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Abstract—Existing scientific workflow tools, created by 
computer scientists, require that domain scientists 
meticulously design their multi-step experiments before 
analyzing data. However, this is oftentimes contradictory to a 
domain scientist’s routine of conducting research and 
exploration. This paper presents a novel way to resolve this 
dispute, in the context of service-oriented science. After 
scrutinizing how Earth scientists conduct data analytics 
research in their daily work, a provenance model is developed 
to record their activities. Reverse-engineering the provenance, 
a technology is developed to automatically generate workflows 
for scientists to review and revise, supported by a Petri nets-
based workflow verification instrument. In addition, dataset is 
proposed to be treated as first-class citizen to drive the 
knowledge sharing and recommendation. A data-centric 
repository infrastructure is established to catch richer 
provenance to further facilitate collaboration in the science 
community. In this way, we aim to revolutionize computer-
supported Earth science. 

Keywords—Service recommendation, automatic workflow 
generation 

I. INTRODUCTION 
The big data challenge has posed a significant demand for 

community-driven collaborative data analysis. A number of 
scientific datasets have been published online to ask the 
entire society to join the efforts to help analyze the data. For 
example, NASA NEX has published a collection of Earth 
science data sets on Amazon AWS in 2014 
(http://aws.amazon.com/public-data-sets), including climate 
change projections and satellite images of the Earth's surface. 
Annual global competitions are arranged to call for the 
community to analyze the datasets together. Such big data 
analysis requires significant domain expertise that may not 
be possessed by individuals. 

The advancement in services computing in the recent 
years has enabled researchers to wrap up their data analytics 
algorithms as programmable web services and publish them 
on the Internet. Other scientists can thus leverage these 
published algorithm services to build more comprehensive 
data analytics procedures, called workflows [1]. To help 
people find interested algorithms, existing data projects and 
platforms typically build centralized repositories to store and 
publish services and workflows. For example, 
myExperiment is the largest repository of bioinformatics 
workflows (2,044 publically accessible workflows by 

November 12, 2014); bioCatalogue.org is a known 
repository of bio services (2,500 services by November 12, 
2014). While bioscience is a pioneering scientific domain 
that adopts services computing and workflow techniques, 
researchers have been migrating the related methods 
developed in bioscience to other domains such as Earth 
science [2]. 

Existing scientific workflow tools, created by computer 
scientists, require domain scientists to meticulously design 
their multi-step experiments before analyzing data. 
However, this is oftentimes contradictory to a domain 
scientist’s daily routine of conducting research and 
exploration. We hope to resolve this dispute. Imagine this: 
An Earth scientist starts her day applying NASA Jet 
Propulsion Laboratory (JPL) published climate data 
processing algorithms over ARGO deep ocean temperature 
and AMSRE sea surface temperature datasets. Throughout 
the day, she tunes the algorithm parameters to study various 
aspects of the data. Suddenly, she notices some interesting 
results. She then turns to a computer scientist and asks, “can 
you reproduce my results?” By tracking and reverse 
engineering her activities, the computer scientist creates a 
workflow. The Earth scientist can now rerun the workflow 
to validate her findings, modify the workflow to discover 
further variations, or publish the workflow to share the 
knowledge. In this way, we aim to revolutionize computer-
supported Earth science. 

This paper reports our on-going efforts to realize the 
aforementioned vision, in the context of service-oriented 
science. Without losing generality, we focus on data 
analytics behaviors centered on services. In more detail, we 
consider data analytics activities operated through 
(RESTful) services. Our major contributions are three-fold. 
First, we have studied how Earth scientists conduct service-
oriented data analytics research in their daily work, 
developed a provenance model to record their activities, and 
developed a technology to automatically generate workflow 
starting from user behavior and adaptability and reuse of 
these workflows for replicating/improving scientific studies. 
Second, we have built a data-centric provenance repository, 
and established a PDSW (People, Data, Service, Workflow) 
knowledge network to support workflow recommendation. 
Third, we have established a Petri nets-based verification 
instrument for provenance-based automatic workflow 
generation and recommendation. 
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Fig.2 Provenance model. 

Fig. 1 Discrete manual service exploration.

The remainder of the paper is organized as follows. In 
Section II, a motivating example is presented. In Section III, 
we present a new data-service-provider model. In Section IV, 
we present a provenance-based workflow Petri net. In 
Section V, we introduce knowledge network construction. In 
Section VI, we present system development and discussions. 
In Section VII, we discuss related work. In Section VIII, we 
draw conclusions and discuss future work. 

II. MOTIVATING EXAMPLE 
NASA JPL has developed a collection of RESTful 

Climate Model Diagnostic Analyzer (CMDA) services. In 
order to help users find the right service and use service in a 
right way, we tried to apply our workflow recommendation 
engine [2] to the CMDA services for climate model 
comparison [3]. From our exploration, we have discovered 
three significant findings. 

First, Earth scientists typically do not follow the 
procedure regulated by existing workflow tools, in which 
each iteration contains workflow design, execution, and 
revision. Instead, they experiment various possible data 
analytics over the datasets and seek for data products that 
may catch their attention. For example, one research 
challenge, over the datasets of ARGO deep ocean 
temperature and AMSRE sea surface temperature, in the 
summer school organized by JPL Center for Climate 
Sciences in 2014, is: “How is the seasonal cycle of the 
observations related to model output?” A team tuned the 
parameters of the web service “Scatter and Histogram Plot” 
on various latitude ranges: high (+-90-60), medium (+-60-
30), and low (+-30-0). They also projected the algorithm 
over the datasets on different months and different years. 
From all resulting plots, valuable ones were selected and put 
together for a systematic comparison. Fig. 1 shows some of 
their comparison for year 2004 data. This motivating 
example reveals one significant finding: 

 
The traditional way of “enforcing” scientists to design 

workflows before analyzing data is to some degree 
contradictory to their daily way of conducting scientific 
research and exploration. 

 

The second issue is the granularity level of workflow 
recommendation. From our preliminary study, we found 
that scientists may need much finer grained level of service 
recommendation. For example, a CMDA service typically 
possesses over a dozen of parameters to tune before it can 
execute properly. As a result, it is not enough to merely 
recommend a service reuse. Rather, how to use a service 
(e.g., parameter tuning) together with previous data products 
provenance is critical to convince a scientist to reuse other 
people’s work. 

The third issue is the lack of workflows and services to 
train our recommendation tool, because the number of 
workflows and services available in Earth science remains 
too low to build a constructive knowledge network to feed 
into our recommendation engine. The reality is that, not 
only workflows are in infancy, but also web services are 
rather new in Earth science community. At the same time, it 
is difficult for scientists to reuse other’s work without a 
powerful recommendation tool. This has resulted into a 
chicken-and-egg dilemma. What we do know is that we 
shall not just wait for the community to publish enough 
workflows and services before we can help scientists to find 
and leverage other peer’s work. 

These three findings directly lead us to explore new 
methods to help domain scientists design and construct their 
data analytics experiments, to help them focus more on 
science with more powerful computer support. 

III. WORKFLOW PROVENANCE AND GENERATION 
In contrast to typical workflow orchestration starting 

from existing task components, our project aims to 
automatically generate and explore (possible) workflows for 
researchers based on their past activities. In other words, 
activity provenance will be converted into analytics 
workflows. Therefore, our first step is to develop a 
provenance model to record and track scientists’ activities 
and behaviors. 

A. Activity Provenance 
When we built provenance model, granularity is an 

important criterion because it will directly impact the 
effectiveness of workflow generation. First, we constructed 
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Fig. 5 Provenance-driven workflow generation, adaptation, and 
management. 

Fig. 4 Automatic workflow generation. 

Fig. 3 Service run reproducibility and adaptation. 

a web portal to host JPL CMDA services and asked domain 
scientists to use the services from our web portal. Second, 
we monitored how Earth scientists use the services and 
recorded their activities (e.g., analytics functions and 
parameters as well as datasets used). Third, we turned such 
recordings into provenance models. Fourth, we held a series 
of weekly workshops with domain scientists to verify, 
refine, as well as to brain storm the provenance models. We 
looped through Steps 2~4 until we reached an agreed-upon 
provenance model as shown in Fig. 2. 

The provenance model is centered on Climate Service. 
Each service carries a collection of parameters. When a 
service is invoked by a service user, the event is recorded 
into Service Execution Log, together with the service
configuration that runs the service and the corresponding 
dataset log. A service configuration contains a set of 
<key,value> pairs, representing the parameter values set by 
the user for the specific service run. In other words, it 
records how aspect of data provenance. Note that 
intermediate data and data products are stored back to the 
Dataset in addition to original raw dataset. Thus, a dataset 
log records the data processing history associated with a 
service run, its input dataset, output dataset, as well as data 
product such as a resulting plot. It should also be noted that 
our identified dedicated parameter component will help to 
carry fine-grained service execution history. 

Toward the goal of runnable paper, as shown in Fig. 2, a 
specific service execution log may lead to a publication 
authored by its service user. Various types of publication 
are also classified. Such a linkage will not only help authors 
prepare their paper, but also help paper audience find their 
original experiments and repeat the experiments with the 
original settings. 

B. Service Run Reproducibility and Adaptation 
Based on the activity provenance model established, we 

can help researchers reproduce a service execution. Fig. 3 
illustrates from the provenance recorded, a past service 
invocation is illustrated, together with its configuration of 
all comprising parameters and its resulting plot. A user can 
choose to rerun the service to verify a finding. 

If desired, a user can tune the parameters with different 
values and run the service again with the new configuration. 
As shown in Fig. 3, the execution purpose field helps users 
annotate a specific service invocation. Particularly, such an 
execution dependency is captured in the activity provenance 
for later analysis. If a service execution is motivated by an 
earlier execution, the latter execution will remember its 
former execution. Note that a chain of dependency can be 
captured. In this way, a collection of service executions with 
different parameter configurations can be easily grouped 
together for analysis, e.g., to compare their resulting plots. 
For example, Fig. 4 shows a scenario where a climate 
service is executed three times under different 
configurations, and their output plots can be aggregated for 
comparison. In summary, our activity provenance model 
will allow researchers to redo their data analytics to verify 
the reproduciability of their data product. 

 
C. Workflow Generation 

In addition to single service execution history analysis, 
we have developed an automatic workflow generation 
process as shown in Fig. 5. The procedure monitors and 
analyzes user activities and behaviors on climate data 
analytics services, and extract workflows. For example, if a 
user runs the service “Scatter and Histogram Plots of Two 
Variables Service” three times over the same dataset, each 
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Fig. 6 Discrete manual service exploration.

with different parameter settings. Our activity provenance 
will track the user activities and automatically generate a 
workflow, which aggregates three workflow runs so that the 
user can repeat the process, and compare the plots 
generated. Fig. 4 (in open-source workflow tool VisTrails 
[4]) shows the automatically generated workflow. The user 
can thus revise the workflow, e.g., run on different datasets 
with the same collection of parameter settings. Users can 
also decide to wrap up the generated workflow as 
publishable services if so desired. In summary, without 
users building workflows, reverse engineering [5] is 
conducted to create workflows for users, and incrementally 
generate reusable workflows. 

As shown in Fig. 4, activity provenance and workflow 
generation and execution provenance will all be stored in 
database. Extended from our previous work [2, 5], a 
knowledge network People, Data, Workflow, Service 
(PDWS) will be incrementally established and evolved to 
support pattern recognition. By mining activity provenance, 
potential workflow may be extracted. For example as shown 
in Fig. 6, activity provenance shows two independent 
service calls on two web services. By examining the meta 
data of the input and output data of the two web service 
invocations, we may find the meta data of the output of web 
service 1 is compatible with the metadata of the input of 
web service 2. Thus, a potential workflow by chaining the 
two web services can be automatically generated for users to 

further investigate. 
 

IV. PETRI NET-BASED WORKFLOW GENERATION AND 
VERIFICATION 

As Aalst [6] indicated, Petri nets are suitable to model 
and verify workflow systems due to three main reasons: its 
formal semantics despite the graphical nature, its state-based 
instead of event-based, and its abundance of analysis 
techniques. Our previous work leverages colored Petri nets 
to facilitate the verification and monitoring of web services 
integration [7]. However, the granularity level of the 
existing service-oriented workflow modeling methods stays 
at the service level. A Petri net model contains a set of 
transitions, a set of places, and a set of arcs. As explained in 
the previous sections, our work focuses on studying the user 
activity history to automatically generate workflows. 
Therefore, our granularity level has to be more finer-grained 
to service executions.  

A. Provenance-based Workflow Net 
We propose a unified model to construct Petri nets from 

service usage history. An activity, a service run is the 
unified building block. An activity records the running 
context of a service execution, that is, a piece of service 
execution log. As shown in the provenance model in Fig. 2, 
a service run records its configuration, input dataset and 
output dataset. Centered on the activities retrieved from 
service execution logs, we define a workflow net (W-net) as 
follows. 

 
Definition 1 (W-Net): A W-Net is a 7-tuple �� �
��� �� 	� 
� �� �� � where: 
� ��is a finite set of places (data sets)
� ��is a finite set of transitions presenting service APIs
� 	��� � �� � �� � �� is a set of arcs representing flow 

relation
� 
  is a color function that satisfies �� � �� �� �
�� 
��� �� �  
������ ��� ��� ��� � 	���� �� � �� �� � ��� � � ��� � � 


� �  is a finite set of colors associated with a color 
function

� � is the input place with !� � "# � �$�#� �� � 	% � &
�  is the input place with ! � "# � �$�� #� � 	% � &

 
In contrast with the definition of a standard colored petri net, 
a W-Net may have multiple color functions and color set 
pairs. The decision is driven by the merge functions that will 
be discussed in Section C. 
 
Definition 2 (Atomic Activity): An atomic activity is the 
smallest building block in a W-net. An atomic activity 
represents one instance of a service run at a given time: 
' � ��(�� )� �(� where: �(� � ��is the input place; )� � � is 
a service run on service s; ��( � ��is the output place. The 
configuration of the service is the guard function of the 
transition. 
 
Definition 3 (Web Service): A web service is a container of 
metadata and execution history: * � �+,�-.-�-� /� where: 
+,�-.-�-� of a service presents its service name, author 
names, URL, signature, etc. (i.e., what the service is and 
how to access it); / � "-%� represents the execution history 
of the service, i.e., a collection of atomic activities. 
 

According to our definitions, a web service carries not 
only static metadata, but also its historical usage history. 
Such historical data will be able to help analyze how 
services have been used, in order to provide context-aware 
recommendation later on. 

B. Petri Nets-guided Workflow Generation 
In order to generate the W-Net, we need to define two 

mappings: one mapping from the space of service execution 
logs to an initial W-Net; the other mapping to merge and 
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reduce the resulting W-Net into a stable Petri net. 
As shown in Fig. 7(a), along the time axis, a query will 

retrieve a set of service execution provenance: a set of 
transitions. Let 0 be the set, then we have a mapping: 

 
 
 

Given a query, generation of the initial W-Net is 
conducted by an application of that mapping to each service 
execution log that is a member of the query. Leveraging the 
provenance model shown in Fig. 2, the set of transitions are 
expanded into a collection of atomic activities. Thus, the 
initialization phase yields an initial W-Net. Note that in our 
notation, each arc (flow relation) is associated with a color 
function. The color function is copied from an in-arc of a 
transition to corresponding out-arc for presentation purpose. 

However, this structure will likely need to be reduced.   
For example, a single user may chain the output of one 
service directly into the input of another. This is what we 
call a simple merge. There are a plethora of different types 
of merges, a few of which we define here. 

 

naïve merge:           12�� � � 3 � 
semantic merge:     14� �� � �5 3 �� 
syntactic merge:     16� �� � �5 3 �� 
aggregate merge:    17� �8 3 � � � 
 
Fig. 7(b) illustrates the algorithm of naïve place merge, 

or naïve merge. If the output dataset (p_o1) of a service 
execution (s1) is the same as the input dataset of another 
service execution (s2), the two service executions can be 
chained into a workflow by merging their identical places. 
Naïve place merge implies that the two services can be 

chained together. 
Fig. 7(c) illustrates the algorithm of semantic place 

merge, or semantic merge. Although the output dataset 
(�(9) of a service execution ()9) is different from the 
input dataset (�(�:) of another service execution ():), the 
semantics of the two datasets match. For example, their 
data types are the same or compatible. Then a new 
workflow of service chain (s1�s2) can be recommended to 
users. Although users never chained the two services 
together before, the output dataset of the first service 
execution (s1) can be fed into the second service ():). Such 
a workflow may create unprecedented data product (�(:;). 
Thus, semantic place merge implies that the two services 
can be chained together. 

Syntactic place merge, or syntactic merge, is a special 
case of semantic merge with stronger guard function. Take 
Fig. 7(c) again as an example, such a merge may happen if 
the data type of the two places (�(9 and �(�:) match. 

Fig. 7(d) illustrates the algorithm of aggregate merge. If 
two atomic activities comprise the same transitions with 
different color functions, a new merge transition (SA) will 
be created. Its output will be a set of individual datasets, 
resulting from the previous service execution, for 
comparison. As a matter of fact, our motivating example 
illustrated in Fig. 1 motivates the creation of the aggregate 
merge. Such a workflow will directly lead to the creation of 
the comparison of resulting plots as shown in Fig. 1. 
Aggregate merge thus suggests a new workflow, showing 
how scientists have experimented the same analytics service 
using different configuration (parameter) settings. 
Aggregate merge may have variants. For example, in Fig. 
7(d), if two input datasets (�(�9 and �(�9;) are identical to 
each other, they can be merged. 

C. Merge Function and Analysis 
As explained in Fig. 7(a), an initial W-Net is a collection 

of atomic activity units. A merge action, no matter being a 
naïve merge or a semantic merge, will destroy one place as 
shown in Fig. 7(b) and 7(c). The state of the W-Net will 
enter another state. If no further merge can apply, we call 
the M-Net reaches a stable state. 

Each merge action actually determines how slowly a 
particular W-Net converges to a stable state. For these 
particular merge functions, convergence can be achieved by 
first applying 12  then �17  to each activity pair in the W-
Net resulting from a query. If workflow recommendation is 
desired, then 14 is applied as well. 

In order to enable and automate various types of merge 
over places, different color functions need to be defined. 
Note that aggregate merge is based on transition (service) 
instead of places (data). 

 
Definition 4 (Equivalence relations): Three equivalence 
functions are defined over datasets:  
� <2  (naïve equivalence): two datasets .=<2.>  iff 
.= � .>; 

 
Fig. 7 Petri nets construction rules. 
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� <6  (syntactic equivalence): two datasets .=<6.>  iff 
.=? ,@,+,A�? .-�-�B�, � .>? ,@,+,A�? .-�-�B�,C 

� <4  (semantic equivalence): two datasets .=<4.>  iff 
.=? ,@,+,A�? .-�-�B�,�)�D .>? ,@,+,A�? .-�-�B�,. 

 
A naïve equivalence means two datasets are identical. A 

syntactic equivalence means the data types of the two 
datasets are the same. A semantic equivalence means the 
data types of the two datasets are semantically compliant 
with each other. 

Based on the three equivalence relations (<2�<6� <4�, 
three color functions can be defined as follows. 

 
Definition 5 (Color function 
E) # � "�� F� G%: In W-Net, 
color set is the quotient set of all datasets in the network by 
an equivalence relation (<E�, H � "�? .-�-),�� �� � �%/<E, 

E �� � 3 H , where 
E  is injective based on the 
corresponding equivalence relation <E. 
 

Our hypothesis is that after a finite number of merges, 
the initial M-Net will reach a stable state. 

 
Claim 1: For 12� �16��� and 14  a single all-pairs pass 
through the query set is sufficient to produce a W-Net with 
the minimum number of places. That is, subsequent 
applications of these merges produce no changes to the net. 
Proof: We first examine naïve merge 12. To see this, let 
| |PW  be the number of places in the W-Net W and let 

M W�  be the all pairs application of merge M  to W . 
Now assume that *

NW M W� �  is not minimal with 

respect to | |P� . This means that at least one of the pairs in 
*W  was merged: 

*

*

:| | | |
, , , :

N P P

i j i j

i i

j j

i j

i i

j j

W M W W W
A A W A A W

I I
O O
O I
O O
I I

� � �� � � �
� � �� 	 	

��
��

� ��
��
��

���

where I,O  are the inputs and outputs of each activity 

respectively. However, this means that i jO I� . By 

construction of W , this pair would have already been 
merged. Therefore, *W  is minimal. 
 
Claim 2: A W-Net  

The proof for the syntactic merge and semantic merge 
are similar. However, in those cases, equivalence relation 
must be replaced with syntactic equivalence relation and 
semantic equivalence relation, respectively. Note that this 
minimal set property does not hold for aggregate merges. 
Each aggregate merge generates a new place, which can 
potentially be used in other merges. For the interest of space, 

we will not discuss the cost of aggregate merge in this paper. 
In practice, it may be desirable to limit the number of 

merges so that a recommendation process does not take an 
inordinate amount of time to complete. 

V. PEOPLE, DATA, WORKFLOW, SERVICE (PDWS) 
KNOWLEDGE NETWORK 

As explained in the last section, our technology of 
workflow generation relies heavily on provenance mining. 
Thus, one core consideration is provenance organization and 
management. At present, data and programs are stored and 
managed separately like in procedural programming era, 
e.g., in GCMD [8] catalogue and model libraries 
respectively. Inspired by object-oriented programming, we 
propose to treat datasets as first-class citizen to track and 
exploit data analytics provenance. 

A. Data Service Provider 
We propose a concept of “data service” that 

encapsulates a dataset and related data processing services 
and workflows, as illustrated in Fig. 9. The idea is analogous 
to one most famous comparison in software engineering and 
programming language: procedural programming vs. object-
oriented programming. At present, NASA data centers have 
accumulated many big datasets. Numerous scientists have 
been developing various algorithms and programs to process 
and analyze the datasets. This is like in the procedural 
language era, programs and data are separated, like 
verb+noun. What we are proposing here is to treat datasets as 
first-class citizen as “data-objects” (nouns). As shown in Fig. 
9, related data processing services and workflows are 
arranged around the “data-objects.” A data-resource may be 
associated with many procedures developed by different 
contributors (e.g., through crowd sourcing). Such procedures 
may exhibit different quality attributes under different 
context, which can be used to help users make decisions. 

We do not stop at modeling datasets as data-objects, since 
our ultimate goal is to provide better data services to help 
researchers build data analytics procedures faster than before. 
Moving one step further, we model datasets as “data-service-
providers” – they will provide services to the outer world 
through their encapsulated tools and procedures. As shown 
in Fig. 9, such datasets also act as registries to accumulate 
related services and workflows that can process the datasets. 

Fig. 9 Data service provider. 
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From this setting, when a researcher intends to process some 
dataset, she can easily find out what other researchers have 
worked on the dataset and build a new experiment by 
leveraging existing services or workflows. Furthermore, we 
intend to find connections between datasets at different data 
centers. It may point us to how we can better organize the 
data and perhaps even toward data center consolidations 
and/or better internet connectivity between the centers. 

Note that the datasets do not limit to raw datasets; instead, 
they should include data products resulted from running 
services or workflows. Recall that our data service activity 
provenance model described in Section III carries fine-
grained service execution details (e.g., parameters used to 
lead to data products). Thus, connections between datasets 
can be caught and remained. 

Another aspect of treating datasets as first-class citizen 
implies that datasets keep evolving, as illustrated in Fig. 9. 
On one hand, instruments (e.g., satellite) keep on monitoring 
the world and send back data. On the other hand, 
intermediate data and data products from data processing 
services and workflows are stored to the datasets as well. 
Such a model leads to a new way of provenance 
accumulation, storage, tracking, and management to support 
reusable and replicable data analysis workflows. 

Note in Fig. 9, human is an integral element in the 
scenario. Researchers design, develop, conduct data analytics 
services and workflows. They also comment and drive the 
activities around the datasets. 

Our previous work has developed knowledge networks 
based on People, Workflow, Service (PWS) [2, 5]. In this 
project, we have added data as a first-class element into the 
knowledge network and build a People, Data, Workflow, 
Service (PDWS) network. 

 
B. Knowledge Network Construction

The debate between centralized and distributed service 
storage leads to the two categories of service publication 

methods: to a centralized repository or on distributed. Their 
central difference is whether web services are published to a 
centralized repository (e.g., UDDI) or at individual web 
servers (e.g., WSIL). In contrast to the aforementioned 
methods, we propose a data-centered distributed service 
publication method. 

As shown in Fig. 10, the granularity of distribution is at 
dataset level. Each distributed dataset carries a proprietary 
service registry and a workflow registry. When a user 
executes a service or a workflow to process the dataset, the 
execution history is stored, in addition to intermediate and 
final data products. 

Based on distributed data-centric repositories, a 
knowledge network PDWS can be established. The PDWS 
network can derive multiple views, such as a workflow 
repository, a service repository, and a dataset repository. 
Such views represent the traditional repositories currently 
existed and maintained. 

Our dataset-oriented distribution model facilitates the 
management of PDWS network over the fine-grained 
distribution granularity of service-oriented infrastructure. As 
shown in Fig. 10, each dataset is a self-contained, 
autonomous entity. It manages the encapsulated service 
repository and workflow repository. Periodically, each 
dataset reports to the PDWS network its update. A common 
publish/subscribe design pattern will fulfill the requirements. 
In this way, the PDWS network does not have to monitor 
every individual artifact. Instead, datasets manage associated 
artifacts and update the PDWS network periodically. In 
addition, compared to the number of services, the number of 
datasets is apparently more manageable.  

VI. SYSTEM IMPLEMENTATION AND DISCUSSIONS 

A. Prototyping System Implementation 
We have designed and developed a prototyping system to 

demonstrate the concepts and ideas presented in this paper: a 
climate data analytics service platform. Our platform is an 
SOA-based solution. We use Flask, a lightweight web 
application framework written in Python, to interact with 
JPL CMDA services that supported by JPL HPC center. This 
is also where we place our hooks to call our service 
execution log APIs, when a service call is sent to JPL. A 
number of libraries are required to establish the environment 
including NetCDF, Octave, ferret, numpy, and matplotlib. 

Interfacing with JPL CMDA services, our system 
provides users an interface to select an interested climate 
service, configure its parameters and execute the service, 
monitor and manage resulting data products. In addition, a 
user can query and retrieve climate service execution history 
log, repeat some service execution with previous settings, 
and further tune some parameters to rerun the service for 
comparison. Fig. 3 is a screen shot of service execution; Fig. 
4 is a screen shot of automatic workflow generation from 
aggregation merge described in Section IV. Ajax technique 
is used to enable an asynchronous web application.  

Fig. 10 Distributed PDWS Management. 
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We leveraged some widely adopted open-source 
frameworks as bases to build our platform, including Play!, 
Spring Data, Hibernate JPA, and Bootstrap. The Play! 
framework provides a backbone to support MVC-based web 
application development with powerful running environment 
support. We have adopted the Play! Framework to develop 
our backend system. The BootStrap is used for implementing 
responsive web pages, including .html, javascript and css. 
We used the Bootstrap to support the front-end of our 
platform. The Spring data and Hibernate JPA framework are 
combined together to provide platform persistence, by 
building the relationship between Java beans and database. 

B. Use Case Study and Discussions 
We have developed our prototyping system as a web 

portal and open it for JPL Earth scientists to use for several 
months to date. JPL scientists have used our system to store 
and reproduce the reported behaviors of how the graduate 
student groups execute the collection of Climate Model 
Diagnostic Analyzer (DMDA) web services, at the summer 
school organized by JPL Center for Climate Sciences in 
2014. Furthermore, our system has successfully reproduced 
the workflows that yield the student groups’ final research 
outcome. For example, through our aggregate merge 
operator, our system gathers the collection of service 
execution behaviors of a student group and generates a 
workflow that reproduces their research outcome as shown 
in Fig. 1. It answers the research question “How is the 
seasonal cycle of the observations related to model output?” 
as explained as the motivating example driving this project. 
In addition, the JPL scientists reran the generated workflow 
to verify the report submitted by the student group. 
Moreover, the JPL scientists adapted the generated workflow 
to explore different experimental scenarios, e.g., tuning the 
dataset by using the 2005 dataset. Our use case study proves 
the feasibility and usability of our proposed framework and 
technique to support scientific research. 

It should be noted that we have made it modifiable for 
service providers to update the parameters associated with 
climate services. This functionality allows us to further study 
the evolvement of services among versions. Our future work 
will study how to model the dependencies between service 
parameters. 

As discussed in Section IV, currently we have defined 
four types of place merge function. Since it is a well-known 
problem in Web service composition research to compute 
semantic equivalence between two datasets, we adopted our 
previously developed algorithms [9]. Other semantic match-
making methods may be applied as well. In addition, more 
place merge functions should be developed to explore more 
patterns of automatic workflow selection and composition. 

For automatic workflow creation, one core component is 
the user activity provenance model. As the first step, we have 
closely studied how Earth science researchers work and 
collaborated to develop a behavior model. It should be noted 
that although our reported work focuses on climate service-
oriented workflows, our work can be applied to other 
domains where parameter tuning is important for data 

analytics services. In order for our approach to be generally 
applicable, we are studying researcher behaviors in other 
domains such as civil engineering. Although we realize that 
behavior model may become a bottleneck, our research 
opens a new way of reproducing scientific workflows from 
user behaviors. In addition, since we focus on service-
oriented software usages, user behaviors become more 
manageable. In our future research, we will study the 
extensibility and general applicability of our activity 
provenance model and workflow generation approach. 

VII. RELATED WORK 
In contrast to existing numerous data projects and data 

centers that treat datasets as “passive objects,” our project 
aims to make such datasets first-class citizens to proactively 
contribute to the knowledge sharing and recommendation. 
Our exploration may point us to how we can better organize 
the data and perhaps even toward data center consolidations 
and/or better internet connectivity between the centers. 

Our investigation significantly differs from other 
workflow development efforts which require that scientists 
explicitly design workflow. Through reverse engineering 
scientist’ activities, we have built an intelligent service to 
mine and reproduce data analytics procedures for scientists. 

Our research is also closely related to generic service 
selection and composition work. In contrast to existing study, 
our work contributes more fine-grained service selection and 
composition methods. Existing service usage history-based 
service selection research works, including our own previous 
work [5], dig until the function/method level. In contrast, our 
service execution activity provenance model moves one step 
further to the parameter level. 

In contrast to traditional software component reuse 
methodologies [10-18] whose granularity level is functional 
component, our approach examines the historical usage 
relationships among data analytics activities. In contrast to 
workflow provenance mining techniques [19-23], e.g., the 
template-based workflow search facility [4], our approach 
focuses on service-oriented workflow mining and generation. 
In addition, existing works typically adopt a supervised (i.e., 
template-based) workflow generation techniques, for 
example, using a workflow template language to auto-
generate executable workflow in the Taverna [1] and Kepler 
[24] workflow projects. In contrast, our research explores a 
new way of unsupervised workflow generation. Thus, our 
work will also contribute to service composition research. 

Our previous work applied colored Petri nets to support 
the verification of web services integration [7]. In contrast, 
our current modeling takes into consideration of service 
execution context, as well as data provenance to support 
automatic workflow generation. 

Our previous work has developed knowledge networks 
based on People, Workflow, Service (PWS) [2, 5]. In this 
project, we have added data as a first-class element into the 
knowledge network and build a People, Data, Workflow, 
Service (PDWS) network. 
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VIII. CONCLUSIONS 
In this paper, we have reported an approach aiming at 

changing the way in which computer-supported research is 
conducted, in some fields. With the work presented in the 
paper, scientists are allowed to stay with their own research 
habits and styles, and more importantly, will allow them to 
focus on science. Our framework presented will help 
scientists by creating a workflow that can be later re-run to 
reproduce results, fine-tuned with values coming also from 
other usages by other scientists, and shared with other 
scientists. We have designed a provenance system that tracks 
and records scientists’ climate service execution activities. 
By mining the activity provenance repository, workflows are 
automatically generated for scientists to repeat and evolve 
their experiments. A Petri nets-based instrument is also 
established to verify the generated workflows. A prototyping 
system has been developed as a proof of concept, 
collaborating with domain scientists. Complementary with 
existing IDEs, our on-going research will provide a robust 
cyberinfrastructure to enable and facilitate transformative 
Earth science research. The paper focuses on Earth science 
but can be exploited for other disciplines. 

We plan to continue our research along the following 
directions. First, we will open our system to JPL scientists to 
use and enrich the PDWS knowledge network by recording 
their daily scientific activities. Second, we will refine our 
Petri net-based modeling to further automatic verification 
over automatically generated workflows. Third, we plan to 
apply machine learning techniques to mine PDWS network 
and develop a service and workflow recommendation engine. 
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