
 
Fig. 1 Service-oriented Science. 
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Abstract—caGrid has accumulated a repository of 

biomedical services; however, how a cancer researcher 

can find proper services in the caGrid when needed 

remains a big challenge. This research aims to enhance 

the cyberinfrastructure of caGrid, by developing a 

mechanism that turns caGrid services into semantic-

aware interoperable services. We proposed a service 

semantics model, and developed a technique that 

automatically extracts semantic metadata from static 

WSDL service descriptions. Such semantic information 

is stored as loosely coupled annotations that can be 

queried using semantic Web techniques, to enhance 

services discovery and composition. We also proposed a 

two-phase discovery technique that helps users quickly 

identify interested service operations. This paper also 

reports our examinations over available techniques and 

recommends a feasible infrastructure for biomedical 

service reuse. A prototyping system is developed as a 

proof of concept. 
 

I. INTRODUCTION 

Services computing technique has enabled scientists to 

expose data and computational resources as Web services. 

As shown in Fig. 1, scientists create services (data, code, 

instructions) and publish them on the Internet using the 

machine understandable Web Service Description Language 

(WSDL). Other scientists may discover the services and 

decide whether or which one to use. They may also 

compose multiple services to create a new experimental 

process (scientific workflow [1]). If successful, the scientific 

workflow will be published as a new service for other 

scientists to reuse. Such a virtual cycle can be envisioned as 

a new paradigm in science: service-oriented science, or e-

Science [2]. 

Life science is one of the disciplines that pioneer in the 

trend of e-Science. When the National Cancer Institute 

(NCI) launched the initiative of cancer Biomedical 

Informatics Grid (caBIG) project, one key strategy was to 

leverage the services computing technology to connect the 

entire cancer community to accelerate cancer research. 

To help life scientists publish and discover scientific 

services, centralized repositories and registries have been 

established. One known repository is the BioCatalogue [3], 

which has accumulated more than 1,700 biomedical services 

to date. The caBIG project has also created caGrid as a 

service repository. However, it has become a big challenge 

for life scientists to understand the thousands of available 

services and select appropriate ones to facilitate their own 

workflow design. Our recent analytical study revealed that 

only a small number of utility services at BioCatalogue 

(e.g., Blast, http://xml.nig.ac.jp/wsdl/Blast.wsdl, an 

application of comparing genome sequences) are frequently 

used by life scientists to build scientific workflows [4]. 

Our survey from various caBIG projects exposed three 

reasons that may lead to this phenomenon. First, life 

scientists are not aware of the available services. Second, 

life scientists struggle with how to operate a service (e.g., to 

conform to its data and operation formats). Third, life 

scientists are unable to gather all relevant knowledge to best 

understand the services. 

NCI thus formed a project “Semantic Workflows,” 

aiming to explore a way to facilitate life scientists in 

building workflows from reusable services. The Center for 

Biomedical Informatics and Information Technology 

(CBIIT) at NCI decided to adopt the Healthcare Level 7 

(HL7) Services Aware Interoperability Framework (SAIF) 

[5] to enable the development of domain software 

components as Working Interoperability (WI). 

Toward this ultimate goal, our first step is to investigate 

to apply Semantic Web technology [6] to enhance artifact 

discovery and composition. Here the term artifact refers to 

either a service or a workflow. Our rationale is as follows. 1) 

The existing artifact publication techniques (e.g., WSDL 

files) only provide syntactical invocation interfaces for the 

artifacts. 2) Semantic information, referring to the meaning 

of data and functions, should help scientists better 

understand available artifacts (e.g., what are the best ways 

to use them; are there any constraints, etc.), thus help 

scientists better leverage existing artifacts. 3) The Semantic 

Web community has created a wealth of methods, standards, 

and technologies to create, store, analyze, and query 

machine-understandable meta-data (semantics) over Web 

information [6]. 4) Therefore, we shall investigate how to 

leverage the Semantic Web technologies to improve artifact 

discovery and composition, in the context of caBIG and life 

science research. It should be noted that our research 

approaches may be easily expanded to other areas not 
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Fig. 2 Service semantics model. 

limited to caGrid and life science. 

This paper reports our on-going efforts of automatically 

extracting semantic information from available biomedical 

services toward making them “computable semantic 

interoperability” (CSI). Our contributions are four-fold. 1) 

We proposed a service semantics model and built techniques 

to automatically extract semantic information from 

published service documents and annotate services. 2) We 

established a two-phase search technique that leverages 

structural and semantic information to quickly identify 

related operations. 3) We suggest a feasible service semantics 

extraction and generation infrastructure compatible with 

existing standards and techniques. 4) We built a prototyping 

service search engine as a plugin to a known scientific 

workflow system. 

The remainder of the paper is organized as follows. In 

Section 2, we discuss related work. In Section 3, we 

introduce our service semantics model and an automatic 

semantics extraction technique. In Section 4, we present our 

two-phase services discovery technique. In Section 5, we 

present our proposed system infrastructure and 

implementation details. In Section 6, we present experiments 

and discussions. In Section 7, we make conclusions. 
 

II. RELATED WORK 

Segev and Zheng [7] propose an ontology bootstrapping 

method that automatically generates concepts and their 

relations in a domain from WSDL files. In contrast to their 

work, we focus on clustering services and service operations 

to facilitate services discovery. 

Semantic Automated Discovery and Integration (SADI) 

[8] framework is able to recommend SADI services based 

on input or output data types. However, a SADI service has 

to be created manually, built and deployed as a servlet, and 

then registered to the SADI registry, before it can be 

searched by the SADI search engine. In contrast, our search 

engine can cover normal WSDL services. Furthermore, 

while SADI search only compares the input/output OWL 

class URLs in registered SADI services, our work considers 

more semantic conditions (e.g., functional profile, pre- and 

post-conditions, and constraints). 

Zhang and Li introduce the concept of service cluster [9] 

to represent a collection of available services provided by 

multiple service providers to perform a specific common 

function. Here we use the concept to represent a collection 

of functionally relevant services based on domain-specific 

ontology. We use clustering algorithms to automatically 

identify service clusters from their published documents. 

The WINGS [10] project adopts AI planning and 

semantic reasoners to verify whether a workflow complies 

with the requirements of the comprising components and 

datasets. The Kepler [11] workflow management system 

provides ontology-driven search capability for data and 

actors that have been annotated with formal ontologies. In 

contrast, we focus on using automatically extracted 

semantic metadata to enhance services discovery. 

There have been a lot of efforts on semantic services 

discovery, most of which performing profile-based service 

signature (I/O) matching [12]. OWLS-MX [12] and 

WSMO-MX [13] propose to combine logic-based reasoning 

and syntactic concept similarity computations in OWL-S. 

Sbodio et al. [14] propose to use SPARQL as a formal 

language to describe the pre- and post-conditions of services. 

Junghans et al. [15] propose a practical formalism to 

describe functionalities and service requests. In contrast, we 

leverage service functional profiles and service operation 

structures to enhance services discovery. 
 

III. SEMANTICS MODEL AND AUTOMATIC EXTRACTION 

As shown in Fig. 2, we propose a service semantics 

model comprising both static semantics and behavioral 

semantics. Static semantics describe the functionalities that 

a service promises to provide, as well as the goals of the 

service. Behavioral semantics describe the required 

circumstances when a service can behave, including input 

and output parameters, pre- and post-conditions, constraints, 

and historical usage patterns. 

The model defines an ontology that describes the 

semantics of a service. From service provider perspective, it 

guides how to depict a service; from consumer perspective, 

it facilitates effective services discovery. We have developed 

a technique that can automatically extract various 

aforementioned semantic metadata from a published WSDL 

service. 
 

A. Static semantics 

The goals of a service are usually implied by embedded 

comments; therefore, we focus on how to extract the 

functional profile of a service from its WSDL file. Our 

hypothesis is that, user-defined names used in a WSDL 

document may depict a functional profile of the 

corresponding service. The rationale is that, service 

developers tend to follow naming conventions and use 

meaningful words to name operations and services. 

Furthermore, when an IDE automatically generates a WSDL 

document from source code where naming convention is 

typically strictly enforced, the actual method names will be 

used for generating corresponding WSDL interfaces. As 

shown by the following example, a method named “add” in a 
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Java class Calculator will cause all related WSDL segments 

to be named after it (WSDL 1.1 generated by Java Eclipse 

IDE), including portType name, operation name, 

input/output message names, and part names inside of 

input/output messages. 
 

<wsdl:message name="addResponse"> 
   <wsdl:part element="impl:addResponse" name="parameters"/> 
</wsdl:message> 
 

<wsdl:message name="addRequest"> 
   <wsdl:part element="impl:add" name="parameters"/> 
</wsdl:message> 
 

<wsdl:portType name="Calculator"> 
   <wsdl:operation name="add"> 
     <wsdl:input message="impl:addRequest" name="addRequest"/> 
     <wsdl:output message="impl:addResponse" name="addResponse"/> 

   </wsdl:operation> 
</wsdl:portType> 
 

Therefore, we define the functional profile of a service s 

as follows. It is a combination of service name, portType 

name and all comprising operations’ information, each in 

turn including the name of the operation, names of the 

input/output messages and names of all comprising parts of 

the messages. 
 

spf(s) ={service_name U 

          portType_name U  

       [ operation_name U  

       input_message_name, [part_name]* U 

     ouput_message_name, [part_name]* ]*} 
 

We thus obtain a service functional profile as a document 

containing all the names extracted from its WSDL file. The 

resulting profile may comprise duplicated words. 
 

B. Behavioral semantics 

Our hypothesis is that, a service, especially a scientific 

service, may require a suitable execution context for the best 

result. For example, our past analysis found that the 

performKNN
1
 service (a machine learning method K-Nearest 

Neighbor) usually performs well when integrated with pre-

processing services provided by the same research group
2
. 

Therefore, we highlight the importance of extracting 

behavioral semantics of a published service. Such metadata 

shall benefit the precision level of services discovery, 

because they can be used to compare with service requestors’ 

residing contexts [16]. In other words, by automatically 

extracting behavioral semantics of published services and 

advertising their expected behaviors, we escalate the 

interoperability of services. 

As shown in Fig. 2, we identify four categories of 

behavioral semantics. Our categorization is compatible with 

the HL7 Behavioral Framework Metamodel [5] that defines 

the metadata needed for workflows in NCI CBIIT. 

I/O parameters refer to input and output data types. At the 

current time, we consider exact matching of data types 

defined in WSDL files or referred XML Schema files. 

                                                           
1 KNN service: 

http://node255.broadinstitute.org:6060/wsrf/services/cagrid/KNN?wsdl 
2 broadinstitute, www.broadinstitute.org 

According to W3C WSDL specifications, each input or 

output parameter is an XML-compatible data type, either an 

XML built-in type or a user-defined compound type based 

on built-in types. 

Our earlier study on automatic service test case 

generation [17] pointed out that constraining facets can be 

used for service providers to specify data constraints, each 

restricting aspects of the value space of a data type. The 

following code segment describes a user-defined data type 

containing two integer-type elements. The first element 

leverages constraining facets to delimit the value range of 0 

to 100, inclusive. The second element requires non-negative 

integer numbers. 
 

   <element name="add"> 

    <complexType> 

     <sequence> 

      <element minInclusive="0" maxInclusive="100" name="i" 

type="xsd:int"/> 

      <element minInclusive="0" name="j" type="xsd:int"/> 

     </sequence> 

    </complexType> 
 

According to XML Schema, all 19 built-in primitive 

types and 27 built-in derived types can each be associated 

with a set of constraining facets. Our study yielded a matrix 

of allowable constraining facets for all XML built-in types 

[17]. In this project, we leverage our earlier work and search 

for constraints defined by service providers in the format of 

constraining facets in WSDL files. 

Our another earlier study revealed that historical usage 

data may be leveraged to increase the effectiveness and 

efficiency of services discovery [18]. For example, assume 

that historical data shows two services (s1 and s2) are always 

used together in common workflows. This knowledge 

indicates that, if a scientist selects one such service (say s1), 

the other service should be recommended to the scientist. 

The usage pattern metadata intends to record such best 

practice from past experiences. Our technique of 

automatically mining services-oriented past usage patterns 

is reported in another paper [4]. 

Note that behavioral semantics may help to enable the 

computationally assisted assembly of services using 

business-level guidance in addition to technical-level 

guidance (e.g., syntactical service match making). As the 

first step, here we focus on developing a notion of “just 

enough semantics.” 
 

C. Semantic annotations 

Based on our proposed service semantics model, all 

metadata will be automatically generated from service 

sources (WSDLs). We record such semantic metadata in the 

form of annotations to further facilitate services discovery. 

We face two options to store annotations for a service: a 

tightly coupled way or a loosely coupled one. The first 

option is to insert annotations into the original WSDL file. 

The second option is to store annotations in a separate 

document, while inserting a link into the original WSDL file 

to refer to the annotation document. Each option has a W3C 
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Fig. 3 Loosely coupled semantic annotation. 

project supporting it: SPARQL Annotations in WSDL 

(SPDL) project [19] for the former and Web Service 

Modeling Ontology (WSMO) [20] for the latter. 

SPDL chooses to insert SPARQL Annotations (SPAT) 

into WSDL files, as illustrated by the example below. 
 

<xs:sequence> 

<xs:element name="Keywords" type="xs:string" minOccurs="0"/> 

<xs:element name="SearchIndex" type="xs:string" minOccurs="0"/> 

  <!-- xs:annotation><xs:appinfo><spat:SPAT> 

    PATHPATTERN { ?req tns:keywords xpath("tns:Keywords") ; 

                       tns:index    xpath("tns:SearchIndex") } 

  </spat:SPAT></xs:appinfo></xs:annotation --> 

</xs:sequence> 
 

This example includes two triples patterns, associating 

the objects of the triples with some information accessible 

by the XPaths /tns:Keywords and /tns:SearchIndex. RDF 

applications can then conduct SPARQL queries over 

annotated Web services. 

In contrast, WSMO introduces Semantic Annotations for 

WSDL (SAWSDL) for inserting annotation reference links. 

The following example shows that an annotation file 

“elementRef” can be accessed by the URI, using Web 

Service Modeling Language (WSML), a SAWSDL 

extension: 
 

<xs:schema elementFormDefault="qualified" 

targetNamespace="http://www.w3.org/2002/ws/sawsdl/spec/wsdl/order#"> 

    <xs:element name="add" 

sawsdl:modelReference="http://www.example-one.org#elementRef"> 
 

We consider a loose coupling solution is important to 

offer higher reusability and flexibility in this project. 

Especially, Web services are hosted and maintained by 

corresponding service providers. As shown in Fig. 3, the 

WSMO approach allows us to keep the registry of our 

search engine clean, since we do not have to change the 

WSML-annotated WSDL files when annotations get 

changed, e.g., new usage patterns are identified and 

recorded into the annotation file of a service. 

IV. TWO-PHASE SERVICES DISCOVERY 

We propose a two-phase technique for services discovery 

at the search engine. A published service usually offers a set 

of operations, providing similar functionalities but serving 

slightly different scenarios. For instance, two operations in a 

service may offer exactly the same functionality but require 

different numbers of input arguments or different input data 

types. This observation is extremely important for 

biomedical services discovery. Consider a life scientist who 

holds some KEGG data at hand, and intends to find an 

available service that can take the KEGG data type as input 

to conduct data analysis. In such a circumstance, we aim to 

identify proper operations, instead of stopping at the service 

level. 

Meanwhile, performance of services discovery remains a 

significant issue because of the size of the search space. For 

example, the BioCatalogue repository has accumulated over 

1,700 biomedical services. 

We thus developed a two-phase approach. In phase one, 

we aim at quickly locating a group of related services (a 

service cluster comprising relevant services from the 

original large-scale service set) to largely narrow down the 

search space. In phase two, we aim at finding proper 

operations inside of the service cluster based on semantic 

context. 
 

A. Service clustering 

To find a proper service cluster in a service repository, 

we apply the information retrieval technology to divide 

services into clusters based on their functional similarities. 

In contrast to the existing service categorization approaches 

that depend on the keywords provided by service providers, 

our approach aims to automatically divide services into 

clusters based on their static semantics (i.e., functional 

profiles) that can be automatically extracted from their 

published files. The following pseudo code shows how we 

cluster services in a registry: 
 

Algorithm: Cluster services 
Input: a collection of services registered SS. 

Output: a collection of service clusters CS. 

1: build_corpus(collection of services) 

2: �� ← ∅ 

3: For each service �� ∈ �� 

4:       �	
�������������� 
4.1:         ���	��	����������� 
4.2:         �	���
_����������������� 
5:       ������������������ 
5.1:         ���_��� ← ∅ 

5.2:         For each ��,� ∈ ������� 
5.3:              if ��,� ∉ ���_��� then 

5.4:                  ��_������,�� ! ���,� " ���� 
5.5:                 add���,� , ��_������,��� → ���_��� 

5.6:              endif 

5.7:         EndFor 

5.8:         ���_��� → ������� 
6: EndFor 

7: For each pair of services �$, �% ∈ �� 

8:       �����$, �%� ← ���������$�, �����%�� 
9: EndFor 
 

In step 1, we gather all terms (normalized names) from all 

services and establish the corpus �⋃ ∀��|)|�*$ ∈ ��� . The 

original service cluster set is set to be empty in step 2. 

We use their functional profiles to evaluate the 

similarities among services. As the process shown in Section 

III.A, the functional profile of a service is constructed as a 

document containing a list of names (terms). 

Each name obtained has to go through a normalization 

and a weighting process before it can be used for further 

analysis, as shown in steps 3-6. A name is an identifier that 

is either a single English term or a composite one. For 
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Fig. 4 Structure of a service operation. 

example, the name of an operation may be preProcessData 

or get_Array_Data. Such a composite term can be divided 

into single terms: by identifying big-case characters and 

removing separators for the above two situations, 

respectively. Another issue is the synonym issue. For the 

same meaning, one may choose to use syntactical variants, 

such as plurals, past tense suffixes, and gerund forms. We 

chose to partially solve this problem by substituting names 

with their respective stems, the portion of a word left after 

the removal of its affixes. We adopted the Porter stemming 

algorithm [21] for prefix and affix removal and Wordnet 

(http://www.wordnet.princeton.edu) for solving the 

synonym issue. Going through all the names in a functional 

profile of the service, we get a normalized document. 

In step 5, by applying the term frequency–inverse 

document frequency (TF-IDF) algorithm [22], we calculate 

the weight (wj,i) of every term (tj,i) inside of the functional 

profile of every service (si). It indicates the importance of the 

term representing the semantics of the service. 

				��_
�����,�� ! ���,� " ���� ! ��,�∑ �-,�- " � |�|1 + |{�: ��,� ∈ ������}| 
    

Where ���,� is the term frequency (obtained by the number 

of occurrences of the term tj,i in the functional profile of 

service si, divided by the size of the functional profile of the 

service to ensure that ���,� ∈ [0,1] ); ���� 	��	���	 general 

importance of the term (obtained by dividing the total 

number of services by the number of services containing the 

term in their functional profiles, and taking the logarithm of 

the resulting quotient). Meanwhile, duplicated terms will be 

removed. In other words, the result will be a map, each key 

being a term and corresponding value being its importance 

that represents the functionality of the service. 

Although the concept relatedness between terms is 

broader than that of similarity [23], we only consider the 

latter for simplicity. We then leveraged the shortest path-

based LCH algorithm [24] to measure the semantic 

similarity between two terms based on the lexical database 

WordNet. ������: �6, ��: �6� ! ����� , ��� 
Now we are ready to calculate the similarity between two 

lists of elements (terms) in step 8. Two lists can be abstracted 

as two disjoint sets of elements X and Y: 7 ! {8$, 8%, … 8:}, ; ! {<$, <%, … <=},� ≥ 1, � ≥ 1.  ∀8� ∈7, <� ∈ ;, an edge always exists �8� , <�� ∈ @, with a weight of ����8� , <�� . Thus, we obtain a weighted complete bipartite 

graph A ! �B ! �7, ;�, @�. Calculating the similarity between 

the two lists is therefore turned into finding a perfect match 

(maximum cardinality matching), where the sum of the weights 

of the edges in the matching reaches a maximal value: 

���������1�, �����2�� ! maxG H ����8I$�-�,<I%�-�JKL�|M|,|N|�
-*$ �

∙ ��_����8I$�-�� ∙ ��_����<I%�-��P 

where M1 and M2 are two mapping functions, each 

selecting the number of min(|X|,|Y|) elements from the sets X 

and Y, respectively: Q1:R → 	8I$�-�, ∀R1 ≠ R2,Q1�R1� ≠ Q1�R2�; Q2: R → 	<I%�-�, ∀R1 ≠ R2,Q2�R1� ≠ Q2�R2�; 
We applied the Hungarian algorithm [25] to find the optimal 

match, with a cost of O(V
2
E). 

We calculate the similarity factor over functional profiles 

between each pair of services, and obtain a similarity matrix for 

all services residing in the registry. If the similarity between a 

peer satisfies �����$, �% ≥ U), where γ is a preset value, they 

are put into the same service cluster. Without losing generality, 

we set γ as 0.75 and apply to the registry to identify service 

clusters. 
 

B. Service operation clustering 

We leveraged the behavioral semantics to cluster service 

operations in a service cluster. Right now we used the internal 

structure of service operations to cluster them based on their 

similarity. Fig. 4 illustrates the building blocks of a service 

operation as well as the relationships between them, using a 

UML class diagram. An operation comprises one input message 

and one output message. Each message may contain multiple 

parts, each comprising an attribute representing its data type 

that can be either an XML built-in type or a user defined type 

(a complex type that is defined recursively). As shown in Fig. 

4, each comprising element contains an attribute declaring the 

name of the element. 

Based on the structure of a service operation, we have 

developed a similarity computation algorithm for comparing 

two operations. Note that we only need to consider two 

operations belonging to two services residing in the same 

service cluster. Given two operations { 	� , 	� ∈ ��- }, their 

similarity can be calculated using the following formula. 
 ����	�: VW, 	�: VW� ! �$ ∙ ����	� . ����: �6[], 	� . ����: �6[]� 																																+�% ∙ ����	� . ��:Q�A, 	� . ��:Q�A� 																																					+�X ∙ ����	�. 	Y�:Q�A, 	� . 	Y�:Q�A� 
where w1+w2+w3=1. 
 

The coefficients indicate that we may assign different 

weights for operation names and messages, respectively. Each 

operation name is normalized into a list of terms using our 

method discussed in Section III.A. 

In turn, the following formula compares the similarity 

between two messages (either input or output messages). The 

coefficients indicate that we may assign different weights for 
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Fig. 5 Semantics-empowered services discovery infrastructure. 

message names and comprising parts, respectively. 
 ������:Q�A,�Z:Q�A� !																																																									 																																�$ ∙ ������ . ����: �6[],�� . ����: �6[]�	 																											+�% ∙ ������ . ��
��: W6[],�� . ��
��: W6[]� 
where w1+w2 =1. 

Each message name is normalized into a list of terms using 

our method discussed in Section III.A. Each message may 

contain a list of parts. 

Calculating similarity between two lists of terms (names) or 

two lists of parts is more challenging because the two lists may 

contain different numbers of elements. We first calculate two 

parts only. 

The following formula compares the similarity between two 

parts, belonging to two different messages. The coefficients 

indicate that we may assign different weights for part names 

and data type, respectively. 
 ������: W6, �� : W6� !																																																									 																																�$ ∙ ������ . ����: �6[], �� . ����: �6[]�	 																											+�% ∙ ������ . �<��: �6, �� . �<��: �6� 
where w1+w2 =1. 
 

For simplicity, here we only compare the names (strings) 

between data types. Considering containment relationships 

between data types will be our future work.  

We have discussed the algorithm that compares the 

similarity between two terms in the last section ������: �6, ��: �6�.	 We also have discussed how to calculate 

the similarity between two lists of names. Calculating two 

lists of parts is similar, as we formulate the problem as 

finding a perfect match in a weighted complete bipartite 

graph A ! �B ! �7, ;�, @�, where the sum of the weights of 

the edges in the matching reaches a maximal value: 

max	� H ����8I$�-�,<I%�-�JKL	�|M|,|N|�
-*$ � 

The only difference is that the importance of each 

element (i.e., part) here is equal. We use the approach to 

calculate the similarity between names (operation, message, 

and part element) and parts. As a result, we can calculate the 

similarity between any two operations in one service cluster. 

Then we apply a hierarchical clustering algorithm [26] to 

organize all operations in the same service cluster into a 

multi-level cluster. Each cluster represents an abstract 

operation providing similar semantic services with a similar 

structure. Searching in such a hierarchical structure, we can 

help scientists quickly identify proper service operations. 
 

V. SYSTEM INFRASTRUCTURE AND IMPLEMENTATION 

Fig. 5 illustrates the infrastructure of our semantics-

empowered services search engine, and the control flow 

among its comprising components. A number of open-source 

libraries are leveraged in our implementation. To make it 

easier for audience to read, we summarize the libraries in 

Table 1, with their abbreviations, published groups, and 

either their full names or short descriptions. We integrate our 

approach into Taverna workbench [27] (a known workflow 

management system in life science), and since Taverna is 

developed in Java, all of our selected open-source libraries 

are Java-based. Our search engine is implemented as a plug-

in to the Taverna workbench where users can conduct 

SPARQL queries. Upon receiving a query, the search engine 

will rank available services, through evaluating their WSDL 

files as well as associated annotation files. 

As shown in Fig. 5, WSDL files and their associated 

annotations (in the format of OWL/RDF) are stored 

separately for higher flexibility, linked through their 

intermediate SAWSDL-annotated WSDL files. As a matter 

of fact, all three parties are stored separately, while the 

original WSDL files are maintained by the corresponding 

service providers. The mappings among the three categories 

of files are maintained by our search engine, and remain to 

be kept up-to-date by monitoring whether changes are 

performed on the original WSDL files.  

In case that a new WSDL file is published or an existing 

WSDL file is updated, our system will regenerate its 

annotations. As shown in Fig. 5, based on whether the 

service description file is compatible with WSDL 1.1 or 

WSDL 2.0, one of the two paths will be selected. Although 

WSDL 2.0 has already been recommended by W3C since 

June 2007, we found that many available biomedical services 

remain to be WSDL 1.1 compatible. Furthermore, many 

existing Java development environments (e.g., Eclipse and 

NetBeans) only support WSDL 1.1. As a result, we have to 
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Table 1. Summary of open-source libraries used. 
Abbr. Group Full Names/Descriptions 

DROOLS JBoss JBoss-embedded rule engine 

JENA  Talis, 

Epimorphics 

A framework of building semantic Web 

applications 

JESS E.Friedman-

Hill 

rule engine 

LUCENE Apache text search engine 

SAWSDL W3C Semantic Annotations for WSDL 

WODEN Apache reading, manipulating, creating and writing 

WSDL documents 

WSDL4J IBM Web Services Description Language for Java 

WSIF Apache Web Services Invocation Framework 

WSMO4J ESSI Java API for Web Services Modeling Ontology 

 
support both WSDL 1.1 and 2.0 handling. 

Such a situation has an impact on our library selection. 
Woden was our original choice for parsing WSDL files, 
which is an Apache project aiming to develop a Java class 
library for reading, manipulating, creating and writing 
WSDL documents [28]. However, Woden only supports 
WSDL 2.0 to date, while Eclipse and other such programs 
only generate WSDL 1.1 documents. WSDL4J [29] has the 
ability to parse WSDL 1.1 files. By using WSDL4J, we are 
able to parse the documents to find available operations and 
what data types they require for their input and output 
messages. However, in the case of complex data types, we 
were unable to determine the requirements as WSDL4J does 
not support the parsing of the schema, where the 
complexType definitions are defined. 

This challenge led us to adopt Apache's WSIF [30]. The 
only key component in which we are interested at this point 
is its schema parser in the package: org.apache.wsif.schema. 
Unfortunately, the latest version of WSIF is not compatible 
with the latest version of WSDL4J. In addition, not all the 
required jar files for WSIF were located in the download and 
had to be tracked down manually. After finding the required 
jars, we made the changes to make them coexist (in Wrapper 
shown in Fig. 5). As a result, as shown in Fig. 5, Woden and 
WSDL4J/WSIF are leveraged to analyze WSDL 2.0 and 1.1 
files, respectively. 

The Java objects obtained in memory after parsing a 

WSDL file are sent to the WSMO4J [31] library to produce 

SAWSDL[32]-annotated WSDL file. We insert SAWSDL 

tags into the WSDL file to point to actual annotation files 

containing semantic information extracted from the WSDL 

file. We adopt the JENA framework to create semantic 

annotation files from the Java objects in memory. To date, 

we have created annotations in two formats: RDF and OWL, 

leveraging Jena-XML and Jena-OWL, respectively. 
Drools [33] from JBoss provides a unified and integrated 

platform for rules. Comparing to other known rule engines 
such as JESS [34], users of Drools can describe rules in a 
more object-oriented manner. We thus adopt Drools to 
record and validate rules in our service discovery engine. 

As shown in Fig. 5, upon receiving a user query, our 

search engine will consult with JENA to enable SPARQL 

queries, DROOLS to enable rule evaluations, and our CASE 

engine [18] to enable run-time historical information 

checking. CASE engine periodically monitors newly 

published or updated biomedical workflows and services, 

updates the PDSW networks, and generates appropriate 

usage pattern-related semantic information and inserts it into 

the corresponding annotation files. 

We adopted Apache Lucene (http://lucene.apache.org/), 

an open-source search library to index the information 

collection and associated annotations. SPARQL queries are 

hidden from users who may be domain scientist not familiar 

with the Semantic Web technologies. 

 

VI. EXPERIMENTS AND DISCSSIONS 
We have applied our approach to the BioCatalogue 

repository. Over the 1,740 services registered gathered on 
February 28, 2011, services are clustered as shown below, 
using our algorithm discussed in Section III.A. 

 

#cluster 1 1 1 1 3 1 2 3 8 15 1140 

#service 129 63 12 8 7 6 5 4 3 2 1 
 

One large cluster was identified with 129 services; and 
one cluster with 63 services. Then the number of services 
that can be grouped into the same cluster drops significantly. 
Our investigation found several significant factors. First, 
service developers do not always follow naming 
conventions. For example, method name “polljob” is used 
instead of “pollJobs.” Second, the word base WordNet that 
we used does not support many domain-specific words. For 
example, acronyms such as “RNA” or “PNG” are not 
supported by WordNet. Meanwhile, some application-
specific words, such as “Api” and “libs,” are not supported 
as well. Third, domain-specific synonyms may not be 
supported by WordNet, for example, “get” and “fetch.” 
Thus, in our future work, we will explore other dictionary to 
replace WordNet for a better clustering result. 

Here we also report some of our experiences of building 

the infrastructure illustrated in Fig. 5, regarding Maven, 

eclipse plugins, svn, and project building. To create a 

Taverna plugin project in Eclipse, the Apache Maven tool is 

required as a software project management and 

comprehension tool (http://maven.apache.org/). To use 

Maven in eclipse, a user must first install an Eclipse plugin 

(m2eclipse). The most up-to-date version of m2eclipse is 

0.12; however, it cannot create a Taverna plugin with an 

error message of “remote catalog is empty.” Through trial 

and error, we found that its earlier version 0.10 works 

correctly with the Tavern maven repository. 

We used one known open-source version control system 

(Apache Subversion http://subversion.apache.org/) to 

manage the revisions of the system. We found that checking 

in a project is easy; however, checking a project out is a 

different story. One trick is that users must create a new 

Maven project before checking out a Maven project from 

Subversion. Meanwhile, the SVN checkout plugin for 

m2eclipse is needed to check out a Maven project. 
As shown in Fig. 5, we used a number of open-source 

libraries in our implementation. We strived to seamlessly 
integrate them while eliminating overheads for a higher 
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performance. Therefore, we intentionally simplified and 
revised some implementations from the libraries. For 
example, WSIF’s schema parser, located at the package 
org.apache.wsif.schema.Parser, requires a WSDLLocator (an 
interface) to read in a WSDL URI. The implementation that 
is defined in WSIF uses classes that are not necessary for our 
project (e.g., ClassLoaders); therefore, we implemented our 
own WSDLLocator. 

 

VIV. CONCLUSIONS AND FUTURE WORK 

In this paper, we reported our on-going efforts of 

building a semantic-aware biomedical services discovery 

engine. Through automatic sematic metadata extraction 

from WSDL files and annotations, our approach helps to 

quickly identify related service operations. Our work also 

suggests a feasible infrastructure that is compatible with 

existing standards and techniques. Our prototyping system 

has demonstrated that our semantic infrastructure is able to 

fulfill the goal of next-generation caGrid 2.0: make easy 

things easy, lower the barrier to entry, and support existing 

users of the present infrastructure. 

We plan to continue our research in the following 

directions. We will explore a notation that formally 

represents an abstract operation in the operation-level 

ontology and develop a technique that automatically 

generates abstract operations in the structure. We will also 

conduct case studies over real biomedical use cases and 

evaluate the effectiveness and efficiency of our approach. 

 

X. ACKNOWLEDGEMENT 

We thank the caBIG Semantic Workflows team for 

constructive discussions. The work described in this paper is 

partially supported by the National Cancer Institute, the 

National Institutes of Health under contract N01-CO-12400, 

and the National Science Foundation under grant IIS-

0959215. 

 

XI. REFERENCES 
[1] B. Ludäscher, "Scientific Workflows: Cyberinfrastructure for e-

Science", in Proceedings of Pacific Neighborhood Consortium (PNC), 

2007, Berkeley, CA, USA, Oct. 19. 

[2] I. Foster, "Service-Oriented Science", Science, 2005, 308: pp. 814-817. 

[3] J. Bhagat, F. Tanoh, E. Nzuobontane, T. Laurent, J. Orlowski, M. Roos, 

K. Wolstencroft, S. Aleksejevs, R. Stevens, S. Pettifer, R. Lopez, and C.A. 

Goble, "BioCatalogue: A Universal Catalogue of Web Services for the Life 

Sciences", Nucleic Acids Research, May 19, 2010, 38: pp. W689-W694. 

[4] W. Tan, J. Zhang, and I. Foster, "Network Analysis of Scientific 

Workflows: a Gateway to Reuse", IEEE Computer, Sep., 2010, 43: pp. 54-

61. 

[5] CBIIT (2010) HL7 Services Aware Interoperability Framework (SAIF) 

Implementation Guide. 

[6] B. Medjahed and A. Bouguettaya, "A Multilevel Composability Model 

for Semantic Web Services", IEEE Transactions on Knowledge and Data 

Engineering (TKDE), Jul., 2005, 17(7): pp. 954-968. 

[7] A. Segev and Q.Z. Sheng, "Bootstrapping Ontologies for Web 

Services", IEEE Transactions on Services Computing (TSC), Oct.-Dec. 

2010. 

[8] M.D. Wilkinson, L. McCarthy, B. Vandervalk, D. Withers, E. Kawas, 

and S. Samadian, "SADI, SHARE, and the in silico Scientific Method". 

2010, BMC Bioinformatics 11(suppl 12):S7. 

[9] L.-J. Zhang and B. Li, "Requirements Driven Dynamic Business 

Process Composition for Web Services Solutions", Journal of Grid 

Computing, 2004, 2: pp. 121-140. 

[10] Y. Gil, V. Ratnakar, J. Kim, P. González-Calero, P. Groth, J. Moody, 

and E. Deelman, "WINGS: Intelligent Workflow-Based Design of 

Computational Experiments", IEEE Intelligent Systems, Jan./Feb., 2010, 

26(1): pp. 62-72. 

[11] C.B. Shawn, S. Bowers, M.B. Jones, B. Ludäscher, M. Schildhauer, 

and J. Tao, "Incorporating Semantics in Scientific Workflow Authoring", in 

Proceedings of the 17th International Conference on Scientific and 

Statistical Database Management (SSDBM), 2005, Santa Barbara, CA, 

USA, Jun. 27-29, pp. 75-78. 

[12] M. Klusch, B. Fries, and K. Sycara, "Automated Semantic Web 

Service Discovery with OWLS-MX", in Proceedings of ACM International 

Conference on Autonomous Agents, 2006, Hakodate, Japan, May 8-12, pp. 

915-922. 

[13] M. Klusch and F. Kaufer, "WSMO-MX: A Hybrid Semantic Web 

Service Matchmaker", Web Intelligence and Agent Systems, Jan., 2009, 

7(1): pp. 23-42. 

[14] M.L. Sbodio, D. Martin, and C. Moulin, "Discovering Semantic Web 

Services using SPARQL and Intelligent Agents", Web Semantics: Science, 

Services and Agents on the World Wide Web, Nov., 2010, 8(4): pp. 310-328. 

[15] M. Junghans, S. Agarwal, and R. Studer, "Towards Practical Semantic 

Web Service Discovery", Lecture Notes in Computer Science (The 

Semantic Web: Research and Applications), 2010, 6089/2010: pp. 15-29. 

[16] S.J.H. Yang, J. Zhang, and I.Y.L. Chen, "Ubiquitous Provision of 

Context-Aware Web Services", International Journal of Web Services 

Research (JWSR), Oct.-Dec., 2007, 4(4): pp. 83-103. 

[17] J. Zhang, "A Mobile Agent-Based Tool Supporting Web Services 

Testing", Wireless Personal Communications (WPC), Springer, 56(1), Jan., 

2010, pp. 147-172. 

[18] J. Zhang, W. Tan, and J. Alexander, "CASE: A Taverna-Based 

Recommendation Engine Supporting Services-Oriented Workflow Reuse", 

Technical Report of Google Summer of Code, 2010. 

[19] W3C, "SPARQL Annotations in WSDL (SPDL) Project", Available 

from: http://www.w3.org/2005/11/SPDL/. 

[20] ESSI, "Web Services Modeling Ontology (WSMO)", Available from: 

http://www.wsmo.org/. 

[21] M. Porter, "An Algorithm for Suffix Stripping Program", Automated 

Library and Information Systems, 1980, 14(3): pp. 130-137. 

[22] K.S. Jones, "A Statistical Interpretation of Term Specificity and Its 

Application in Retrieval", Journal of Documentation, 1972, 28(1): pp. 11-

21. 

[23] A. Budanitsky and G. Hirst, "Evaluating WordNet-Based Measures of 

Lexical Semantic Relatedness", Computational Linguistics, Mar., 2006, 

32(1). 

[24] C. Leacock and M. Chodorow, "Combining Local Context and 

WordNet Similarity for Word Sense Identification", in WordNet: An 

Electronic Lexical Database, C. Fellbaum, Editor, 1998, MIT Press, pp. 

265–283. 

[25] R. Ahuja, T. Magnanti, and J. Orlin, Network Flows, 1993: Prentice 

Hall. 

[26] R. D'andrade, "U-Statistic Hierarchical Clustering", Psychometrika, 

1978, 4: pp. 58-67. 

[27] T. Oinn, M. Greenwood, M. Addis, M.N. Alpdemir, J. Ferris, K. 

Glover, C. Goble, A. Goderis, D. Hull, D. Marvin, P. Li, P. Lord, M.R. 

Pocock, M. Senger, R. Stevens, A. Wipat, and C. Wroe, "Taverna: Lessons 

in Creating a Workflow Environment for the Life Sciences", Concurrency 

and Computation: Practice & Experience, 2006, 18(10): pp. 1067–1100. 

[28] Apache, "Woden", Available from: http://ws.apache.org/woden/. 

[29] "WSDL4J",  2005, Available from: http://wsdl4j.sourceforge.net/. 

[30] Apache, "Web Services Invocation Framework", Available from: 

http://ws.apache.org/wsif/. 

[31] ESSI, "WSMO4J", Available from: http://wsmo4j.sourceforge.net/. 

[32] W3C, "Semantic Annotations for WSDL (SAWSDL)", Available from: 

http://www.w3.org/2002/ws/sawsdl/. 

[33] JBoss, "Drools", Available from: http://www.jboss.org/drools. 

[34] E. Friedman-Hill, "JESS", Available from: http://www.jessrules.com/. 

 

378


