
                      A Bloom Filter-Powered Technique Supporting Scalable Semantic 
Service Discovery in Service Networks

   
1Jia Zhang, 1Runyu Shi, 1Weiyi Wang, 1Shenggu Lu, 1Yuanchen Bai, 1Qihao Bao, 2Tsengdar J. Lee, 3Kiran Nagaraja, 

3Nimish Radia 
1Carnegie Mellon University -Silicon Valley, USA 

2Science Mission Directorate, NASA Headquarters, USA 
3Ericsson Research, USA 

{jia.zhang; runyu.shi; weiyi.wang; shenggu.lu; yuanchen.bai; qihao.bao}@sv.cmu.edu;  
tsengdar.j.lee@nasa.gov; {kiran.nagaraja; nimish.radia}@ericsson.com 

Abstract—As more and more reusable web services are 
published on the Internet, how to help users quickly identify 
appropriate candidate services has become an increasingly 
critical challenge. Most of the current research efforts on 
service discovery rely on syntax and semantics-based service 
matchmaking. In contrast, this paper presents a novel way of 
applying network routing mechanism to facilitate service 
discovery, featuring scalability and performance. Services 
annotated by Web Ontology Language for Services (OWL-S) 
are organized into a network based on semantic clustering. 
Virtual routers are created representing clusters, and Bloom 
Filters are generated for service routing. A service search 
request is thus transformed into a network routing problem to 
quickly locate semantic service cluster and in turn to candidate 
services. In addition, the deterministic annealing technique is 
applied to facilitate service classification in the network 
construction. Dynamic network adjustment is operated to 
ensure the search performance in the network. Empirical 
study over common testbed annotated in OWL-S is reported. 

Keywords—Service discovery, Bloom Filter, scalable service 
discovery, deterministic annealing 

I. INTRODUCTION 
The Services Computing techniques have initiated an 
evolution in Software Engineering and led to the era of the 
third-generation Software Engineering - Service Oriented 
Software Engineering (SOSE). On one hand, developers 
intend to identify reusable software services and leverage 
them as components to build more comprehensive systems, 
thus resulting in faster-to-market and higher system 
reliability. On the other hand, developers are trained to build 
software as a service, so that the established system will 
have higher and finer-grained reusability and 
interoperability. 

Such software reusability and interoperability are 
extremely important in the scientific world for knowledge 
sharing. For example, NASA Earth scientists have 
developed many data analytics algorithms over the past 40 
years. To avoid from recreating the wheels, researchers shall 
leverage these programs either as components unchanged or 
repurposed for new experiments. Services computing 
techniques allow researchers to wrap up algorithms with 
programmable APIs for other researchers to remotely 
invoke, which is why researchers claim that the science 
nowadays has entered the era of Service Oriented Science 
[1]. 

However, as more and more reusable data services are 
published on the Internet, how to help users quickly identify 
appropriate candidate services has become an increasingly 
critical challenge. Most of the current research efforts on 
service discovery rely on syntax and semantics-based 
service matchmaking [2] between the requirements and the 
descriptions of service candidates. However, one major 
issue of these approaches is the scalability. When a large 
amount of service candidates exist to compare, the 
computational cost at runtime will be significant [3]. 

As Web services become more mainstream, very soon 
service discovery performance will become the bottleneck 
to hinder the extensive adoption of SOSE. The need to 
ensure scalable service discovery requires methodologies 
that are beyond the current state-of-the-art in this field. 
Therefore, it is promising if researchers start to explore at 
present how to model and enhance service discovery, so that 
related techniques can be investigated in the right context. 
Instead, if we wait until the time that service discovery 
scalability becomes an obstacle, some techniques might 
have to be reexamined and accommodated, which wastes 
valuable human resources. 

In our previous work, we have modeled software 
services and their relationships into a service-oriented 
network [4]. In this paper, we propose a novel way of 
applying network routing mechanism to facilitate service 
discovery in service networks, featuring scalability and 
performance. The Bloom Filter technique (BF) [5] is applied 
to enable rapid service discovery. A Bloom Filter refers to a 
space-efficient hash-based, probabilistic data structure, 
coined by Burton Howard Bloom to support membership 
queries in database applications since 1970s [5]. In recent 
years, Bloom Filters have been widely used in networking 
routing due to its unique space saving feature [6]. 

In our service network, services are organized into 
clusters, analogous to machines into local networks. The 
root node of a cluster is analogous to the router of a local 
network. Bloom Filters are generated for all service nodes, 
based on the information carried by the services. Virtual 
routers are created based on service clustering to expedite 
service discovery. BF addresses are assigned to virtual 
routers as well. Thus, a service discovery request is 
transformed into a network routing problem aiming for 

2016 IEEE International Conference on Web Services

978-1-5090-2675-3/16 $31.00 © 2016 IEEE

DOI 10.1109/ICWS.2016.111

81

Authorized licensed use limited to: SOUTHERN METHODIST UNIV. Downloaded on October 19,2024 at 04:20:27 UTC from IEEE Xplore.  Restrictions apply. 



quickly locating semantic service cluster and in turn to 
candidate services. 

One core criterion to impact the efficiency of applying 
Bloom Filter while remaining endurable false positive is the 
encoding mechanism of BF addresses. In contrast to other 
researchers who use BF to carry non-functional attributes 
with limited numbers [7], we strive to encode semantic data 
of functional information into BF. Therefore, we adapt the 
deterministic annealing method [8] to support hierarchical 
service clustering as well as to support hierarchical BF 
encoding for higher performance. 

Semantic service discovery heavily relies on formal 
semantics of service specification [9]. Web Ontology 
Language for Services (OWL-S, 
https://www.w3.org/Submission/OWL-S) is an ad hoc 
standard language endorsed by W3C. Thus, in our research, 
we study deterministic annealing classification and Bloom 
Filter encoding based on OWL-S annotated service 
specifications. In addition, semantic structure of OWL-S is 
leveraged to facilitate service clustering and enhance its 
precision. 

We have designed and conducted a series of experiments 
to evaluate the effectiveness and efficiency of our approach. 
The major contributions of our paper are two-fold.  

First, we propose a hybrid Bloom Filter technique to 
facilitate service discovery and recommendation in a service 
network. Dynamic network adjustment is also applied to 
ensure network search performance. 

Second, we apply the deterministic annealing method 
and leverage the structural information of OWL-S to 
support the construction of a service network based on 
service classification, to save bits used to build Bloom Filter 
addresses. 

The remainder of the paper is organized as follows. In 
Section 2, we discuss related work. In Section 3, we describe 
the hierarchical service network construction. In Section 4, 
we present Bloom Filter generation algorithm. In Section 5, 
we discuss experimental design and analysis. In Section 6, 
we draw conclusions. 

II. RELATED WORK 
Our previous work has developed knowledge networks based 
on People, Data, Workflow, Service (PDWS) [10]. How to 
quickly find and recommend a service in this knowledge 
network directly motivates the reported research in this paper. 

Bloom Filter has been extensively applied in networking 
routing because of its significant space saving feature [6]. 
Researchers have adopted Bloom Filter to identify nodes in 
multihop mobile ad-hoc network [11]. Chen et al. [7] 
leverage BF to encode non-functional attributes, in order to 
support service discovery inside of pre-classified service 
groups. In contrast to their work, we apply BF to encode 
functional keywords that poses significant challenges since 
the number of attributes to be encoded is much larger. We 
leverage deterministic annealing and inherent structure of 

OWL-S to eliminate the issue. In addition, we use BF to 
drive the clustering and construction of service network. 

In recent years, researchers have started to leverage 
deterministic annealing technique in Physics to support data 
clustering and classification [8]. Zhou et al. [12] apply 
deterministic annealing to cluster websites based on their 
carrying tags. Liu et al. [13] apply deterministic annealing 
method to cluster services using their tags. Our work differs 
from their works in two aspects. First, we take into 
consideration of all terms in service descriptions instead of 
only tags. Since a deterministic annealing process mainly 
relies on statistics of term usages in documents, we believe 
data sparsity problem using more detailed information of 
services (i.e., rich description) that carries richer correlations 
among terms. Second, we apply deterministic annealing 
process iteratively to create a hierarchical network structure 
from services. Each iteration will yield a leading service 
representing the corresponding service cluster. 

Numerous researchers have worked on syntax and 
semantics based service discovery. Example of syntax-based 
service discovery includes performing profile-based service 
signature (I/O) matching. Semantics-based OWLS-MX [9] 
and WSMO-MX [14] propose to combine logic-based 
reasoning and syntactic concept similarity computations in 
OWL-S. Sbodio et al. [15] propose to use SPARQL as a 
formal language to describe the pre- and post-conditions of 
services. Junghans et al. [16] propose a practical formalism 
to describe functionalities and service requests. In contrast, 
we leverage service functional profiles and OWL-S 
structures to enhance service discovery. 

Researchers have studied various machine learning 
techniques to facilitate automatic service discovery. Cassar 
et al. [17] apply probabilistic machine learning techniques to 
extract latent factors from service descriptions to construct a 
uniform service model in a vector form. Li et al. [18] 
propose a probabilistic approach   based on Latent Dirichlet 
Allocation (LDA) to support service discovery, which 
leverages latent topics to link services with terms extracted 
from WSDL documents. Chen et al. [19] integrate WSDL 
documents and user tagging data and propose a user tagging 
augmented LDA model for service clustering. Zhong et al. 
[20]  extract service evolution patterns by exploiting LDA 
and time series prediction. Unsupervised LDA is applied to 
calculate the similarity between services. They present a 
time-aware service recommendation framework taking into 
consideration of temporal information, content description 
and historical mashup-service usage in an evolving service 
ecosystem. In contrast to their works, we apply 
deterministic annealing to facilitate service clustering for the 
purpose of BF-oriented network construction. 

III. SYSTEM MODELING 
Semantic service discovery counts on formal semantics of 
service specification [9]. Web Ontology Language for 
Services (OWL-S) is widely considered as an ad hoc 
standard language, endorsed by W3C, to describe web 

82

Authorized licensed use limited to: SOUTHERN METHODIST UNIV. Downloaded on October 19,2024 at 04:20:27 UTC from IEEE Xplore.  Restrictions apply. 



services. OWL-S annotates web services in order for them 
to be machine understandable and easily accessible in the 
Internet. OWL-S also enables effective reasoning of 
intelligent application based on ontology statement and 
makes complex tasks possible such as automatic web 
service discovery, invocation, composition and 
interoperation. We view OWL-S files as structured 
documents. 
 
Definition 1: An OWL-S file is a document containing 
three segments: OWLS file = (ServiceProfile, 
ServiceGrounding, ServiceModel), where each segment 
comprises a collection of words, and ServiceProfile = 
(Name, Description, Parameters), ServiceModel = 
(AtomicProcess, Parameters), and Parameters = (input, 
output). Information of AtomicProcess can be used as 
service operations. The Parameters in ServiceModel are the 
same as those in ServiceProfile. 
 

We closely study OWL-S structure and build service 
networks based upon OWL-S annotated services. As shown 
in Fig. 1, in ontology of services, OWL-S annotates three 
types of knowledge: “Service Profile” that indicates what 
one service provides for clients, “Service Model” that 
illustrates how one service is used and “service grounding” 
that tells clients how to interact with it. While an OWL-S 
model comprises ServiceProfile, ServiceGrounding, and 
ServiceModel, semantic information about services are 
mostly stored in the ServiceProfile section. As shown in Fig. 
1, data in the “Service Grounding” and “Service Model” 
sections are mostly in the form of URI, which will be used 
in our future work to reason about service usage context. 
Major metadata includes service name, description, input 
and output parameters, and atomic process (i.e., service 
operation). We thus define a service node in a service 
network as follows. 

 
Definition 2: An OWL-S powered web service document is 
a document containing six segments: Service = (Name, 
Description, Operation, Input, Output), where each segment 
comprises a collection of words.  
 
A. OWL-S Supported Service Similarity 

Based on the static semantics extracted from OWL-S 

descriptions, we study how to automatically divide services 
into clusters. Each service is modeled as a document. The 
content of a service is the service metadata used to define 
the profile of the service, conceptually modeled as a 
multidimensional feature vector. All words (normalized 
names) used in all service profiles establish the corpus 
( ∀𝑤!

!
!!! ∈ 𝑠!). The Porter stemming algorithm [21] is 

used for prefix and affix removal and Wordnet 
(http://www.wordnet.princeton.edu) for partially solving the 
synonym issue. Applying the term frequency–inverse 
document frequency (TF-IDF) algorithm [22], we calculate 
the weight 𝑣!,! of every word 𝑤!,! inside of the profile (sp) of 
every service 𝑠!. It indicates the importance of the word 
representing the semantics of the service. 

 

    𝑡𝑓_𝑟𝑑𝑓(𝑣!,!) = 𝑡𝑓!,!×𝑖𝑑𝑓! =
𝐶!,!
𝑐!,!!

×𝑙𝑔
|𝑆|

1 + |{𝑠:𝑤!,! ∈ 𝑠𝑝(𝑠)}|
 

 

Where 𝑡𝑓!,! is the term frequency (obtained by the number 
of occurrences of the word wi in the profile of service i, 
divided by the size of the profile of the service to ensure that 
𝑡𝑓!,! ∈ [0,1] ); 𝑖𝑑𝑓!  𝑖𝑠 𝑡ℎ𝑒 general importance of the word 
(obtained by dividing the total number of services by the 
number of services containing the word in their profiles, and 
taking the logarithm of the resulting quotient). 

The concept relatedness between words is broader than 
that of similarity; we consider the latter for simplicity. Based 
on our previous work [23], we leverage the shortest path-
based LCH algorithm [24] to measure the semantic similarity 
between two words based on the lexical database WordNet. 

𝑠𝑖𝑚 𝑤!: 𝑆𝑇,𝑤!: 𝑆𝑇 = 𝑙𝑐ℎ(𝑤! ,𝑤!) 

As aforementioned, one dimension of feature of a service 
is a collection of words.  Similarity over a feature of two 
services could be turned into comparison of two word lists 
X and Y: 𝑋 = 𝑥!, 𝑥!,… 𝑥! ,𝑌 = 𝑦!, 𝑦!,… 𝑦! ,𝑚 ≥ 1, 𝑛 ≥
1.  ∀𝑥! ∈ 𝑋, 𝑦! ∈ 𝑌 as modeled in a weighted complete 
bipartite graph 𝐺 = (𝑉 = (𝑋,𝑌),𝐸) . An edge 𝑥! , 𝑦! ∈
𝐸 exists, with a weight of 𝑠𝑖𝑚(𝑥! , 𝑦!) . Calculating the 
similarity between the two word lists is turned into finding 
an optional match, where the sum of the weights of the 
edges in the matching reaches a maximal value: 

𝑠𝑖𝑚 𝑠𝑝! 𝑠! , 𝑠𝑝! 𝑠! =
max

𝑠𝑖𝑚(𝑥!! ! ,𝑦!! !

!"# ! , !

!!!

)

∙ 𝑡𝑓_𝑖𝑑𝑓(𝑥!! ! ) ∙ 𝑡𝑓_𝑖𝑑𝑓(𝑦!! ! )  

where M1 and M2 are two mapping functions, each 
selecting the number of min(|X|,|Y|) elements from the 
collections X and Y, respectively: 

𝑀1: 𝑘 →  𝑥!!(!),∀𝑘1 ≠ 𝑘2,𝑀1 𝑘1 ≠ 𝑀1 𝑘2 ; 
𝑀2: 𝑘 →  𝑦!!(!),∀𝑘1 ≠ 𝑘2,𝑀2 𝑘1 ≠ 𝑀2 𝑘2 ; 

In our project, we apply the Hungarian algorithm [25] to 
find the optimal match, with a cost of O(V2E).  

Based on the structure of a service profile inherited from 

 
Fig. 1 OWL-S service document. 

83

Authorized licensed use limited to: SOUTHERN METHODIST UNIV. Downloaded on October 19,2024 at 04:20:27 UTC from IEEE Xplore.  Restrictions apply. 



OWL-S structure, we developed a similarity computation 
algorithm for comparing the profiles of two services: 

 

𝑠𝑖𝑚 𝑠! , 𝑠! = 𝛼! ∙ 𝑠𝑖𝑚 𝑠! .𝑛𝑎𝑚𝑒: 𝑆𝑇[], 𝑠! .𝑛𝑎𝑚𝑒: 𝑆𝑇[]  
               +𝛼! ∙ 𝑠𝑖𝑚 𝑠! .𝑑𝑒𝑠𝑐: 𝑆𝑇[], 𝑠! .𝑑𝑒𝑠𝑐: 𝑆𝑇[]  

                  +𝛼! ∙ 𝑠𝑖𝑚 𝑠! . 𝑖𝑛:𝑀𝑆𝐺, 𝑠! . 𝑖𝑛:𝑀𝑆𝐺  
                        +𝛼! ∙ 𝑠𝑖𝑚 𝑠! . 𝑜𝑢𝑡:𝑀𝑆𝐺, 𝑠! . 𝑜𝑢𝑡:𝑀𝑆𝐺  

                                     +𝛼! ∙ 𝑠𝑖𝑚 𝑠! . 𝑎𝑡𝑜𝑚𝑖𝑐: 𝑆𝑇[], 𝑠! . 𝑎𝑡𝑜𝑚𝑖𝑐: 𝑆𝑇[]  

where 𝛼! = 1!
!!! . The coefficients indicate that different 

weights may be assigned to different features of a service 
profile. 

When similarity factor is calculated over pairs of services 
annotated in OWL-S, a similarity matrix is generated for all 
services. If the similarity between a pair satisfies 
𝑠𝑖𝑚(𝑠!, 𝑠!) ≥ 𝛾, where γ is a preset value (e.g., 0.8), they 
can be put into the same service cluster.  
 
B. Deterministic Annealing for Service Clustering 

After service similarity comparison algorithm is decided, 
the next step is to classify services and build service 
networks. Although being simple, bottom-up clustering 
methods such as the hierarchical clustering approach 
focuses on local patterns without initially taking into 
account the global distribution. Thus, we adopt a top-down 
deterministic annealing [8] method to escape local minima 
of the given cost function and to build the network topology 
of the service network. In statistical physics, annealing 
refers to a process of finding the most probable set of 
element cluster representatives (with minimum free energy 
combined), by heating to above the re-crystallization 
temperature and gradually cooling down. In other words, 
deterministic annealing optimization could be viewed as a 
process of minimizing a predefined objective function at 
isothermal, stochastic equilibrium. Recent machine learning 
researchers have applied deterministic annealing as a 
clustering technique [8]. In our context, we apply the 
concept of deterministic annealing to build hierarchical 
networks among services. 

Applying deterministic annealing in our context, the 
purpose is to gradually find a stable state when services are 
grouped into clusters. When two services are similar, they 
tend to be put into the same cluster to lower the free energy 
that can be defined as inverse proportion to their similarity. 
As described in Section A, services are modeled as 
documents each carrying multiple sections that reflect 
multidimensional feature vectors. We build objective 
function over word usages based on both of their statistical 
and structural analysis. 

As explained in Section A, the feature vectors of services 
are built on top of their associated OWL-S files, the 
comprising words carry structural semantics. For example, a 
word “trip” extracted from the service name, description, 
and atomic service (i.e., operation) sections imply different 
structural meanings. We thus amend a probability 
calculation according the OWL-S features. A five-tuple O = 

(𝑁,𝑄, 𝐼𝑁,𝑂𝑈𝑇,𝑂𝑃) represents all OWL-S keywords, O = 
(𝑜!, 𝑜!,…, 𝑜! ), 𝑜!  represents OWL-S keywords of service 𝑠!. 

N: names of the OWL-S services. Set N consists of 
(𝑛!, 𝑛!,…, 𝑛! ), 𝑛! represents the name of OWL-S service 𝑠!.  

Q: descriptions of the OWL-S services. Set D consists of 
( 𝑞!, 𝑞!,…, 𝑞! ), 𝑞!  represents the description of OWL-S 
service 𝑠!. 

IN: input parameters of the OWL-S services. Set IN 
consists of ( 𝑖𝑛!, 𝑖𝑛!,…, 𝑖𝑛! ), 𝑖𝑛!  represents the input 
parameters of OWL-S service 𝑠!. 

OUT: output parameters of the OWL-S services. Set 
OUT consists of (𝑜𝑢𝑡!, 𝑜𝑢𝑡!,…, 𝑜𝑢𝑡! ), 𝑜𝑢𝑡!  represents the 
output parameters of OWL-S service 𝑠!. 

OP: operations provided by the OWL-S services. Set OP 
consists of (𝑜𝑝!, 𝑜𝑝!,…, 𝑜𝑝!), 𝑜𝑝!  represents the operations 
provided by OWL-S service 𝑠!. 

We introduce the following four conditional probability 
variables to be used in the deterministic annealing process. 
𝐴!" refers to the probability of one OWL-S keyword being 
classified into a given cluster; 𝐵!" refers to the probability of 
cluster containing a given OWL-S keyword; 𝑋!" refers to the 
probability of one OWL-S keyword appears in a given 
service; 𝑌!" refers to the probability of a service containing a 
given OWL-S keyword. 

 

𝐴!" = 𝑝 𝑜! 𝑐! = (𝑤! ∗ 𝑝 𝑜! 𝑐! )
!

!!

!

!!

 

𝐵!" = 𝑝 𝑐! 𝑜! = (𝑤! ∗ 𝑝 𝑐! 𝑜! )
!

!!

!

!!

 

𝑋!" = 𝑝 𝑜! 𝑠! = (𝑤! ∗ 𝑝 𝑜! 𝑠! )
!

!!

!

!!

 

𝑌!" = 𝑝 𝑠! 𝑜! = (𝑤! ∗ 𝑝 𝑠! 𝑜! )
!

!!

!

!!

 
 

where W = (𝑤! , 𝑤! ,  𝑤!" ,𝑤!"# ,𝑤!")  represents the 
feature weight of name, description, input parameters, 
output parameters, operations of OWL-S service, which can 
be initialized as (0.3, 0.3, 0.1, 0.1 , 0.2). 

We define an objective function as follows: 
𝐹 =  𝐷 –𝑇𝐻 

where free energy F and entropy H are two terms in the 
physical annealing theory; temperature T controls entropy H 
in different scales during the minimization of F. 

The goal of the annealing process is to minimize F, the 
free energy. 

𝐷 =  𝑝 𝑐! 𝑠! ∗ 𝑑(𝑠! , 𝑐!)
!

!!!

!

!!!

 

where conditional probability 𝑝 𝑐! 𝑠!  measures the 
relativity between service 𝑠! and cluster 𝑐! ; 𝑑 𝑠! , 𝑐!  refers 
to the distance of service 𝑠!  to cluster 𝑐! ,  which can be 
calculated by adapted KL-divergence distance algorithm 

84

Authorized licensed use limited to: SOUTHERN METHODIST UNIV. Downloaded on October 19,2024 at 04:20:27 UTC from IEEE Xplore.  Restrictions apply. 



[26].  

𝑑 𝑠! , 𝑐! =  𝑌!" ∗ log ( 
𝑌!"

𝑝 𝑠! 𝑐!
 )

!

!!!

 
 

where 𝑠!  refers to the 𝑖th service. 
H is a measure of the level of randomness given below: 

 

𝐻 =  − 𝐵𝑖𝑗 ∗ log [𝐵!"]
!

!!!

!

!!!

 

The method recursively applies a split annealing process 
to each word group until termination conditions are satisfied. 
The termination condition for this algorithm is when a 
critical temperature is reached and all the clusters become 
effective clusters. Critical temperature is determined as 
follows: 

𝑇 = 2𝜆!"# 
 

where 𝜆!"#is the largest eigenvalue of 𝐶!|!, which is the 
covariance matrix of the posterior distribution of the cluster 
corresponding to 𝑂: 
 

𝐶!|! = 𝐵!"
!

(𝑐! − 𝑛!)(𝑐! − 𝑛!)! 
 

For each cluster, the goal is find the split until it is 
considered an effective cluster. The criterion of judging an 
effective cluster is through a coverage function as below:  

𝑐𝑜𝑣 𝑜! , 𝑐! =  𝐴!" ∗ 𝑏!,!

!

!!!

 
 

where 𝑏!,! ∈ 0,1  indicates where there exists a service 
comprises both keywords  𝑜! and 𝑜!. The Bayesian Theorem 
can be used to calculate 𝑝(𝑐!|𝑜!). The higher the cov value 
means the keyword 𝑜!  covers many other keywords in 

cluster 𝑐!. 
In the clustering process, 

 

𝐸 𝑐! = 𝑚𝑎𝑥 𝑐𝑜𝑣 𝑜! , 𝑐!  
 

where 𝐸 𝑐!  measures whether 𝑐!  is an effective cluster. 
Once 𝐸 𝑐!  reaches one highest value, it means that the 
leading keyword set 𝑜!  has emerged, then the cluster is 
considered an effective cluster. 
 

 
Expectation-Maximum (EM) algorithm is utilized to 

minimize the free energy F. The pseudo code is illustrated 
as Alg. 1. 

The deterministic annealing equation ( ) can be recast as:  

𝐹 =  𝐵!" ∗ ( 𝑌!" ∗ log
𝑌!"
𝐵!"

+ 𝑇 ∗ log (𝐵!")
!

!!!

)
!

!!!

!

!!!

 

For the kth iteration of 𝑝 ! 𝑐! 𝑠! , 
 

𝐵!"
! =

exp −
𝑑 ! 𝑜! , 𝑐!

𝑇 ∗ 𝑝 ! (𝑐!)

exp −
𝑑 ! 𝑜! , 𝑐!

𝑇 ∗!
!!! 𝑝 ! (𝑐!)

 

where: 

𝑝 ! (𝑐!) = 𝐵!"
!!! ∗ 𝑝 𝑜!

!

!!!

 
 

𝐴!"
! =

𝐴!"
!!! ∗!

!!! 𝑝 𝑜! ∗ 𝑌!"
𝑝 ! (𝑐!)

 

 

𝑑 ! (𝑜! , 𝑐!) = 𝑌!" log
𝑌!!

𝑝 ! 𝑠! 𝑐!

!

!!!

 
 

where 𝑝(𝑐)  denotes the probability that the cluster is 
assigned to keyword o; 𝑝(𝑜) denotes that the probability 
that keyword o occurs in a service. EM will iterate until F 
converges to a minimum. 

IV. HIERARCHICAL BLOOM FILTER-BASED SERVICE 
DISCOVERY 

A. Modeling Services in Bloom Filter 

A Bloom Filter is a space-efficient hash-based, 
probabilistic data structure to support membership queries in 
database applications [5]. Bloom Filters allow false 
positives but the space savings often outweigh the drawback 
when the probability of an error is controlled.  

A Bloom Filter represents a set  
𝑆 =  𝑠!, 𝑠!, . . , 𝑠!  

which contains 𝑛 elements that are encoded into an array 
of 𝑚-bit network addresses, resulting from  𝑘 independent 
hash functions 𝐻!,𝐻!,… ,𝐻!.   

The hash functions map each element into a unique 
random number uniform over the 𝑚 bits. For example, the 
hash function 𝐻!(𝑠!) sets the bits ℎ!(𝑠!) to 1 for element 𝑠!. 
Afterwards, in order to query whether element y is in set S, 

Alg. 1. Deterministic Annealing for Service Clustering 
Input: A set of services annotated with OWL-S 
Output: The probability of cluster distribution over 
services  

1. Initialize C, T, 𝐹 !  
2. loop 
3.     repeat 
4.         𝑘 ←  𝑘 +  1 
5.         Calculate 𝐵!" !  with 𝐵!" !!!  
6.         Calculate 𝐹 !  
7.    until |𝐹 ! −  𝐹 !!! | <  𝜀 
8.    record 𝐵!" !  
9. if isEffectiveCluster(all clusters)  
10.    return 𝐵!" !  
11. end if 
12. if Critical Temperature for cluster 𝑐! is reached 

13.     𝐵!!!! ! ←
!!! !

!
+ δ , 𝐵!" ! ←

!!! !

!
− δ  , 

C←C+1 
14. else 
15.     𝐵!" ← 𝐵!" !  
16. end if 
17.     𝑇 = 𝛼 𝑇 (0 <  𝛼 < 1 ) 

85

Authorized licensed use limited to: SOUTHERN METHODIST UNIV. Downloaded on October 19,2024 at 04:20:27 UTC from IEEE Xplore.  Restrictions apply. 



all the ℎ!(𝑦) bits will be checked. If all corresponding bits 
are set to 1, it indicates that y is in set S.  The process is 
illustrated by an example described below. 

From our service OWL-S data, we select a bank branch 
search example to illustrate our method. Earlier section 
explains how to cluster all the services into clusters 
according the OWL-S documents. There is a Citi Bank 
finder service， which is put in a sub-cluster under the 
“Bank Finding” cluster. For this specific Citi bank finding 
service cluster, its keywords set, extracted by Deterministic 
Annealing is as follows: 

𝑠!  =   𝐵𝑎𝑛𝑘,𝐴𝑇𝑀,𝐶𝑖𝑡𝑖,𝐵𝑟𝑎𝑛𝑐ℎ  
As shown in Fig. 2(a), its address bits are first initialized 

as all zeros. Hashing with Bloom Filter, the corresponding 
bits of the four keywords in the bit array are marked as “1” 
as shown in Fig. 2(b). For instance, adding word “Bank” to 
Bloom Filter, its Bloom Filter address is encoded as 
“01001000010000.” Upon receiving a query like: “Find a 
Citibank service,” a keywords set will be extracted as: 

𝑠!  = {𝐶𝑖𝑡𝑖,𝐵𝑎𝑛𝑘} 
The two elements, Citi and Bank, will be hashed with 

𝐻!(𝑠!) to certain bits to check if those bits are “1” (Fig. 2(c)).  
As shown in the example, BF uses a dense hash-table-like 

data structures for storing and testing set membership. Rich 
service semantic information can be encoded and embedded 
into hashed address bits. Applying BF techniques, service 
discovery can be released from highly time-consuming 
semantic match-making at runtime. Instead, Bloom Filters 
can significantly reduce the bandwidth requirements of 
epidemic protocols, which become the basis of our proposed 
solution for service discovery.  
 

B. Modeling Service Network in Bloom Filter 

We have adopted the directory tree structure and multi-
scale Bloom Filter into our model. More formally, we have 
defined a hierarchical Bloom Filter model as a 4-tuple: a set 
of hierarchical keywords, a set of hash functions, the 
capacity and error rate. 
 

𝐻𝐵𝐹 = < 𝑊, 𝑐, 𝑒,𝐻 > 
Keywords: W represents the keywords which are 

extracted from OWL-S data. The OWL-S data contains 
structure information, for each type of information, after the 
clustering, each service will be added into the Bloom Filter 

network with unique address. 
Capacity: capacity 𝑐 is calculated based on the number of 

the extracted data from OWL-S and used to decide bit array 
length. 

Error rate: Along with capacity, error rate 𝑒 is used to 
define the bit array length of Bloom Filter. In our model, we 
use stand error rate as initial of 0.1%. 

Hash functions: The set of hash functions 𝐻 is selected 
from stand hash function library, decided by the c and e. 
Note that there is a tradeoff between the size of Bloom 
Filters and the probability of false positive. Increasing the 
size of Bloom Filter could lower the probability of false 
positive, with the price of storage and computation.  

Thus, the decision of the initial address bit number (M) 
can be calculated as follows, based on the number of slices 
as 𝑘, bit per slices as 𝑚, error rate as 𝑃, and capacity as k. 

 

𝑘 =  𝑙𝑜𝑔2(1/𝑃) 
𝑛 ≅  (𝑘 ∗  𝑚)  ∗  (𝑙𝑛(2)! / 𝑎𝑏𝑠(𝑙𝑛(𝑃))) 
𝑚 ≅  𝑛 ∗  𝑎𝑏𝑠(𝑙𝑛(𝑃)) / (𝑘 ∗  𝑙𝑛(2)! ) 
𝑀 ≅  (𝑙𝑛(2)!) / 𝑎𝑏𝑠(𝑙𝑛(𝑃))/𝑛) 

 

We thus apply the Bloom Filter technique to encode the 
addresses of a service network. Each service is modeled as a 
node in the network, whose address is represented by a 
bloom filter address. As shown in Fig. 3, services are 
organized into clusters, analogous to machines into local 
networks. Meanwhile, the root node of a cluster is 
analogous to the router of a local network. Note that such a 
root node may be either a virtual node if using common 
hierarchical clustering methods, or be a leading service if 
using the deterministic annealing approach as discussed in 
the previous section. Fig. 3 illustrates an example of BF-
powered service network including the services described in 
Fig. 2. The BF address of the Citi node in Fig. 3 can be 
found using the strategy described in Fig. 2. 

As the first step, services are organized as a tree-like 
structure. In different layers, the numbers of BF address bits 
are different. For each layer, the decision is based on how 
many bits are sufficient to differentiate all nodes. In case a 
cluster contains many leaf nodes, we choose not to use BF 
since the number of BF bits will be highly significant. 
Instead, semantic match-making methods will be adopted. 
As shown in Fig. 3, searching a service is transformed into 
finding an address in the network. 

 
Fig. 2 OWL-S service profiling. 

Fig. 3 Bloom Filter-powered service network. 

86

Authorized licensed use limited to: SOUTHERN METHODIST UNIV. Downloaded on October 19,2024 at 04:20:27 UTC from IEEE Xplore.  Restrictions apply. 



 
C. Network Service Search and Network Scaling 

After a service network is constructed, every service in 
the network is encoded into a BF address. An incoming 
service query is also translated into a BF address. Service 
discovery is turned into a process of finding matching BF 
address for the requested BF address. Starting from the root, 
in each layer of the network, when the most matched BF 
address is found and the search will move down to its sub-
network, until finding the exact matched node or reaching 
the leaf level. After reaching a leaf level, all the leaf nodes 
under the selected cluster will be checked until the top 
matching services are selected as recommendation 
candidates.  

Once there are incoming new services, the number of 
leaf nodes will be increased, which may effect search 
performance. Leveraging the Continuum theory [27], our 
model predicts scaling functions and then fits the 
predictions into connectivity distribution to describe the 
growth of the service network. Once the connectivity is 
larger than a predefined threshold value, to remain search 
performance, the whole BF network will be re-computed to 
generate a new network with more clusters and less leaf 
nodes. In the remainder of this section, we will discuss the 
condition when the re-computation should be conducted. 

In the Continuum theory [27], the probability that a node 
𝑖  will increase its connectivity 𝑘  depends only on 𝑘!  and 
quantities characterizing the whole network, such as the 
number of the nodes and links. In this section, we discuss 
the prediction of network scaling. When a new service (i.e., 
node) is added to the network, links will be added or 
rewired as a consequence. 

Assume 𝑚 new links are added into the service network 
with probability 𝑝, the change ratio of the connectivity is: 

 

(
𝜕𝑘!
𝜕𝑡
) = 𝑝𝐴

1
𝑁
+ 𝑝𝐴

𝑘! + 1
(𝑘! + 1)!

 
 

𝑤ℎ𝑒𝑟𝑒 𝑁 refers to the number of nodes. Since the total 
change in connectivity after a step is Δ𝑘 = 2𝑚, 𝐴 = 𝑚. 

Consider rewiring of 𝑚  links with probability 𝑞 , the 
change ratio of the connectivity is: 

 

𝜕𝑘!
𝜕𝑡

= −𝑝𝐵
1
𝑁
+ 𝑝𝐵

𝑘! + 1
(𝑘! + 1)!

 
 

The total connectivity does not change during the 
rewiring process, but B can be calculated by separating the 
two processes, obtaining 𝐵 = 𝑚. 

While adding a new node with probability 1 − 𝑝 − 𝑞, the 
change ratio of the connectivity is: 

 

𝜕𝑘!
𝜕𝑡

= 1 − 𝑝 − 𝑞 𝐶
𝑘! + 1
(𝑘! + 1)!

 
 

The number of links connecting the new node to the 
existing nodes in the system is m, thus 𝐶 = 𝑚. 

The connectivity distribution 𝑃(𝑘)  can be determined 
analytically. Defining the unit of time in the model as one 

growth/rewire/new link attempt, the probability density of 𝑡! 
is 𝑝! 𝑡! = !

!!!!
, thus the probability of the connectivity of 

the ith cluster is smaller than k is: 
 

𝑝[𝑘!(𝑡) < 𝑘]

=  1 – (
𝑚 + 𝑝 − 𝑞 (2𝑚(1 − 𝑞)1 − 𝑝 − 𝑞 ) + 1

𝑘 + 𝑝 − 𝑞 2𝑚 1 − 𝑞
1 − 𝑝 − 𝑞 + 1

)
!! !!! !!!!!!

!  

 
Using p k = !"[!!(!)!!]

!"
, we can generate: 

𝑝 𝑘 =
𝑡

𝑚! + 𝑡
 [m + 𝑝 − 𝑞

2𝑚 1 − 𝑞
1 − 𝑝 − 𝑞

+ 1

!! !!! !!!!!!
!

×[k + 𝑝 − 𝑞
2𝑚 1 − 𝑞
1 − 𝑝 − 𝑞

+ 1]!!! !!! !! !!!
!!!!!  

Thus the connectivity distribution, the main result 
provided by the continuum theory, shows a generalized 
power-law form: 

𝑝 𝑘 ∝ [𝑘 + 𝑝 − 𝑞 (
2𝑚 1 − 𝑞
1 − 𝑝 − 𝑞

+ 1) + 1]!!!
!! !!! !!!!!!

!  
 

Therefore, when a new service joins the network, if our 
predicted probability of connectivity reaches a threshold 
(assume 𝑝 𝑇 > 𝜑 when k reaches a connectivity threshold 
T), the BF network will be re-computed to generate a new 
network. 

V. EXPERIMENTS 
A. Experimental Setup 

Our test bed is the OWL-S service retrieve test collection 
version 4 (OWLS-TC4)   (http://projects.semwebcentral.org/ 
projects/owls-tc/). The service collection includes annotated 
OWL-S files of 1,083 web services, which were originally 
set up for evaluation of the performance of OWL-S-based 
semantic Web service matchmaking algorithms. The service 
set covers services of nine domains where 286 services 
come from the education domain, 73 from medical care, 34 
from food, 197 from travel, 59 from communication, 395 
from economy, 40 from weapon, 60 from geography, and 16 
from simulation. While an OWL-S model comprises 
ServiceProfile, ServiceGrounding, and ServiceModel, 
semantic information about services are mostly stored in the 
ServiceProfile section. Data in the “Service Grounding” and 
“Service Model” sections are mostly in the form of URI, 
which will be used in our future work to reason about 
service usage context. Major metadata includes service 
name, description, input and output parameters, and atomic 
process (i.e., service operation). We parsed and analyzed the 
OWL-S files with Java programs utilizing XQuery. In our 
experiment, we leveraged the OWL-S structure to facilitate 
the construction of the layered BF network: names, 
descriptions, input and output messages, and atomic 
operations. 

We have designed a collection of experiments to evaluate 

87

Authorized licensed use limited to: SOUTHERN METHODIST UNIV. Downloaded on October 19,2024 at 04:20:27 UTC from IEEE Xplore.  Restrictions apply. 



the effectiveness and efficiency of our Deterministic 
Annealing Dynamic Bloom Filter (DADBF) approach. All 
experiments were conducted on a Dell PowerEdge Server 
R530 with 8-core CPU and 96GB memory, on Ubuntu 
14.04 system. The network bandwidth service is 100Mbps. 
 
B. Performance Study 

We evaluated the performance of our Deterministic 
Annealing-supported, dynamic Bloom Filter network 
(DADBF) approach supporting service discovery. The 
evaluation metrics that we used are Mean Average Precision 
(MAP) and Mean Average Recall (MAR). 

Precision is the fraction of retrieved services that are 
relevant: 

 
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =   !"#"$%&' !"#$%%"&'()*$&

!"#$% !"#"$%&"' !"#$%%"&'()*$&
 =

!"#$ !"#$%$&'# 
!"#$ !"#$%$&'# !!"#$% !"#!"!#$%

 
 

Recall is the fraction of relevant services that are actually 
retrieved: 
 

𝑅𝑒𝑐𝑎𝑙𝑙 =   !"#"$%&' !"#$%%"&'()*$&
!"#$% !"#$%#&' !"#$%%"&'()*$&

 

= !"#$ !"#$%$&'# 
!"#$ !"#$%$&'# !!"#$% !"#$%&'"(

 
 

Assume that each ranked recommendation lists up to 
position n. The average precision for one user is: 

𝑎𝑝@𝑛 =  𝑃(𝑘)/𝑛
!

!!!

 

The mean average precision for N users at position n is 
the average of the average precision over all users: 

𝑀𝐴𝑃@𝑛 =  𝑎𝑝@𝑛!/𝑁
!

!!!

 

Assume that each ranked recommendation lists up to 
position n. The average recall for one user is: 

𝑎𝑟@𝑛 =  𝑅(𝑘)/𝑛
!

!!!

 

The mean average recall for N users at position n is the 
average of the average recall over all users: 

𝑀𝐴𝑅@𝑛 =  𝑎𝑟@𝑛!/𝑁!
!!!  

We compared our method with Lucene, the known open-
source indexing and search algorithm. pylucene, a python 
wrapper for the Lucene used in Internet search engines and 
local searching, is compared in our experiment. The 
different OWL-S semantic layers are set as corresponding 
search fields in Lucene. 

We split the dataset in 80:20 as 80% of train data and 
20% of test data. To avoid bias, we randomly shuffled the 
train data and test data every time before testing. The 
experiment was repeated for 1,000 times, and we computed 
the arithmetic mean of all resulting numbers. Fig. 4 shows 

when the service number changes, how the MAP and MAR 
will change.  

 

 
                  (a)                                            (b) 

Fig. 4 MAP & MAR 
 
Our method outperforms Lucene both in MAP and 

MAR, mainly because we consider not only service 
descriptions or tagging but also the structural meaning of 
OWL-S documents. For Lucene, the structure information 
cannot be released by field search. No filter to the result and 
too many segments will be created in indexing as well as 
searching. 

We also tested the time complexity of our DADBF 
method comparing with the Lucene approach. The results 
are shown in Fig. 5, where x-axis represents the number of 
services and y-axis represents the time consumption in the 
unit second. 

Once the service number increases, the time complexity 

of Lucene remains low. BF-only method increases 
exponentially. The main reason is that once the number of 
services increases, the Bloom Filter address will increase 
exponentially in order to keep low error rate.  As shown in 
Fig. 6, our DADBF eliminates the time cost issue. As 
explained in the previous sections, our solutions are two-
fold: do not apply BF to the leaf nodes and conduct dynamic 
network adjustment.  

 

 
Fig. 5 Time complexity comparison. 

 
Fig. 6 False positive 

88

Authorized licensed use limited to: SOUTHERN METHODIST UNIV. Downloaded on October 19,2024 at 04:20:27 UTC from IEEE Xplore.  Restrictions apply. 



C. False Positive Rate Study 

The Bloom Filter method generally allows certain 
allowable errors, caused by False Positive. We tested the 
MAP and MAR for different error rates. Fig. 6 (x-axis 
means error rate) illustrates the impact of False Positive. It 
can be shown that even though downtrend with larger error 
rate is not remarkable, the larger the error rate the lower the 
MAP and MAR. 

When a new service joins the network, if our predicted 
probability of connectivity reaches a threshold, the BF 
network will be re-computed to generate a new network. We 
studied the impact of threshold to MAP, MAR and Time 
Consumption. The results are shown in Fig. 7(a), where x-
axis represents the threshold value and y-axis represents the 
MAP and MAR, respectively in two curves. In Fig. 7(b), 
where x-axis represents the threshold value and y-axis 
represents the time consumption in the unit of second. 

Once the threshold value increases, the time complexity 
keeps increasing and the MAP and MAR remain stable. 
Lower threshold means less leaf nodes for search. Hence, as 
explained in the previous sections, conducting dynamic 
network adjustment could reduce the time complexity. 

VI. CONCLUSIONS 
In this paper, we have presented an approach of applying 

Bloom Filter, a popular network routing mechanism to 
service discovery in service network. Deterministic 
annealing is used to guide the service clustering and service 
network construction. With the rapid advancement of service 
oriented computing that leads to enormously increasing scale 
of service network, our approach addresses the scalability 
issue of existing semantic service discovery methods. 

We plan to further our research in the following directions. 
First, we plan to explore to integrate supervised LDA and 
deterministic annealing to further enhance the effectiveness 
and efficiency of service clustering. Second, we will study 
encoding richer service information, including semantic data, 
QoS data, and past usage data. Third, we plan to construct an 
OWL-S annotated large-scale service network and further 
evaluate the scalability of our approach. 

ACKNOWLEDGMENT 
This work is partially supported by National Aeronautics and 
Space Administration, under grants NASA NNX16AB22G 
and NNX16AE15G; National Science Foundation, under 
grant NSF ACI-1443069; and Ericsson Research Gift.  

REFERENCES 
1. I. Foster, "Service-Oriented Science," Science, vol. 308, col. 5723, pp. 

814-817, 2005. 
2. A.V. Paliwal, B. Shafiq, J. Vaidya, H. Xiong, and N. Adam, 

"Semantics-Based Automated Service Discovery," IEEE Transactions 
on Services Computing (TSC), vol. 5, col. 2, pp. 260-275, 2012. 

3. M. Stollberg, M. Hepp, and J. Hoffmann, "A Caching Mechanism for 
Semantic Web Service Discovery," Lecture Notes in Computer 
Science, vol. 4825, col., pp. 480-493, 2007. 

4. J. Zhang, W. Tan, J. Alexander, I. Foster, and R. Madduri, 
"Recommend-As-You-Go: A Novel Approach Supporting Services-
Oriented Scientific Workflow Reuse," in Proceedings of IEEE 
International Conference on Services Computing (SCC), Washington 
DC, USA, pp. 48-55, 2011. 

5. B.H. Bloom, "Space/Time Trade-offs in Hash Coding with Allowable 
Errors," Communications of the ACM, vol. 13, col. 7, pp. 422-426, 
1970. 

6. A. Broder and M. Mitzenmacher, "Network Applications of Bloom 
Filters: A Survey," Internet Mathematics, col., pp. 636–646, 2002. 

7. S. Chen, C.K. Chang, and L.-J. Zhang, "An Efficient Service Discovery 
Algorithm for Counting Bloom Filter-Based Service Registry," in 
Proceedings of IEEE International Conference on Web Services 
(ICWS), Los Angels, CA, USA, pp. 157-164, 2009. 

8. K. Rose, "Deterministic Annealing for Clustering, Compression, 
Classification, Regression, and Related Optimization Problems," 
Proceedings of the IEEE, vol. 86, col. 11, pp. 2210-2239, 1998. 

9. M. Klusch, B. Fries, and K. Sycara, "Automated Semantic Web Service 
Discovery with OWLS-MX," in Proceedings of fifth International Joint 
Conference on Autonomous Agents and Multiagent Systems (AAMAS), 
New York, NY, USA, pp. 915-922, 2006. 

10. J. Zhang, W. Wang, X. Wei, C. Lee, S. Lee, L. Pan, and T.J. Lee, 
"Climate Analytics Workflow Recommendation as a Service - 
Provenance-Driven Automatic Workflow Mashup," in Proceedings of 
The 22nd IEEE International Conference on Web Services (ICWS), 
New York, NY, USA, pp. 89-97, 2015. 

11. P. Goering and G. Heijenk, "Service Discovery Using Bloom Filters," 
in Proceedings of 12th Annual Conference of the Advanced School for 
Computing and Imaging, pp., 2006. 

12. M. Zhou, S. Bao, X. Wu, and Y. Yu, "An Unsupervised Model for 
Exploring Hierarchical Semantics from Social Annotations," Lecture 
Notes in Computer Science, vol. 4825, col., pp. 680-693, 2007. 

13. X. Liu, Y. Ma, G. Huang, J. Zhao, H. Mei, and Y. Liu, "Data-Driven 
Composition for Service-Oriented Situational Web Applications," IEEE 
Transactions of Services Computing (TSC), vol. 8, col. 1, pp. 2-16, 
2015. 

14. M. Klusch and F. Kaufer, "WSMO-MX: A Hybrid Semantic Web 
Service Matchmaker," Web Intelligence and Agent Systems, vol. 7, col. 
1, pp. 23-42, 2009. 

15. M.L. Sbodio, D. Martin, and C. Moulin, "Discovering Semantic Web 
Services using SPARQL and Intelligent Agents," Web Semantics: 
Science, Services and Agents on the World Wide Web, vol. 8, col. 4, 
pp. 310-328, 2010. 

16. M. Junghans, S. Agarwal, and R. Studer, "Towards Practical Semantic 
Web Service Discovery," Lecture Notes in Computer Science (The 
Semantic Web: Research and Applications), vol. 6089/2010, col., pp. 
15-29, 2010. 

17. G. Cassar, P. Barnaghi, and K. Moessner, "Probabilistic Matchmaking 
Methods for Automated Service Discovery," IEEE Transactions of 
Services Computing (TSC), vol. 7, col. 4, pp. 654-666, 2014. 

18. C. Li, R. Zhang, J. Huai, X. Guo, and H. Sun, "A  Probabilistic 
Approach for Web Service Discover," in Proceedings of IEEE 10th 
International Conference on Services Computing (SCC), Santa Clara, 
CA, USA, pp. 49-56, 2013. 

19. L. Chen, Y. Wang, Q. Yu, Z. Zheng, and J. Wu, "WT-LDA: User 
Tagging Augmented LDA for Web Service Clustering," in Service-
Oriented Computing, Eds.: Springer, 2013, pp. 162-176. 

20. Y. Zhong, Y. Fan, K. Huang, W. Tan, and J. Zhang, "Time-Aware 
Service Recommendation for Mashup Creation," IEEE Transactions on 
Services Computing (TSC), vol. 8, col. 3, pp. 356-368. 

 
(a)                                                      (b) 

Fig. 7 Dynamic network adjustment. 

89

Authorized licensed use limited to: SOUTHERN METHODIST UNIV. Downloaded on October 19,2024 at 04:20:27 UTC from IEEE Xplore.  Restrictions apply. 



21. M. Porter, "An Algorithm for Suffix Stripping Program," Automated 
Library and Information Systems, vol. 14, col. 3, pp. 130-137, 1980. 

22. K.S. Jones, "A Statistical Interpretation of Term Specificity and Its 
Application in Retrieval," Journal of Documentation, vol. 28, col. 1, pp. 
11-21, 1972. 

23. J. Zhang, R. Madduri, W. Tan, K. Deichl, J. Alexander, and I. Foster, 
"Toward Semantics Empowered Biomedical Web Services," in 
Proceedings of IEEE International Conference on Web Services 
(ICWS), Washington DC, USA, pp. 371-378, 2011. 

24. C. Leacock and M. Chodorow, "Combining Local Context and 
WordNet Similarity for Word Sense Identification," in WordNet: An 

Electronic Lexical Database, C. Fellbaum, Editor, Eds.: MIT Press, 
1998, pp. 265–283. 

25. R. Jonker and T. Volgenant, "Improving the Hungarian assignment 
algorithm," Operations Research Letters, vol. 5, col. 4, pp. 171-175, 
1986. 

26. T. Hofmann, "Probabilistic Latent Semantic Indexing," in Proceedings 
of 22nd Annual International ACM SIGIR Conference on Research and 
Development in Information Retrieval, pp. 50-57, 1999. 

27. R. Albert and A.-L. Barabási, "Topology of Evolving Networks: Local 
Events and Universality," Physical Review Letters, vol. 85, col. 24, pp. 
5234-5237, 2000. 

 

90

Authorized licensed use limited to: SOUTHERN METHODIST UNIV. Downloaded on October 19,2024 at 04:20:27 UTC from IEEE Xplore.  Restrictions apply. 


