

Fig. 1 Service-oriented Science.

Toward Semantics Empowered Biomedical Web Services

Jia Zhang*, Ravi Madduri**, Wei Tan***, Kevin Deichl*, John Alexander*, Ian Foster**
*Department of Computer Science, Northern Illinois University, USA

**University of Chicago and Argonne National Lab, USA

***IBM T.J. Watson Research Center, Hawthorne, NY 10532, USA

*jiazhang@cs.niu.edu, **madduri@mcs.anl.gov, ***wtan@us.ibm.com, **foster@mcs.anl.gov

Abstract—caGrid has accumulated a repository of

biomedical services; however, how a cancer researcher

can find proper services in the caGrid when needed

remains a big challenge. This research aims to enhance

the cyberinfrastructure of caGrid, by developing a

mechanism that turns caGrid services into semantic-

aware interoperable services. We proposed a service

semantics model, and developed a technique that

automatically extracts semantic metadata from static

WSDL service descriptions. Such semantic information

is stored as loosely coupled annotations that can be

queried using semantic Web techniques, to enhance

services discovery and composition. We also proposed a

two-phase discovery technique that helps users quickly

identify interested service operations. This paper also

reports our examinations over available techniques and

recommends a feasible infrastructure for biomedical

service reuse. A prototyping system is developed as a

proof of concept.

I. INTRODUCTION

Services computing technique has enabled scientists to

expose data and computational resources as Web services.

As shown in Fig. 1, scientists create services (data, code,

instructions) and publish them on the Internet using the

machine understandable Web Service Description Language

(WSDL). Other scientists may discover the services and

decide whether or which one to use. They may also

compose multiple services to create a new experimental

process (scientific workflow [1]). If successful, the scientific

workflow will be published as a new service for other

scientists to reuse. Such a virtual cycle can be envisioned as

a new paradigm in science: service-oriented science, or e-

Science [2].

Life science is one of the disciplines that pioneer in the

trend of e-Science. When the National Cancer Institute

(NCI) launched the initiative of cancer Biomedical

Informatics Grid (caBIG) project, one key strategy was to

leverage the services computing technology to connect the

entire cancer community to accelerate cancer research.

To help life scientists publish and discover scientific

services, centralized repositories and registries have been

established. One known repository is the BioCatalogue [3],

which has accumulated more than 1,700 biomedical services

to date. The caBIG project has also created caGrid as a

service repository. However, it has become a big challenge

for life scientists to understand the thousands of available

services and select appropriate ones to facilitate their own

workflow design. Our recent analytical study revealed that

only a small number of utility services at BioCatalogue

(e.g., Blast, http://xml.nig.ac.jp/wsdl/Blast.wsdl, an

application of comparing genome sequences) are frequently

used by life scientists to build scientific workflows [4].

Our survey from various caBIG projects exposed three

reasons that may lead to this phenomenon. First, life

scientists are not aware of the available services. Second,

life scientists struggle with how to operate a service (e.g., to

conform to its data and operation formats). Third, life

scientists are unable to gather all relevant knowledge to best

understand the services.

NCI thus formed a project “Semantic Workflows,”

aiming to explore a way to facilitate life scientists in

building workflows from reusable services. The Center for

Biomedical Informatics and Information Technology

(CBIIT) at NCI decided to adopt the Healthcare Level 7

(HL7) Services Aware Interoperability Framework (SAIF)

[5] to enable the development of domain software

components as Working Interoperability (WI).

Toward this ultimate goal, our first step is to investigate

to apply Semantic Web technology [6] to enhance artifact

discovery and composition. Here the term artifact refers to

either a service or a workflow. Our rationale is as follows. 1)

The existing artifact publication techniques (e.g., WSDL

files) only provide syntactical invocation interfaces for the

artifacts. 2) Semantic information, referring to the meaning

of data and functions, should help scientists better

understand available artifacts (e.g., what are the best ways

to use them; are there any constraints, etc.), thus help

scientists better leverage existing artifacts. 3) The Semantic

Web community has created a wealth of methods, standards,

and technologies to create, store, analyze, and query

machine-understandable meta-data (semantics) over Web

information [6]. 4) Therefore, we shall investigate how to

leverage the Semantic Web technologies to improve artifact

discovery and composition, in the context of caBIG and life

science research. It should be noted that our research

approaches may be easily expanded to other areas not

2011 IEEE International Conference on Web Services

978-0-7695-4463-2/11 $26.00 © 2011 IEEE

DOI 10.1109/ICWS.2011.123

371

Fig. 2 Service semantics model.

limited to caGrid and life science.

This paper reports our on-going efforts of automatically

extracting semantic information from available biomedical

services toward making them “computable semantic

interoperability” (CSI). Our contributions are four-fold. 1)

We proposed a service semantics model and built techniques

to automatically extract semantic information from

published service documents and annotate services. 2) We

established a two-phase search technique that leverages

structural and semantic information to quickly identify

related operations. 3) We suggest a feasible service semantics

extraction and generation infrastructure compatible with

existing standards and techniques. 4) We built a prototyping

service search engine as a plugin to a known scientific

workflow system.

The remainder of the paper is organized as follows. In

Section 2, we discuss related work. In Section 3, we

introduce our service semantics model and an automatic

semantics extraction technique. In Section 4, we present our

two-phase services discovery technique. In Section 5, we

present our proposed system infrastructure and

implementation details. In Section 6, we present experiments

and discussions. In Section 7, we make conclusions.

II. RELATED WORK

Segev and Zheng [7] propose an ontology bootstrapping

method that automatically generates concepts and their

relations in a domain from WSDL files. In contrast to their

work, we focus on clustering services and service operations

to facilitate services discovery.

Semantic Automated Discovery and Integration (SADI)

[8] framework is able to recommend SADI services based

on input or output data types. However, a SADI service has

to be created manually, built and deployed as a servlet, and

then registered to the SADI registry, before it can be

searched by the SADI search engine. In contrast, our search

engine can cover normal WSDL services. Furthermore,

while SADI search only compares the input/output OWL

class URLs in registered SADI services, our work considers

more semantic conditions (e.g., functional profile, pre- and

post-conditions, and constraints).

Zhang and Li introduce the concept of service cluster [9]

to represent a collection of available services provided by

multiple service providers to perform a specific common

function. Here we use the concept to represent a collection

of functionally relevant services based on domain-specific

ontology. We use clustering algorithms to automatically

identify service clusters from their published documents.

The WINGS [10] project adopts AI planning and

semantic reasoners to verify whether a workflow complies

with the requirements of the comprising components and

datasets. The Kepler [11] workflow management system

provides ontology-driven search capability for data and

actors that have been annotated with formal ontologies. In

contrast, we focus on using automatically extracted

semantic metadata to enhance services discovery.

There have been a lot of efforts on semantic services

discovery, most of which performing profile-based service

signature (I/O) matching [12]. OWLS-MX [12] and

WSMO-MX [13] propose to combine logic-based reasoning

and syntactic concept similarity computations in OWL-S.

Sbodio et al. [14] propose to use SPARQL as a formal

language to describe the pre- and post-conditions of services.

Junghans et al. [15] propose a practical formalism to

describe functionalities and service requests. In contrast, we

leverage service functional profiles and service operation

structures to enhance services discovery.

III. SEMANTICS MODEL AND AUTOMATIC EXTRACTION

As shown in Fig. 2, we propose a service semantics

model comprising both static semantics and behavioral

semantics. Static semantics describe the functionalities that

a service promises to provide, as well as the goals of the

service. Behavioral semantics describe the required

circumstances when a service can behave, including input

and output parameters, pre- and post-conditions, constraints,

and historical usage patterns.

The model defines an ontology that describes the

semantics of a service. From service provider perspective, it

guides how to depict a service; from consumer perspective,

it facilitates effective services discovery. We have developed

a technique that can automatically extract various

aforementioned semantic metadata from a published WSDL

service.

A. Static semantics

The goals of a service are usually implied by embedded

comments; therefore, we focus on how to extract the

functional profile of a service from its WSDL file. Our

hypothesis is that, user-defined names used in a WSDL

document may depict a functional profile of the

corresponding service. The rationale is that, service

developers tend to follow naming conventions and use

meaningful words to name operations and services.

Furthermore, when an IDE automatically generates a WSDL

document from source code where naming convention is

typically strictly enforced, the actual method names will be

used for generating corresponding WSDL interfaces. As

shown by the following example, a method named “add” in a

372

Java class Calculator will cause all related WSDL segments

to be named after it (WSDL 1.1 generated by Java Eclipse

IDE), including portType name, operation name,

input/output message names, and part names inside of

input/output messages.

<wsdl:message name="addResponse">
 <wsdl:part element="impl:addResponse" name="parameters"/>
</wsdl:message>

<wsdl:message name="addRequest">
 <wsdl:part element="impl:add" name="parameters"/>
</wsdl:message>

<wsdl:portType name="Calculator">
 <wsdl:operation name="add">
 <wsdl:input message="impl:addRequest" name="addRequest"/>
 <wsdl:output message="impl:addResponse" name="addResponse"/>

 </wsdl:operation>
</wsdl:portType>

Therefore, we define the functional profile of a service s

as follows. It is a combination of service name, portType

name and all comprising operations’ information, each in

turn including the name of the operation, names of the

input/output messages and names of all comprising parts of

the messages.

spf(s) ={service_name U

 portType_name U

 [operation_name U

 input_message_name, [part_name]* U

 ouput_message_name, [part_name]*]*}

We thus obtain a service functional profile as a document

containing all the names extracted from its WSDL file. The

resulting profile may comprise duplicated words.

B. Behavioral semantics

Our hypothesis is that, a service, especially a scientific

service, may require a suitable execution context for the best

result. For example, our past analysis found that the

performKNN
1
 service (a machine learning method K-Nearest

Neighbor) usually performs well when integrated with pre-

processing services provided by the same research group
2
.

Therefore, we highlight the importance of extracting

behavioral semantics of a published service. Such metadata

shall benefit the precision level of services discovery,

because they can be used to compare with service requestors’

residing contexts [16]. In other words, by automatically

extracting behavioral semantics of published services and

advertising their expected behaviors, we escalate the

interoperability of services.

As shown in Fig. 2, we identify four categories of

behavioral semantics. Our categorization is compatible with

the HL7 Behavioral Framework Metamodel [5] that defines

the metadata needed for workflows in NCI CBIIT.

I/O parameters refer to input and output data types. At the

current time, we consider exact matching of data types

defined in WSDL files or referred XML Schema files.

1 KNN service:

http://node255.broadinstitute.org:6060/wsrf/services/cagrid/KNN?wsdl
2 broadinstitute, www.broadinstitute.org

According to W3C WSDL specifications, each input or

output parameter is an XML-compatible data type, either an

XML built-in type or a user-defined compound type based

on built-in types.

Our earlier study on automatic service test case

generation [17] pointed out that constraining facets can be

used for service providers to specify data constraints, each

restricting aspects of the value space of a data type. The

following code segment describes a user-defined data type

containing two integer-type elements. The first element

leverages constraining facets to delimit the value range of 0

to 100, inclusive. The second element requires non-negative

integer numbers.

 <element name="add">

 <complexType>

 <sequence>

 <element minInclusive="0" maxInclusive="100" name="i"

type="xsd:int"/>

 <element minInclusive="0" name="j" type="xsd:int"/>

 </sequence>

 </complexType>

According to XML Schema, all 19 built-in primitive

types and 27 built-in derived types can each be associated

with a set of constraining facets. Our study yielded a matrix

of allowable constraining facets for all XML built-in types

[17]. In this project, we leverage our earlier work and search

for constraints defined by service providers in the format of

constraining facets in WSDL files.

Our another earlier study revealed that historical usage

data may be leveraged to increase the effectiveness and

efficiency of services discovery [18]. For example, assume

that historical data shows two services (s1 and s2) are always

used together in common workflows. This knowledge

indicates that, if a scientist selects one such service (say s1),

the other service should be recommended to the scientist.

The usage pattern metadata intends to record such best

practice from past experiences. Our technique of

automatically mining services-oriented past usage patterns

is reported in another paper [4].

Note that behavioral semantics may help to enable the

computationally assisted assembly of services using

business-level guidance in addition to technical-level

guidance (e.g., syntactical service match making). As the

first step, here we focus on developing a notion of “just

enough semantics.”

C. Semantic annotations

Based on our proposed service semantics model, all

metadata will be automatically generated from service

sources (WSDLs). We record such semantic metadata in the

form of annotations to further facilitate services discovery.

We face two options to store annotations for a service: a

tightly coupled way or a loosely coupled one. The first

option is to insert annotations into the original WSDL file.

The second option is to store annotations in a separate

document, while inserting a link into the original WSDL file

to refer to the annotation document. Each option has a W3C

373

Fig. 3 Loosely coupled semantic annotation.

project supporting it: SPARQL Annotations in WSDL

(SPDL) project [19] for the former and Web Service

Modeling Ontology (WSMO) [20] for the latter.

SPDL chooses to insert SPARQL Annotations (SPAT)

into WSDL files, as illustrated by the example below.

<xs:sequence>

<xs:element name="Keywords" type="xs:string" minOccurs="0"/>

<xs:element name="SearchIndex" type="xs:string" minOccurs="0"/>

 <!-- xs:annotation><xs:appinfo><spat:SPAT>

 PATHPATTERN { ?req tns:keywords xpath("tns:Keywords") ;

 tns:index xpath("tns:SearchIndex") }

 </spat:SPAT></xs:appinfo></xs:annotation -->

</xs:sequence>

This example includes two triples patterns, associating

the objects of the triples with some information accessible

by the XPaths /tns:Keywords and /tns:SearchIndex. RDF

applications can then conduct SPARQL queries over

annotated Web services.

In contrast, WSMO introduces Semantic Annotations for

WSDL (SAWSDL) for inserting annotation reference links.

The following example shows that an annotation file

“elementRef” can be accessed by the URI, using Web

Service Modeling Language (WSML), a SAWSDL

extension:

<xs:schema elementFormDefault="qualified"

targetNamespace="http://www.w3.org/2002/ws/sawsdl/spec/wsdl/order#">

 <xs:element name="add"

sawsdl:modelReference="http://www.example-one.org#elementRef">

We consider a loose coupling solution is important to

offer higher reusability and flexibility in this project.

Especially, Web services are hosted and maintained by

corresponding service providers. As shown in Fig. 3, the

WSMO approach allows us to keep the registry of our

search engine clean, since we do not have to change the

WSML-annotated WSDL files when annotations get

changed, e.g., new usage patterns are identified and

recorded into the annotation file of a service.

IV. TWO-PHASE SERVICES DISCOVERY

We propose a two-phase technique for services discovery

at the search engine. A published service usually offers a set

of operations, providing similar functionalities but serving

slightly different scenarios. For instance, two operations in a

service may offer exactly the same functionality but require

different numbers of input arguments or different input data

types. This observation is extremely important for

biomedical services discovery. Consider a life scientist who

holds some KEGG data at hand, and intends to find an

available service that can take the KEGG data type as input

to conduct data analysis. In such a circumstance, we aim to

identify proper operations, instead of stopping at the service

level.

Meanwhile, performance of services discovery remains a

significant issue because of the size of the search space. For

example, the BioCatalogue repository has accumulated over

1,700 biomedical services.

We thus developed a two-phase approach. In phase one,

we aim at quickly locating a group of related services (a

service cluster comprising relevant services from the

original large-scale service set) to largely narrow down the

search space. In phase two, we aim at finding proper

operations inside of the service cluster based on semantic

context.

A. Service clustering

To find a proper service cluster in a service repository,

we apply the information retrieval technology to divide

services into clusters based on their functional similarities.

In contrast to the existing service categorization approaches

that depend on the keywords provided by service providers,

our approach aims to automatically divide services into

clusters based on their static semantics (i.e., functional

profiles) that can be automatically extracted from their

published files. The following pseudo code shows how we

cluster services in a registry:

Algorithm: Cluster services
Input: a collection of services registered SS.

Output: a collection of service clusters CS.

1: build_corpus(collection of services)

2: �� ← ∅

3: For each service �� ∈ ��

4: �	
��������������
4.1: ���	��	�����������
4.2: �	���
_�����������������
5: ������������������
5.1: ���_��� ← ∅

5.2: For each ��,� ∈ �������
5.3: if ��,� ∉ ���_��� then

5.4: ��_������,�� ! ���,� " ����
5.5: add���,� , ��_������,��� → ���_���

5.6: endif

5.7: EndFor

5.8: ���_��� → �������
6: EndFor

7: For each pair of services �$, �% ∈ ��

8: �����$, �%� ← ���������$�, �����%��
9: EndFor

In step 1, we gather all terms (normalized names) from all

services and establish the corpus �⋃ ∀��|)|�*$ ∈ ��� . The

original service cluster set is set to be empty in step 2.

We use their functional profiles to evaluate the

similarities among services. As the process shown in Section

III.A, the functional profile of a service is constructed as a

document containing a list of names (terms).

Each name obtained has to go through a normalization

and a weighting process before it can be used for further

analysis, as shown in steps 3-6. A name is an identifier that

is either a single English term or a composite one. For

374

Fig. 4 Structure of a service operation.

example, the name of an operation may be preProcessData

or get_Array_Data. Such a composite term can be divided

into single terms: by identifying big-case characters and

removing separators for the above two situations,

respectively. Another issue is the synonym issue. For the

same meaning, one may choose to use syntactical variants,

such as plurals, past tense suffixes, and gerund forms. We

chose to partially solve this problem by substituting names

with their respective stems, the portion of a word left after

the removal of its affixes. We adopted the Porter stemming

algorithm [21] for prefix and affix removal and Wordnet

(http://www.wordnet.princeton.edu) for solving the

synonym issue. Going through all the names in a functional

profile of the service, we get a normalized document.

In step 5, by applying the term frequency–inverse

document frequency (TF-IDF) algorithm [22], we calculate

the weight (wj,i) of every term (tj,i) inside of the functional

profile of every service (si). It indicates the importance of the

term representing the semantics of the service.

				��_
�����,�� ! ���,� " ���� ! ��,�∑ �-,�- " � |�|1 + |{�: ��,� ∈ ������}|

Where ���,� is the term frequency (obtained by the number

of occurrences of the term tj,i in the functional profile of

service si, divided by the size of the functional profile of the

service to ensure that ���,� ∈ [0,1]); ���� 	��	���	 general

importance of the term (obtained by dividing the total

number of services by the number of services containing the

term in their functional profiles, and taking the logarithm of

the resulting quotient). Meanwhile, duplicated terms will be

removed. In other words, the result will be a map, each key

being a term and corresponding value being its importance

that represents the functionality of the service.

Although the concept relatedness between terms is

broader than that of similarity [23], we only consider the

latter for simplicity. We then leveraged the shortest path-

based LCH algorithm [24] to measure the semantic

similarity between two terms based on the lexical database

WordNet. ������: �6, ��: �6� ! ����� , ���
Now we are ready to calculate the similarity between two

lists of elements (terms) in step 8. Two lists can be abstracted

as two disjoint sets of elements X and Y: 7 ! {8$, 8%, … 8:}, ; ! {<$, <%, … <=},� ≥ 1, � ≥ 1. ∀8� ∈7, <� ∈ ;, an edge always exists �8� , <�� ∈ @, with a weight of ����8� , <�� . Thus, we obtain a weighted complete bipartite

graph A ! �B ! �7, ;�, @�. Calculating the similarity between

the two lists is therefore turned into finding a perfect match

(maximum cardinality matching), where the sum of the weights

of the edges in the matching reaches a maximal value:

���������1�, �����2�� ! maxG H ����8I$�-�,<I%�-�JKL�|M|,|N|�
-*$ �

∙ ��_����8I$�-�� ∙ ��_����<I%�-��P

where M1 and M2 are two mapping functions, each

selecting the number of min(|X|,|Y|) elements from the sets X

and Y, respectively: Q1:R → 	8I$�-�, ∀R1 ≠ R2,Q1�R1� ≠ Q1�R2�; Q2: R → 	<I%�-�, ∀R1 ≠ R2,Q2�R1� ≠ Q2�R2�;
We applied the Hungarian algorithm [25] to find the optimal

match, with a cost of O(V
2
E).

We calculate the similarity factor over functional profiles

between each pair of services, and obtain a similarity matrix for

all services residing in the registry. If the similarity between a

peer satisfies �����$, �% ≥ U), where γ is a preset value, they

are put into the same service cluster. Without losing generality,

we set γ as 0.75 and apply to the registry to identify service

clusters.

B. Service operation clustering

We leveraged the behavioral semantics to cluster service

operations in a service cluster. Right now we used the internal

structure of service operations to cluster them based on their

similarity. Fig. 4 illustrates the building blocks of a service

operation as well as the relationships between them, using a

UML class diagram. An operation comprises one input message

and one output message. Each message may contain multiple

parts, each comprising an attribute representing its data type

that can be either an XML built-in type or a user defined type

(a complex type that is defined recursively). As shown in Fig.

4, each comprising element contains an attribute declaring the

name of the element.

Based on the structure of a service operation, we have

developed a similarity computation algorithm for comparing

two operations. Note that we only need to consider two

operations belonging to two services residing in the same

service cluster. Given two operations { 	� , 	� ∈ ��- }, their

similarity can be calculated using the following formula.
 ����	�: VW, 	�: VW� ! �$ ∙ ����	� . ����: �6[], 	� . ����: �6[]� 																																+�% ∙ ����	� . ��:Q�A, 	� . ��:Q�A� 																																					+�X ∙ ����	�. 	Y�:Q�A, 	� . 	Y�:Q�A�
where w1+w2+w3=1.

The coefficients indicate that we may assign different

weights for operation names and messages, respectively. Each

operation name is normalized into a list of terms using our

method discussed in Section III.A.

In turn, the following formula compares the similarity

between two messages (either input or output messages). The

coefficients indicate that we may assign different weights for

375

Fig. 5 Semantics-empowered services discovery infrastructure.

message names and comprising parts, respectively.
 ������:Q�A,�Z:Q�A� !																																																									 																																�$ ∙ ������ . ����: �6[],�� . ����: �6[]�	 																											+�% ∙ ������ . ��
��: W6[],�� . ��
��: W6[]�
where w1+w2 =1.

Each message name is normalized into a list of terms using

our method discussed in Section III.A. Each message may

contain a list of parts.

Calculating similarity between two lists of terms (names) or

two lists of parts is more challenging because the two lists may

contain different numbers of elements. We first calculate two

parts only.

The following formula compares the similarity between two

parts, belonging to two different messages. The coefficients

indicate that we may assign different weights for part names

and data type, respectively.
 ������: W6, �� : W6� !																																																									 																																�$ ∙ ������ . ����: �6[], �� . ����: �6[]�	 																											+�% ∙ ������ . �<��: �6, �� . �<��: �6�
where w1+w2 =1.

For simplicity, here we only compare the names (strings)

between data types. Considering containment relationships

between data types will be our future work.

We have discussed the algorithm that compares the

similarity between two terms in the last section ������: �6, ��: �6�.	 We also have discussed how to calculate

the similarity between two lists of names. Calculating two

lists of parts is similar, as we formulate the problem as

finding a perfect match in a weighted complete bipartite

graph A ! �B ! �7, ;�, @�, where the sum of the weights of

the edges in the matching reaches a maximal value:

max	� H ����8I$�-�,<I%�-�JKL	�|M|,|N|�
-*$ �

The only difference is that the importance of each

element (i.e., part) here is equal. We use the approach to

calculate the similarity between names (operation, message,

and part element) and parts. As a result, we can calculate the

similarity between any two operations in one service cluster.

Then we apply a hierarchical clustering algorithm [26] to

organize all operations in the same service cluster into a

multi-level cluster. Each cluster represents an abstract

operation providing similar semantic services with a similar

structure. Searching in such a hierarchical structure, we can

help scientists quickly identify proper service operations.

V. SYSTEM INFRASTRUCTURE AND IMPLEMENTATION

Fig. 5 illustrates the infrastructure of our semantics-

empowered services search engine, and the control flow

among its comprising components. A number of open-source

libraries are leveraged in our implementation. To make it

easier for audience to read, we summarize the libraries in

Table 1, with their abbreviations, published groups, and

either their full names or short descriptions. We integrate our

approach into Taverna workbench [27] (a known workflow

management system in life science), and since Taverna is

developed in Java, all of our selected open-source libraries

are Java-based. Our search engine is implemented as a plug-

in to the Taverna workbench where users can conduct

SPARQL queries. Upon receiving a query, the search engine

will rank available services, through evaluating their WSDL

files as well as associated annotation files.

As shown in Fig. 5, WSDL files and their associated

annotations (in the format of OWL/RDF) are stored

separately for higher flexibility, linked through their

intermediate SAWSDL-annotated WSDL files. As a matter

of fact, all three parties are stored separately, while the

original WSDL files are maintained by the corresponding

service providers. The mappings among the three categories

of files are maintained by our search engine, and remain to

be kept up-to-date by monitoring whether changes are

performed on the original WSDL files.

In case that a new WSDL file is published or an existing

WSDL file is updated, our system will regenerate its

annotations. As shown in Fig. 5, based on whether the

service description file is compatible with WSDL 1.1 or

WSDL 2.0, one of the two paths will be selected. Although

WSDL 2.0 has already been recommended by W3C since

June 2007, we found that many available biomedical services

remain to be WSDL 1.1 compatible. Furthermore, many

existing Java development environments (e.g., Eclipse and

NetBeans) only support WSDL 1.1. As a result, we have to

376

Table 1. Summary of open-source libraries used.
Abbr. Group Full Names/Descriptions

DROOLS JBoss JBoss-embedded rule engine

JENA Talis,

Epimorphics

A framework of building semantic Web

applications

JESS E.Friedman-

Hill

rule engine

LUCENE Apache text search engine

SAWSDL W3C Semantic Annotations for WSDL

WODEN Apache reading, manipulating, creating and writing

WSDL documents

WSDL4J IBM Web Services Description Language for Java

WSIF Apache Web Services Invocation Framework

WSMO4J ESSI Java API for Web Services Modeling Ontology

support both WSDL 1.1 and 2.0 handling.

Such a situation has an impact on our library selection.
Woden was our original choice for parsing WSDL files,
which is an Apache project aiming to develop a Java class
library for reading, manipulating, creating and writing
WSDL documents [28]. However, Woden only supports
WSDL 2.0 to date, while Eclipse and other such programs
only generate WSDL 1.1 documents. WSDL4J [29] has the
ability to parse WSDL 1.1 files. By using WSDL4J, we are
able to parse the documents to find available operations and
what data types they require for their input and output
messages. However, in the case of complex data types, we
were unable to determine the requirements as WSDL4J does
not support the parsing of the schema, where the
complexType definitions are defined.

This challenge led us to adopt Apache's WSIF [30]. The
only key component in which we are interested at this point
is its schema parser in the package: org.apache.wsif.schema.
Unfortunately, the latest version of WSIF is not compatible
with the latest version of WSDL4J. In addition, not all the
required jar files for WSIF were located in the download and
had to be tracked down manually. After finding the required
jars, we made the changes to make them coexist (in Wrapper
shown in Fig. 5). As a result, as shown in Fig. 5, Woden and
WSDL4J/WSIF are leveraged to analyze WSDL 2.0 and 1.1
files, respectively.

The Java objects obtained in memory after parsing a

WSDL file are sent to the WSMO4J [31] library to produce

SAWSDL[32]-annotated WSDL file. We insert SAWSDL

tags into the WSDL file to point to actual annotation files

containing semantic information extracted from the WSDL

file. We adopt the JENA framework to create semantic

annotation files from the Java objects in memory. To date,

we have created annotations in two formats: RDF and OWL,

leveraging Jena-XML and Jena-OWL, respectively.
Drools [33] from JBoss provides a unified and integrated

platform for rules. Comparing to other known rule engines
such as JESS [34], users of Drools can describe rules in a
more object-oriented manner. We thus adopt Drools to
record and validate rules in our service discovery engine.

As shown in Fig. 5, upon receiving a user query, our

search engine will consult with JENA to enable SPARQL

queries, DROOLS to enable rule evaluations, and our CASE

engine [18] to enable run-time historical information

checking. CASE engine periodically monitors newly

published or updated biomedical workflows and services,

updates the PDSW networks, and generates appropriate

usage pattern-related semantic information and inserts it into

the corresponding annotation files.

We adopted Apache Lucene (http://lucene.apache.org/),

an open-source search library to index the information

collection and associated annotations. SPARQL queries are

hidden from users who may be domain scientist not familiar

with the Semantic Web technologies.

VI. EXPERIMENTS AND DISCSSIONS
We have applied our approach to the BioCatalogue

repository. Over the 1,740 services registered gathered on
February 28, 2011, services are clustered as shown below,
using our algorithm discussed in Section III.A.

#cluster 1 1 1 1 3 1 2 3 8 15 1140

#service 129 63 12 8 7 6 5 4 3 2 1

One large cluster was identified with 129 services; and
one cluster with 63 services. Then the number of services
that can be grouped into the same cluster drops significantly.
Our investigation found several significant factors. First,
service developers do not always follow naming
conventions. For example, method name “polljob” is used
instead of “pollJobs.” Second, the word base WordNet that
we used does not support many domain-specific words. For
example, acronyms such as “RNA” or “PNG” are not
supported by WordNet. Meanwhile, some application-
specific words, such as “Api” and “libs,” are not supported
as well. Third, domain-specific synonyms may not be
supported by WordNet, for example, “get” and “fetch.”
Thus, in our future work, we will explore other dictionary to
replace WordNet for a better clustering result.

Here we also report some of our experiences of building

the infrastructure illustrated in Fig. 5, regarding Maven,

eclipse plugins, svn, and project building. To create a

Taverna plugin project in Eclipse, the Apache Maven tool is

required as a software project management and

comprehension tool (http://maven.apache.org/). To use

Maven in eclipse, a user must first install an Eclipse plugin

(m2eclipse). The most up-to-date version of m2eclipse is

0.12; however, it cannot create a Taverna plugin with an

error message of “remote catalog is empty.” Through trial

and error, we found that its earlier version 0.10 works

correctly with the Tavern maven repository.

We used one known open-source version control system

(Apache Subversion http://subversion.apache.org/) to

manage the revisions of the system. We found that checking

in a project is easy; however, checking a project out is a

different story. One trick is that users must create a new

Maven project before checking out a Maven project from

Subversion. Meanwhile, the SVN checkout plugin for

m2eclipse is needed to check out a Maven project.
As shown in Fig. 5, we used a number of open-source

libraries in our implementation. We strived to seamlessly
integrate them while eliminating overheads for a higher

377

performance. Therefore, we intentionally simplified and
revised some implementations from the libraries. For
example, WSIF’s schema parser, located at the package
org.apache.wsif.schema.Parser, requires a WSDLLocator (an
interface) to read in a WSDL URI. The implementation that
is defined in WSIF uses classes that are not necessary for our
project (e.g., ClassLoaders); therefore, we implemented our
own WSDLLocator.

VIV. CONCLUSIONS AND FUTURE WORK

In this paper, we reported our on-going efforts of

building a semantic-aware biomedical services discovery

engine. Through automatic sematic metadata extraction

from WSDL files and annotations, our approach helps to

quickly identify related service operations. Our work also

suggests a feasible infrastructure that is compatible with

existing standards and techniques. Our prototyping system

has demonstrated that our semantic infrastructure is able to

fulfill the goal of next-generation caGrid 2.0: make easy

things easy, lower the barrier to entry, and support existing

users of the present infrastructure.

We plan to continue our research in the following

directions. We will explore a notation that formally

represents an abstract operation in the operation-level

ontology and develop a technique that automatically

generates abstract operations in the structure. We will also

conduct case studies over real biomedical use cases and

evaluate the effectiveness and efficiency of our approach.

X. ACKNOWLEDGEMENT

We thank the caBIG Semantic Workflows team for

constructive discussions. The work described in this paper is

partially supported by the National Cancer Institute, the

National Institutes of Health under contract N01-CO-12400,

and the National Science Foundation under grant IIS-

0959215.

XI. REFERENCES
[1] B. Ludäscher, "Scientific Workflows: Cyberinfrastructure for e-

Science", in Proceedings of Pacific Neighborhood Consortium (PNC),

2007, Berkeley, CA, USA, Oct. 19.

[2] I. Foster, "Service-Oriented Science", Science, 2005, 308: pp. 814-817.

[3] J. Bhagat, F. Tanoh, E. Nzuobontane, T. Laurent, J. Orlowski, M. Roos,

K. Wolstencroft, S. Aleksejevs, R. Stevens, S. Pettifer, R. Lopez, and C.A.

Goble, "BioCatalogue: A Universal Catalogue of Web Services for the Life

Sciences", Nucleic Acids Research, May 19, 2010, 38: pp. W689-W694.

[4] W. Tan, J. Zhang, and I. Foster, "Network Analysis of Scientific

Workflows: a Gateway to Reuse", IEEE Computer, Sep., 2010, 43: pp. 54-

61.

[5] CBIIT (2010) HL7 Services Aware Interoperability Framework (SAIF)

Implementation Guide.

[6] B. Medjahed and A. Bouguettaya, "A Multilevel Composability Model

for Semantic Web Services", IEEE Transactions on Knowledge and Data

Engineering (TKDE), Jul., 2005, 17(7): pp. 954-968.

[7] A. Segev and Q.Z. Sheng, "Bootstrapping Ontologies for Web

Services", IEEE Transactions on Services Computing (TSC), Oct.-Dec.

2010.

[8] M.D. Wilkinson, L. McCarthy, B. Vandervalk, D. Withers, E. Kawas,

and S. Samadian, "SADI, SHARE, and the in silico Scientific Method".

2010, BMC Bioinformatics 11(suppl 12):S7.

[9] L.-J. Zhang and B. Li, "Requirements Driven Dynamic Business

Process Composition for Web Services Solutions", Journal of Grid

Computing, 2004, 2: pp. 121-140.

[10] Y. Gil, V. Ratnakar, J. Kim, P. González-Calero, P. Groth, J. Moody,

and E. Deelman, "WINGS: Intelligent Workflow-Based Design of

Computational Experiments", IEEE Intelligent Systems, Jan./Feb., 2010,

26(1): pp. 62-72.

[11] C.B. Shawn, S. Bowers, M.B. Jones, B. Ludäscher, M. Schildhauer,

and J. Tao, "Incorporating Semantics in Scientific Workflow Authoring", in

Proceedings of the 17th International Conference on Scientific and

Statistical Database Management (SSDBM), 2005, Santa Barbara, CA,

USA, Jun. 27-29, pp. 75-78.

[12] M. Klusch, B. Fries, and K. Sycara, "Automated Semantic Web

Service Discovery with OWLS-MX", in Proceedings of ACM International

Conference on Autonomous Agents, 2006, Hakodate, Japan, May 8-12, pp.

915-922.

[13] M. Klusch and F. Kaufer, "WSMO-MX: A Hybrid Semantic Web

Service Matchmaker", Web Intelligence and Agent Systems, Jan., 2009,

7(1): pp. 23-42.

[14] M.L. Sbodio, D. Martin, and C. Moulin, "Discovering Semantic Web

Services using SPARQL and Intelligent Agents", Web Semantics: Science,

Services and Agents on the World Wide Web, Nov., 2010, 8(4): pp. 310-328.

[15] M. Junghans, S. Agarwal, and R. Studer, "Towards Practical Semantic

Web Service Discovery", Lecture Notes in Computer Science (The

Semantic Web: Research and Applications), 2010, 6089/2010: pp. 15-29.

[16] S.J.H. Yang, J. Zhang, and I.Y.L. Chen, "Ubiquitous Provision of

Context-Aware Web Services", International Journal of Web Services

Research (JWSR), Oct.-Dec., 2007, 4(4): pp. 83-103.

[17] J. Zhang, "A Mobile Agent-Based Tool Supporting Web Services

Testing", Wireless Personal Communications (WPC), Springer, 56(1), Jan.,

2010, pp. 147-172.

[18] J. Zhang, W. Tan, and J. Alexander, "CASE: A Taverna-Based

Recommendation Engine Supporting Services-Oriented Workflow Reuse",

Technical Report of Google Summer of Code, 2010.

[19] W3C, "SPARQL Annotations in WSDL (SPDL) Project", Available

from: http://www.w3.org/2005/11/SPDL/.

[20] ESSI, "Web Services Modeling Ontology (WSMO)", Available from:

http://www.wsmo.org/.

[21] M. Porter, "An Algorithm for Suffix Stripping Program", Automated

Library and Information Systems, 1980, 14(3): pp. 130-137.

[22] K.S. Jones, "A Statistical Interpretation of Term Specificity and Its

Application in Retrieval", Journal of Documentation, 1972, 28(1): pp. 11-

21.

[23] A. Budanitsky and G. Hirst, "Evaluating WordNet-Based Measures of

Lexical Semantic Relatedness", Computational Linguistics, Mar., 2006,

32(1).

[24] C. Leacock and M. Chodorow, "Combining Local Context and

WordNet Similarity for Word Sense Identification", in WordNet: An

Electronic Lexical Database, C. Fellbaum, Editor, 1998, MIT Press, pp.

265–283.

[25] R. Ahuja, T. Magnanti, and J. Orlin, Network Flows, 1993: Prentice

Hall.

[26] R. D'andrade, "U-Statistic Hierarchical Clustering", Psychometrika,

1978, 4: pp. 58-67.

[27] T. Oinn, M. Greenwood, M. Addis, M.N. Alpdemir, J. Ferris, K.

Glover, C. Goble, A. Goderis, D. Hull, D. Marvin, P. Li, P. Lord, M.R.

Pocock, M. Senger, R. Stevens, A. Wipat, and C. Wroe, "Taverna: Lessons

in Creating a Workflow Environment for the Life Sciences", Concurrency

and Computation: Practice & Experience, 2006, 18(10): pp. 1067–1100.

[28] Apache, "Woden", Available from: http://ws.apache.org/woden/.

[29] "WSDL4J", 2005, Available from: http://wsdl4j.sourceforge.net/.

[30] Apache, "Web Services Invocation Framework", Available from:

http://ws.apache.org/wsif/.

[31] ESSI, "WSMO4J", Available from: http://wsmo4j.sourceforge.net/.

[32] W3C, "Semantic Annotations for WSDL (SAWSDL)", Available from:

http://www.w3.org/2002/ws/sawsdl/.

[33] JBoss, "Drools", Available from: http://www.jboss.org/drools.

[34] E. Friedman-Hill, "JESS", Available from: http://www.jessrules.com/.

378

