in terms of MSE.
Table V shows the best prediction is achieved when AIC is the
least. In addition, the ARIMA model with the best parameter
setting is determined with the above experiments.

B. Evaluation Criteria

This work adopts three metrics, including MSE [40], [41],
R2 [42], and the mean absolute percentage error (MAPE) [43],
[44] to evaluate the prediction accuracy. R2 measures the
goodness-of-fit of a given prediction model, i.e.,

R2 =
∑

ω=1(̂yω − ȳ)2

∑
ω=1(yω − ȳ)2

. (18)

In (18), ȳ denotes the real-life output, and ȳ =
(1/)

∑
ω=1yω. Besides, ŷω denotes the predicted result, and

 denotes the number of records. R2 shows the fitting ability
of a prediction model, and it is within the range of [0, 1].
R2 = 1.0 means a perfect match between the predicted data
and the actual one. In addition, for a prediction model, lower
MAPE means higher fitting ability where

MAPE = 1



∑

ω=1

|̂yω − yω|
yω

. (19)

C. Prediction Result

This work adopts wavelet decomposition to discover more
characteristics of the sequence of the Google cluster workload
trace 2011. This work adopts three types of wavelet decom-
position methods, including Haar, Daubechies, and Symlet
wavelets. As shown in Table VI, Symlet is the best one after
multiple trials. Then, the trend and detail components with the
same length of 2883 are obtained. Trend and detail compo-
nents on the first day of our training set are shown in Fig. 11.
Here, the order of Symlet wavelet is 4. Wavelet decomposition
can be used to obtain multilevel outputs for multiscale varia-
tions. By applying it to a nonstationary time series, we analyze
its low and high frequencies, from which we find its global
information and the information of hidden patterns. By apply-
ing the Symlet wavelet to the original time series, the feature
information is effectively extracted from its trend and detail
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Fig. 11. Result with the wavelet decomposition for Google cluster workload
trace 2011.

Fig. 12. Predicted and actual workloads of all three types in Google cluster
workload trace 2011.

sequences. At the same time, there are almost no extreme
points in the decomposed sequences, which tends to affect the
prediction accuracy significantly. Hence, the modeling ability
and prediction accuracy are further improved.

Wavelet decomposition produces two subsequences, includ-
ing detail and trend components, respectively. We apply
ARIMA to them and obtain their predicted results, which
are further processed by the wavelet reconstruction to provide
the future number of tasks arriving in the next time interval.
Besides, we apply the proposed prediction model to predict
seven different workload series from two different real-life
traces, i.e., Google cluster workload traces 2011 and 2019, to
demonstrate its effectiveness. Fig. 12 shows the predicted and
actual total workloads while Fig. 13 illustrates those of each
type in Google cluster workload trace 2011. Fig. 14 shows the
predicted and actual total workloads while Fig. 15 illustrates
those of each type in Google cluster workload trace 2019.
It is clear that the proposed prediction model achieves high-
accuracy prediction for the total workload and workload of
each type.

To demonstrate the performance of SWARIMA, we com-
pare it with SVM [45], BPNN [18], recurrent neural network
(RNN) [46], LSTM [19], and ARIMA [11] on the same work-
loads. Their prediction accuracy is evaluated in terms of MSE,
R2, and MAPE. Here, BPNN includes input, hidden, and output
layers. BPNN adopts a gradient descent method to iteratively
change its network parameters in its training process. BPNN
has good nonlinear modeling ability, and well fits different
kinds of data. To obtain better performance of the training pro-
cess of BPNN, this work compares the prediction performance
of BPNN with different numbers of hidden nodes. Table VII
shows that the least MSE is achieved if there are 20 hidden
nodes in BPNN.

(a)

(b)

(c)

Fig. 13. Predicted workloads of types 1–3 in Google cluster workload trace
2011, respectively. (a) Type 1. (b) Type 2. (c) Type 3.

Fig. 14. Predicted and actual workloads of all four types in Google cluster
workload trace 2019.

Tables VIII and IX show MSE, R2, MAPE, and the training
time of different prediction methods given the same data from
Google cluster workload traces 2011 and 2019. It is shown
that the prediction accuracy of SWARIMA is better than that
of other methods [11], [18], [19], [45], [46] with respect to the
above four metrics. The time series decomposed by wavelet
decomposition methods provides more features about the orig-
inal time series. The SG filter and wavelet decomposition
smooth the original workload and improve the prediction
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(a)

(b)

(c)

(d)

Fig. 15. Predicted workloads of types 1–4 in Google cluster workload trace
2019, respectively. (a) Type 1. (b) Type 2. (c) Type 3. (d) Type 4.

accuracy of SWARIMA. The wavelet decomposition also
increases the prediction accuracy because Symlets provide
symmetric wavelets, and they have the least asymmetry and
the largest number of vanishing moments for a given compact
support. The Symlet wavelet transformation decomposes the
original sequence into multilevel outputs. Therefore, the SG

TABLE VII
MSE WITH DIFFERENT NUMBERS OF HIDDEN NODES

TABLE VIII
PERFORMANCE COMPARISON OF DIFFERENT ALGORITHMS FOR GOOGLE

CLUSTER WORKLOAD TRACE 2011

TABLE IX
PERFORMANCE COMPARISON OF DIFFERENT ALGORITHMS FOR GOOGLE

CLUSTER WORKLOAD TRACE 2019

filter and wavelet decomposition together greatly reduce noise
in the original sequence, thereby improving the prediction
accuracy. Compared with other machine learning methods,
ARIMA achieves significant improvement in prediction accu-
racy and training time after using SG filtering and wavelet
decomposition. For example, in Table VIII, MSE, MAPE, and
the training time of SWARIMA for Google cluster workload
trace 2011 are all the smallest among all SW-related models,
which are 0.017, 0.386, and 94.33, respectively. In Table IX,
these values for Google cluster workload trace 2019 are 0.010,

Authorized licensed use limited to: SOUTHERN METHODIST UNIV. Downloaded on October 18,2024 at 14:44:31 UTC from IEEE Xplore.  Restrictions apply. 



BI et al.: ARIMA-BASED AND MULTIAPPLICATION WORKLOAD PREDICTION 2505

0.952, and 90.56, respectively, which are the least. In addition,
its R2 of 0.759 is the largest. The reason is that the data pro-
cessed by SG filtering and wavelet decomposition has lower
noise and clearer data characteristics, and ARIMA is built with
it in an easier manner.

VII. CONCLUSION

Current CDCs consume a great amount of energy to provide
services for users around the world. Their energy consump-
tion and efficiency become critically important. The prediction
accuracy of future incoming tasks is vital to realize accurate
resource provisioning for user tasks. However, the irregu-
larity and complexity of workload make it challenging to
achieve it. This work designs a novel prediction approach
named SWARIMA by combining SG filter in wavelet decom-
position, and ARIMA. Experimental results show that its
prediction accuracy and the learning speed are better than its
state-of-the-art peers.

It is worth noting that some parameters used in this work
are only designed for Google cluster traces in 2011 and 2019.
Their setting needs to be tuned if SWARIMA is applied to
other datasets. In addition, SWARIMA is designed for non-
stationary sequences. Thus, its prediction performance might
not be good enough if sequences are already stationary. Our
future work is to extend SWARIMA with some new deep
learning algorithms to yield better performance. Besides, it
is interesting to investigate temporal and spatial features in
tasks, and use them to boost accuracy.
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