
Category-Aware API Clustering and Distributed
Recommendation for Automatic

Mashup Creation
Bofei Xia, Yushun Fan, Wei Tan, Keman Huang, Jia Zhang, and Cheng Wu

Abstract—Mashup has emeraged as a promising way to allow developers to compose existed APIs (services) to create new or

value-added services. With the rapid increasing number of services published on the Internet, service recommendation for automatic

mashup creation gains a lot of momentum. Since mashup inherently requires services with different functions, the recommendation

result should contain services from various categories. However, most existing recommendation approaches only rank all candidate

services in a single list, which has two deficiencies. First, ranking services without considering to which categories they belong may

lead to meaningless service ranking and affect the recommendation accuracy. Second, mashup developers are not always clear about

which service categories they need and services in which categories cooperate better for mashup creation. Without explicitly

recommending which service categories are relevant for mashup creation, it remains difficult for mashup developers to select proper

services in a mixed ranking list, which lower the user friendliness of recommendation. To overcome these deficiencies, a novel

category-aware service clustering and distributed recommending method is proposed for automatic mashup creation. First, a Kmeans

variant (vKmeans) method based on topic model Latent Dirichlet Allocation is introduced for enhancing service categorization and

providing a basis for recommendation. Second, on top of vKmeans, a service category relevance ranking (SCRR) model, which

combines machine learning and collaborative filtering, is developed to decompose mashup requirements and explicitly predict relevant

service categories. Finally, a category-aware distributed service recommendation (CDSR) model, which is based on a distributed

machine learning framework, is developed for predicting service ranking order within each category. Experiments on a real-world

dataset have proved that the proposed approach not only gains significant improvement at precision rate but also enhances the

diversity of recommendation results.

Index Terms—Mashup, service clustering, service recommendation, probabilistic topic model, extreme learning machine

Ç

1 INTRODUCTION

SERVICE-ORIENTED computing (SOC) has led to a new
generation for software engineering, changing the

way of designing, developing, delivering and consuming
software applications [1], [2]. As a result, service technol-
ogy has been evolving rapidly and an increasing number
of services have become available on the Internet [3], [4].
Meanwhile, since user requirements are comprehensive,
the fulfillment of user’s needs relies more on a set of
composed services rather than a single service. There-
fore, service composition plays a key role in SOC and
how to facilitate the construction of service composition
is critical to the wide adoption of service technology [1],
[5], [6].

Recently, the mashup technology, which allows develop-
ers to compose existing services to create new or value-
added services, has emerged as a promising service compo-
sition approach [7]. Generally speaking, a mashup process
is usually operated at a web browser, by “dragging and
dropping” APIs (programmable applications) from differ-
ent sources. In recent years, a number of online mashup
repositories have been established representative of Pro-
grammableWeb,1 myExperiment,2 and Biocatalogue.3 In
these repositories, a large number of published services
offer interfaces or APIs for external invocation, and users
can compose various services with different functionalities
to create mashups for fulfilling comprehensive require-
ments. On ProgrammableWeb, for instance, mapping ser-
vice Google maps and auction service ebay are recomposed to
create a mashup service named BidNearBy, which searches
local auctions in a map view.

When a user begins to develop a mashup, the first
thing is to select proper existing services from the reposi-
tory. However, rapid increasing number of services in the
repository makes the selection difficult. For example, on
ProgrammableWeb (till May 2014), 11,320 services have
been published and 7,440 mashups have been created

� B. Xia, Y. Fan, and C. Wu are with the Department of Automation,
Tsinghua University, China.
E-mail: 610306199@qq.com, {fanyus, wuc}@tsinghua.edu.cn.

� W. Tan is with the IBM Thomas J. WatsonResearch Center, Yorktown
Heights, NY. E-mail: wtan@us.ibm.com.

� K. Huang is with the School of Computer Science and Technology, Tianjin
University, China. E-mail: victoryhkm@gmail.com.

� J. Zhang is with the Department of Electrical and Computer Engineering,
Carnegie Mellon University, Moffett Field, CA.
E-mail: jia.zhang@sv.cmu.edu.

Manuscript received 2 Nov. 2014; accepted 2 Dec. 2014. Date of publication 9
Dec. 2014; date of current version 9 Oct. 2015.
For information on obtaining reprints of this article, please send e-mail to:
reprints@ieee.org, and reference the Digital Object Identifier below.
Digital Object Identifier no. 10.1109/TSC.2014.2379251

1. www.programmableweb.com
2. www.myexperiment.org
3. www.biocatalogue.org

674 IEEE TRANSACTIONS ON SERVICE COMPUTING, VOL. 8, NO. 5, SEPTEMBER/OCTOBER 2015

1939-1374� 2014 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.Authorized licensed use limited to: SOUTHERN METHODIST UNIV. Downloaded on December 23,2020 at 05:10:47 UTC from IEEE Xplore. Restrictions apply.

with these services. Selecting suitable services is thus an
intractable task even for experienced users. Therefore,
service recommendation for automatic mashup creation
has gained a lot of momentum. Some works [8], [9] ana-
lyze the requirement text and service description file then
recommend services based on their semantic compatibil-
ity. Other approaches [10], [11], [12] predict service qual-
ity of service (QoS) and recommend services from the
angle of QoS optimization. Furthermore, user interest and
social relationship are considered by some works [13],
[14], [15] when recommending services.

To summarize, most existing methods directly recom-
mend services from the entire repository and rank all candi-
date services with different functionalities in a single list.
Taking the aforementioned mashup on ProgrammableWeb
for example: after searching services in the entire repository,
the existing methods may recommend services like “Google
maps, Amazon Prodcut Advertisin, Shopping.com, Bing maps,
Yahoo maps, eBay. . .” However, this type of service recom-
mendation has two main deficiencies:

1) Ranking services without considering to which cate-
gories they belong will lead to meanlingless ranking
for mashup creation. For example, Google maps and
ebay obviously belong to different service categories
and are actually used for fulfilling different aspects
of mashup. Therefore, the ranking order between
these two services doesn’t make much sense for
mashup creation.

2) Mashup developers are not always clear about
which service categories they need. Selecting proper
services in a mixed ranking list is difficult for
mashup developer. Furthermore, mashup develop-
ers may also have no idea about which service cate-
gories cooperate better for mashup creation.

Our investigation of the main causes of the deficiencies is
summarized as follows. First, the service categorization in
these repositories is weak which restricts considering cate-
gory when recommending services. In most repositories,
service categorization is currently realized through a manul
process [16]. Furthermore, some existing service clustering
algorithms only consider the functional similarity which
restricts the clustering accuracy. Second, most service rec-
ommendation methods for mashup creation lack the com-
ponent of explicitly predicting which service categories are
more relevant given requirements.

In this paper, we propose a three-step approach to over-
come the aforementioned restrictions and offer category-
aware service clustering and recommending for automatic
mashup creation. First, a service clustering method Kmeans
variant (vKmeans) is developed for enhancing service cate-
gorization which provides a basis for recommendation.
Second, for decomposing mashup requirements and explic-
itly predicting relevant categories, a service category rele-
vance ranking model is proposed. Finally, a category-aware
distributed service recommendation (CDSR) model is pro-
posed for ranking services within each relevant category. In
this way, mashup developer is informed with both “what
service categories may cooperate better for fulfiling your
requirement” and “what is the ranking order of services
within each relevant category.”

The main contributions of the paper are three-fold:

1) A service clustering algorithm Kmeans variant
(vKmeans) is introduced for enhancing service cate-
gorization. Different from the traditional clustering
method Kmeans, vKmeans considers different status
of services regarding mashups. vKmeans first identi-
fies core services of each category and then clusters
other services by their functional similarity. This
algorithm provides a basis for category relevance rank-
ing and category-aware service recommendation in sub-
sequent steps. Our experiments proved its suitability
for category-aware service recommendation.

2) A service category relevance ranking (SCRR) model is
proposed for decomposing mashup requirements
and explicitly predicting relevant service categories.
Thismodel contains two phases:Category TopicMatch-
ing (CTM) and Category Affinity Propagation (CAP).
CTM combines probablisitic topicmodel andmachine
learning technique, is designed for predicting the
functional relevance probability of each category
given mashup requirements. Based on Collaborative
Filtering (CF), CAP takes the output of CTM as input
and further considers the collaborative relationship
among different categories in history information for
predicting the final relevance probability of each cate-
gory. Superior to existing recommendation methods,
this model mainly addresses the problem when
mashup developers are not clear about which service
categories are needed formashup creation.

3) A Category-aware Distributed Service Recommendation
model is proposed for ranking services within each
relevant category. On top of service clustering result
of vKmeans, this model is designed with a distributed
machine learning framework that predicts the service
ranking order within different categories. Superior to
existing recommendation methods, this model elimi-
nates themeanlingless ranking among services in dif-
ferent categories and focuses on meaningful ranking
order of services within each category.

Our experiements over a real-world dataset show that
our method gains a 30 percent improvement on recommen-
dation accuracy, compared to state-of-the-art approaches.
Furthermore, our method achieves a 20 percent improve-
ment for long tail recommendation, i.e., recommending not-
so-popular services. This proves that our approach enhan-
ces the diversity of recommendation results.

The remainder of the paper is organized as follows.
Section 2 shows a motivation use case; Section 3 illustrates
the overall framework of our method; Section 4 presents
the service clustering and recommending model and algo-
rithms; Section 5 presents the experiments and discusses
results on a real-world dataset; Section 6 discusses the
related work and Section 7 draws a conclusion.

2 MOTIVATION USE CASE

In this section, we use a real case to illustrate how category-
aware service clustering and distributed recommendation
may enhance the process of automatic mashup creation.

The ProgrammableWeb is by far the larget online web
open APIs (services) repository that contains more than

XIA ET AL.: CATEGORY-AWARE API CLUSTERING AND DISTRIBUTED RECOMMENDATION FOR AUTOMATIC MASHUP CREATION 675

Authorized licensed use limited to: SOUTHERN METHODIST UNIV. Downloaded on December 23,2020 at 05:10:47 UTC from IEEE Xplore. Restrictions apply.

10,000 APIs with various functionalies. Such reusable and
programmable APIs enable developers to compose some of
them to creat mashups (compositions) for fulfilling compre-
hensive needs. For example, a developer plans to create a
mashup application that can search bidding information
near by. The requirement is described as “Search local auctions
and classified listings (craigslist) and show them on a map view.”
Such a requirement is unlikely to be fulfilled by a single API.
How to select proper APIs from the entire repository is
intractable for a human developer. So there comes the desire
of recommendation.

As shown in Fig. 1, the recommendation engine first
understands the requirement text and infers that two kinds
of APIs are needed for satifying the requirement: APIs with
maping and locating function and APIs with auction search
function. Then the engine searches for candidate APIs for
the two kinds, respectively. Thereafter, the engine refers to
the historical mashup-APIs invoking information and ranks
candidate APIs within the two categories, respectively.
Finally, the recommendation engine returns two candidate
ranking lists to the developer: Google maps, Bing maps, and
Yahoo maps for mapping service; Amazon Prodcut Advertising,
eBay, and Shopping.com for auction searching service. The
developer may finally select Google maps and eBay to build
the mashup application. During this recommendation pro-
cess for automatic mashup creation, three important issues
can be identified as follows:

Service clustering. Mashup inherently requires services
from different categories. How to cluster large numbers of
services into different categories in an appropriate way for
providing a basis for mashup creation?

Mashup requirements decomposing. Usually a developer is
not clear about which categories are needed to fulfill the
requirements. How to automatically decompose and map
the mashup requirements to relevant service categories?

Category-aware distributed service ranking. In order to elim-
inate the meaningless service ranking among different cate-
gories and improve recommendation accuracy, how to
design a recommendation framework for ranking candidate
services within each relevant service category for the given
mashup requirements?

3 OVERVIEW OF METHODOLOGY FRAMEWORK

To tackle the aforementioned challenges, we have
designed a category-aware API clustering and distributed

recommendation framework. The overview of the frame-
work is shown in Fig. 2. The framework is composed of
two parts: an offline service clustering part and an online
service recommendation part.

The offline part preprocesses the service and mashup
historical information and clusters services into differnet
service categories, which provides a basis for recommenda-
tion. The kernel phase of this part is a Service Category Min-
ing method that takes two matrixes as input: service topic
feature matrix (captured from service textual description by topic
model Latent Dirichlet Allocation (LDA)) and the mashup-ser-
vice matrix (extracted from service usage history). The service
topic feature matrix is corresponding to the factor of service
functionality and the mashup-service matrix is correspond-
ing to the factor of service popularity. Taking both of the
factors into account, the services in a repository are clus-
tered in a more proper form for recommendation.

In the online part, after receiving a new mashup
requirement, the textual requirement is first converted to
a mashup topic feature vector that quantifies weights of
various needs within the requirement. Then through the
phase of Service Category Relevance Ranking, which takes
the mashup topic feature and service category result as
input, the result of service category relevance ranking
order is obtained. This phase addresses the problem
when mashup developers are not clear about the needed
categories, and predicts the relevance probability of each
service category. Afterwards, making use of the result of
service category ranking order, the Category-aware Recom-
mendation phase, which is based on a distributed recom-
mendation framework, finally recommends services in
the form of ‘Category per candidate service ranking list’
to the user. This phase eliminates the meanlingless ser-
vice ranking among different categories and predicts the
relevance probability of services with in a category. In
this way, the user is informed ‘which service category is

Fig. 1. Category-aware service recommendation use case for mashup cre-
ation. In this case, the mashup developer is not clear about which service
categories are relevant. According to themashup developer’s requirement,
the recommendation engine recommends two categories of services (map-
ping and auction) and the service ranking order within each category. Then
developer can choose services from these two categories, respectively.

Fig. 2. Overview of methodology framework.

676 IEEE TRANSACTIONS ON SERVICE COMPUTING, VOL. 8, NO. 5, SEPTEMBER/OCTOBER 2015

Authorized licensed use limited to: SOUTHERN METHODIST UNIV. Downloaded on December 23,2020 at 05:10:47 UTC from IEEE Xplore. Restrictions apply.

relevant to your composition requirement’ and ‘which
services within a category may satisfy your requirement
better’.

4 MODEL AND ALGORITHMS

In this section, we first introduce some preliminary knowl-
edge of the probabilistic topic model LDA and the concept
of service topic feature in Section 4.1. Then we propose a
three-phase novel method for enhancing automatic mashup
creation: the Kmeans variant (vKmeans) algorithm for service
clustering is developed in Section 4.2; the Service Category
Relevance Ranking model for category relevance ranking is
proposed in Section 4.3; and the Category-aware Distributed
Service Recommendation (CRSR) model for ‘category per can-
didate service ranking list’ is discussed in Section 4.4.

4.1 Preliminary Knowledge of Probabilistic Topic
Model LDA and Topic Feature

Probabilisitc topic model Latent Dirichlet Allocation [17] is a
known unsupervised statistical model for natural language
processing. It is mainly used to discover the abstract ‘topics’
that occur in a collection of documents. Generally, a ‘topic’
here consists of a cluster of words that represent a certain
aspect of content, and a document is typically mixed with
multiple topics. Given a corpus, LDA model can not only
automatically predict which words are relevant to a given
topic, but also predict the weights of different topics (or
topic distributions) in the document.

In the context of ‘service’ or ‘mashup,’ a topic represents
a certain aspect of its functionality extracted from the
description document; the topic distributions represent to
which aspects of function that the service or mashup are rel-
evant. For example, a topic that contains words of ‘GIS’ and
‘location’ indicates that this topic is highly correlated to
‘mapping’ functionality. If a service’s or mashup’s docu-
ment has more weights on this topic, we can infer the ser-
vice or mashup may be a mapping service or a mashup
invoking mapping services.

The reason why we adopt topic features other than tradi-
tional keywords to represent the functionality of a service
or mashup is that, topic feature is more robust and flexible
[8], [18]. Assume that a user only inputs the keyword
‘photo’ for searching a service. Even though some services
described with similar words (e.g., ‘image,’ ‘album,’ and
‘picture’) are relevant to the user’s request, they may be
neglected via simple keyword-based methods. When it
comes to mashup, keyword-based methods also face the
same problem. On the contrary, topic feature could remedy
this flaw thus contributes to a better recommendation per-
formance. The result of service topic feature extraction will
be further discussed in the experiment part.

4.2 Service Category Mining

4.2.1 Motivation of Service Category Mining

Services in a repository gradually form different categories
in which services have similar functionality. According to
our previous empirical study [17] of service usage pattern,
in a certain functionality aspect, there usually exists one
core service that gains the most popularity. Some later
emerging services are likely to imitate these core services

and have similar functionality. However, some traditional
clustering methods (e.g., Kmeans) that only cluster services
according to their functionaly similarity are not suitable in
the context of service clustering. To remedy this deficiency,
we introduce a clustering algorithm based on Kmeans nam-
ing Kmeans variant (vKmeans) for service categorization. In
this context, each service is represented by its topic feature
vector as aforementioned. The similairity between two serv-
ices is measured by the KL distance of their topic feature
vectors. The main advantage of vKmeans is that, vKmeans
first identifies the core services of the K service categories
and assigns the values of these core services’ topic feature
vectors as the initial points of each category. In contrast, the
tranditiaonl Kmeans only randomly selects K services’ topic
feature vectors as the initial points for each category. This
improvement of service clustering is proved to enhance ser-
vice recommendation in the experiment part.

4.2.2 Materials Prepared for Category Mining

In vKmeans, both service’s description plain text and ser-
vice historical usage records are considered.

In recent years, plain texts (e.g., description text, tags,
etc.) are more user friendly than traditional service
description file (i.e. WSDL), and are often adopted by
more repositories to describe the functionality of a ser-
vice. We apply text mining approach to extract service
topic features from these plain texts. We resort to the
probabilistic topic model LDA to map the funtionality of
a service to a fixed length vector. The value of every ele-
ment in the vector ranges from 0 to 1, denoting the proba-
bility of a function may be involved in this service. The
summation of all the elements of the service topic feature
vector equals 1. Formally, we define STF matrix (illus-
trated in Table 1) to integrate the topic feature vectors of
all services.

In addition, we quantitively measure the popularity of a
service by the number of mashups that invoke it. The popu-
larity of all services can be obtained from their historical
usage by mashups. Similar to [19], [20], [21], the historical
service usage information is integrated in the MS matrix
(illustrated in Table 1). Afterwards, the summation of the
ith column ofMSmatrix represents the popularity of service
i (Algorithm 1, lines 1-3).

TABLE 1
Notions in Latent Service Category Mining

Notions Explanations

Ns Total # of services
Ks Total # of topics evolved in all services
Si Service i in repository
STF Ns �Ksmatrix, STF(i, j) represents the probability

of topic j given Si

Mi Mashup i
Nm Total # of mashup
MS Nm �Ns matrix,MS(i, j) ¼ 1 if Sj is invoked byMi;

otherwiseMS(i, j) ¼ 0
Nc Preseted # of service category
Cc Service Category c
Ncc The # of services clustered in category c
S�
c The core service of category c

XIA ET AL.: CATEGORY-AWARE API CLUSTERING AND DISTRIBUTED RECOMMENDATION FOR AUTOMATIC MASHUP CREATION 677

Authorized licensed use limited to: SOUTHERN METHODIST UNIV. Downloaded on December 23,2020 at 05:10:47 UTC from IEEE Xplore. Restrictions apply.

4.2.3 Two-Phase Category Mining Strategy

In this section, we introduce the vKmeans clustering
method for clustering services into categories. The main
idea of vKmeans is a two-phase clustering strategy. In the
first phase, we refer to services’ topic feature vectors and
their popularity to assign per category a core service as the
initial point for service clustering. In the second phase, other
non-core services are clustered into different categories,
similar to Kmeans. The similarities between services are
measured by Kullback Leibler (KL) distance [22] of service
topic feature vectors. We describe the pseudo code of
vKmeans in Algorithm 1 and list all involved notions in
Table 1.

Algorithm 1. Variant Kmeans

Input: STFmatrix,MSmatrix, Nc

Output: Sci : 1 � c � Nc; 1 � i � Nci

Phase 1.
1: For i ¼ 1 toNs

2: Calculate Si‘s popularity by summing the ith column of
MSmatrix

3: End For
4: Rank all services by their popularities
5: c ¼ 1
6: For r ¼ 1 to Ns

7: For j ¼ 1 to c
8: Calculate the KL distance between the rth popular ser-

vice and S�
j

9: If the KL distance � Threshold
10: c ¼ c þ1
11: Break
12: End If
13: End For
14: Assign the rth popular service as S�

c

15: If c >Nc

16: Break
17: End If
18: End For
Phase 2.
19: For i ¼ 1 toNs

20: If Si is not a core service
21: For c ¼ 1 to Nc

22: Calculate the center point of service category c
23: Calculate KL distance between Si and center point of

service category c
24: End For
25: Assign Si to the service category c with minima KL

distance
26: Ncc ¼ Ncc þ 1
27: End For
28: Calculate the center point of each service categories
29: Repeat 19-28 until the center point of each categories

converages.

Phase 1 of Algorithm 1 mainly mines the core services of
each category. Lines 1-3 use the MS matrix to calculate the
popularity of each service and line 4 ranks overall services
considering their popularity. Lines 5-18 visit services by the
order of popularity, and identify core services of each cate-
gory regarding their topic feature vectors’ KL distance. Topic
features of all the services are caught in the STFmatrix.

Phase 2 of Algorithm 1 clusters all the non-core services
similari to traditional clustering process of Kmeans. Lines
21-24 calculate the KL distance between the unclustered
services and the center point of each service category. After-
wards, in lines 25-26, we assign the unclustered service to
the category with minimal KL distance. In lines 28-29, we
iterate the Kmeans-like process until the value of center
point of each service category converges.

In the context of service clustering, the major advantage
of our vKmeans is that it uses both service topic feature
similarity and service popularity when assigning the initial
service of each category. In contrast, most traditional clus-
tering methods randomly assign the intial point of each cat-
egory, which neglects the status of different services thus
may lead to unreasonable clustering results. On top of
vKmeans, service category relevance ranking and category-
aware distributed service recommendation become possible.

4.3 Service Category Relevance Ranking Model

4.3.1 Model Description

On top of service clustering results, given a mashup textual
requirement, the intuitional task is to decompose the
requirement and analyze which service categories may be
relevant to the requirement. For this purpose, we have
developed the Service Category Relevance Ranking model. In
SCRR, two factors are considered to have influence on the
category relevance ranking order.

� First, from the view of functional matching, which
categories can probably satisfy the functional needs
of the mashup requirement?

� Second, some service categories are frequently
invoked together in historical mashups. How do the
collaborative relationships among different service
categories affect the relevance ranking? Which cate-
gories are more likely to be invoked together for ful-
filling a new mashup requirement?

Following the aims above, as shown in Fig. 3, the SCRR
model consists of two components: category topic matching
and category affinity propagation. The input of CTM is the
textual mashup requirement and the output is functional
relevance probability of each service category regarding
mashup creation. In CAP, besides these functional relevance
probabilities, the historical collaborative relationships
among categories are taken into account. CAP leverages the
functional relevance factor and category collaborative rela-
tionship to obtain each service category’s comprehensive
relevance probabilities at the output side. Finally, we rank
all service categories according to their relevance probabili-
ties: a category with a higher relevance probability has
more relevance for the given mashup requirement. In the
following two sections, we give the details of CTM and

Fig. 3. Outline of service category relevance ranking model.

678 IEEE TRANSACTIONS ON SERVICE COMPUTING, VOL. 8, NO. 5, SEPTEMBER/OCTOBER 2015

Authorized licensed use limited to: SOUTHERN METHODIST UNIV. Downloaded on December 23,2020 at 05:10:47 UTC from IEEE Xplore. Restrictions apply.

CAP. To avoid ambiguity, we list the additional notions
used in SCRR in Table 2.

4.3.2 Category Topic Matching

Upon receiving the textual mashup requirement, which ser-
vice categories will better satisfy the functinonal needs of
mashup requirement? CTM solves this problem by predict-
ing the topic matching probabilities of each service category
regarding the given mashup. We first explain the workflow
of CTM in Fig. 4 and then show the parameter training
process.

Firstly, the mashup requirement is converted to mashup
topic feature vector by topic model LDA. Secondly, the
mashup topic feature is inputted to the ‘Topic-Category’
Matching Machine. Afterwards, the functional relevance
probabilities of each category are obtained at the output side.
Obviously, the role of ‘Topic-Category’ MatchingMachine is
to imitate the mapping function from mashup requirement
to the functional relevance of each service category. We
adopt a machine learning approach to learn the mapping
function and train the parameters using historical data.

We use extreme learning machine (ELM) [23], whose
parameters are composed of an input weight matrix Ic, a
bias vector Bc, and an output weight matrix Oc, to learn
the implicit mapping functions. The training data is
obtained as follows. Combining MS matrix (illustrated in
Table 1) and the result of service clustering, which cate-
gories are involved in each historical mashup can be
inferred. We formally define this historical information in
PImatrix (illustrated in Table 2) that is the training data
at the input side. Similar to STF matrix, we use topic
model LDA to integrate the topic feature vectors of all
textual mashup requirements to MTF matrix (illustrated
in Table 2), which is the training data at the output side.
Afterwards, we apply the standard ELM training process
in [23] and use MTF matrix and PI matrix to train the

model. The mapping relation is embedded in Ic, Bc, and
Oc, respectively. The details of the training algorithm are
illustrated in Algorithm 2.

Algorithm 2. Parameter training of PTM

Input:MTFmatrix, PImatrix
Output: Ic; Bc; Oc

1: Initialize each element of matrix Ic by random value
between [–1, 1]

2: Initialize each element of vector Bc by random value
between [0, 1]

3: Extend vector Bc to aNh �Nm matrix BExtend by column
4: tempOutput ¼ Ic �MTFT þBExtend

5: Output ¼ e�tempOutput2

6: Hþ ¼Moore-penrose inverse matrix of Output
7: Oc ¼ ðHþÞT�PI

8: Return Ic; Bc; Oc

This parameter training process consists of three main
steps. In the first step, lines 1-2 randomly assign Ic and Bc.
In the second step, lines 3-5 calculate the hidden layer
output matrix Output. Finally, lines 6-8 calculate the Moore-
Penrose inverse matrix of hidden layer output matrix
Output and obtain Oc. Specificaly, we resort to the SVD
approach for calculating Moore-Pensore inverse matrix.

4.3.3 Category Affinity Propagation

As aforementioned, some service categories are invoked
together frequently in historical mashups. The co-occur-
rence times of two service categories in historical mashups
indicates their affinity regarding mashup creation. There-
fore, CAP learns the affinity among categories from histori-
cal data and quatifies the strength of collaboration among
different service categories. Furthermore, CAP leverages the
functional relevance probability of each category (obtained
by CTM) and the affinity among service categories, then
predicts the comprehensive relevance probability of each
category according to the given mashup requirement.

In order to quantify the affinity among categories, CAP
measures the affinity strength between two categories by
the times of their co-occurrence in the same mashup in
historical records. We formalize the affinity strength among
all categories in AFmatrix (illustrated in Table 2).

Afterwards, we introduce the following formula for cal-
culating the comprehensive category relevance probability:

PR
i ¼ �PTM

i þ ð1� �Þ
XNc

k¼1

AF ði; kÞ � PTM
kPNc

l¼1 AF ðk; lÞ :

TABLE 2
Notions in Service Category Relevance Ranking

Notions Explanations

PTM
i

Topic matching probability of category i

PR
i

Relevance probability of category i
Tm
i Topic i on mashup side

Km Total # of topics evolved in all mashups
PI Nm �Nc matrix, PI(i, j) ¼ 1 if services in category j

is invoked by mashupMi; otherwise PI (i, j) ¼ 0
MTF Nm �Km matrix,MTF (i, j) represents the probability

of topic j given mashupMi

Nh # of hidden units of ‘Topic-Cateogry’
Matching Machine

Ic Nh �Km matrix, input weight matrix of
‘Topic-Category’ Matching Machine

Bc Nh � 1 vector, bias vector of ‘Topic-Category’
Matching Machine

Oc Nh �Nc matrix, output weight matrix of
‘Topic-Category’ Matching Machine

AF Nc �Nc symmetric matrix, if i 6¼ j, AF(i, j) equals
the co-occurrence time of category Ci and category
Cj in the same mashup; if i ¼ j, AF(i, j) equals 0.

� Ranges from 0 to 1, the leveraged parameter of
functionality and category affinity.

Fig. 4. Working process of category topic matching.

XIA ET AL.: CATEGORY-AWARE API CLUSTERING AND DISTRIBUTED RECOMMENDATION FOR AUTOMATIC MASHUP CREATION 679

Authorized licensed use limited to: SOUTHERN METHODIST UNIV. Downloaded on December 23,2020 at 05:10:47 UTC from IEEE Xplore. Restrictions apply.

PR
i denotes the comprehensive relevance probability of cat-

egory i and consists of two parts: the �PTM
i part represents

category i’s functional relevance component that can be
obtained from CTM process; the other part represents the
affinity propagation component from other categories.
Here, we introduce a parameter � to adjust the strength
of the two parts. The calculating process by the graphical
representation is illustrated in Fig. 5.

As shown in Fig. 5, let us assume four categories:

PTM
1 ; . . . ; PTM

4 are their functional relevance probabilities
given mashup requirement; AF(1, 2), . . ., AF(3, 4) are the
affinity strength among the four categories. Assume that all
the other three service categories have influence on category
1. CAP thus calculates the comprehensive relevance proba-
bility of category 1 as follows:

PR
1 ¼ �PTM

1 þ ð1� �Þ
AF ð1; 2Þ � PTM

2

AF ð2; 1Þ þAF ð2; 3Þ þAF ð2; 4Þ
�

þ AF ð1; 3Þ � PTM
3

AF ð3; 1Þ þAF ð3; 2Þ þAF ð2; 4Þ

þ AF ð1; 4Þ � PTM
4

AF ð4; 1Þ þAF ð4; 2Þ þAF ð4; 3Þ
�
:

The comprehensive relevance probability PR
1 of category

1 consists of two parts. For the functional relevance part,

PTM
1 presents the functional relevance probability of cate-

gory 1 itself regarding mashup requirement, and � is the

strength coefficient of PTM
1 . Obviously, high funtional rele-

vance probability increases the comprehensive relevance
probability. For the affinity propagation part, we take the
affinity propagation from category 2 to category 1 as an
example: AF(1, 2)/(AF(2, 1) þ AF(2, 3) þ AF(2, 4)) presents
the normalization affinity from category 2 to category 1,

then multiply with PTM
2 to obtain the relevance influence

from category 2 to category 1. Obviously, if category 2 and
category 1 has a high co-occurrence ratio in mashups, then
the functional relevance probability of category 2 has more

influence on category 1’s comprehensive relevance proba-
bility. Following this way, the affinity propagation from cat-
egory 3 and 4 to category 1 can be obtained.

All the comprehensive relevance probabilities of other
three categories can be obtained in the same way. Therefore,
we can rank the categories according to their comprehen-
sive relevance probabilities. The novelty of CAP is that it
considers both the influence of functional relevance and cat-
egory affinity propagation when calculating comprehensive
relevance probability of a category introduces. Furthermore,
a parameter � is introduced for leveraging the strength of
the two parts. In the experiment part, we will further dis-
cuss the impact of � and how to tune it.

4.4 Category-Aware Distributed Service
Recommendation Model

4.4.1 Model Description

Through the SCRR model, we have obtained the compre-
hensive relevance ranking order of different services catego-
ries. Afterwards, we aim to go a step further and tell the
user “what’s the ranking order of candidate services within
each category.” For this purpose, we have designed a Cate-
gory-aware Distributed Service Recommendation model. The
outline of CRSRmodel is shown in Fig. 6.

In CDSR, each service category is distributed with a
‘Topic-Topic’ Matching Machine. The input of each cat-
egory’s ‘Topic-Topic’ Matching Machine is the mashup
topic feature vector; the output is the service ranking order
within each category. In this process, the role of each cat-
egory’s ‘Topic-Topic’ Matching Machine aims to imitate the
category-specific mapping function between mashup topic
feature and service ranking order. Similar to ‘Topic-Cat-
egory’ Matching Machine, the ‘Topic-Topic’ Matching
Machine of category c is also an ELM-based unit with the
three-layer structure: input weight matrix ITc , bias vector

BT
c , and output weight matrix OT

c . We list the nontions
involved in CDSR in Table 3, and show the parameter train-
ing process of CRSR in the next section.

4.4.2 Model Training

The model training process is composed of two stages. In
the first stage, using the result of service category mining
and historical service usage data, we obtain the training

Fig. 5. Graphical representation of category affinity propagation. AF(i, j)
represents the co-occurrence times of service category i and category
j in historical mashups. Notice AF matrix is symmetric, thus AF(i, j) ¼ AF
(j, i). This figure shows how the CAP model leverages the functional
relevance probability and affinity propagation to calculate the compre-
hensive relevance probability of category 1.

Fig. 6. Outline of category-aware distributed service recommendation
model. In CDSR, each category is distributed with a specific machine
learning component called ‘Topic-Topic’ Matching Machine. Receiving
the new mashup topic feature vector, the ‘Topic-Topic’ Matching
Machine outputs the service ranking order within each category.

680 IEEE TRANSACTIONS ON SERVICE COMPUTING, VOL. 8, NO. 5, SEPTEMBER/OCTOBER 2015

Authorized licensed use limited to: SOUTHERN METHODIST UNIV. Downloaded on December 23,2020 at 05:10:47 UTC from IEEE Xplore. Restrictions apply.

data for ‘Topic-Topic’ Matching Machine of each category.
In the second stage, we follow the standard ELM parameter
training process in [23] and train the parameters of each cat-
egory. The pseudo code of CDSR model training is shown
in Algorithm 3.

Algorithm 3. Parameter training of CDSR

Input: Sci : 1 � c � Nc; 1 � i � Ncc, STF matrix MTF matrix, PI

matrix
Output:

�
ITc ; B

T
c ; O

T
c ; 1 � c � Nc

�
Stage 1
1: For c ¼ 1 to Nc

2: Nc
m ¼ sum(PI(:, c))

3: Sc
TF ¼ zeros(Nc

m,Ks)
4: Cc

TF ¼ zeros(Nc
m,Km)

5: End For
6: For i ¼ 1 toNm

7: For c ¼ 1 to Nc

8: If PI(i, c) equals 1
9: Assign the ith row of MTF matrix to the current

beginning zero row of Cc
TF matrix

10: Randomly choose a service of category c used in
mashupMi, the index of the service is j

11: Assign the jth row of STF matrix to the current begin-
ning zero row of Sc

TF matrix
12: End If
13: End For
14: End For
Stage 2
15: For c ¼ 1 to Nc

16: Use {Sc
TF , C

c
TF } train {ITc ; B

T
c ; O

T
c }

17: End For

Lines 1-5 initialize the matrix of training data. Line 2
counts the number of mashups involved in each category,
thus confirms the dimension of training data matrix. Lines
3-4 intialize training data matrix as zero matrix. Ks presents
the dimension of service topic feature vector; Km presents
the diemension of mashup topic feature vector. Lines 6-14

visit all the mashups, and obtain the training data for each
category. Line 9 gathers the input-side training data, Cc

TF ,
for each category from MTF matrix. Lines 10-11 gather the
output-side training data, Sc

TF , for each category from STF
matrix. Lines 15-17 learn the parameters of distributed
‘Topic-Topic’ Matching Machines similar to Algorithm 2.

4.4.3 Category-Aware Distributed Service

Recommendation

Combining the result of service category relevance ranking
and the trained CRSRmodel, the category-aware distributed
service recommendation result is obtained by Algorithm 4.

Algorithm 4. Category-aware distributed service
recommendation

Input: fITc ; BT
c ; O

T
c ; 1 � c � Ncg, mashup topic feature vector

Output: Category per candidate service ranking order
1: For c ¼ 1 toNc

2: Input the mashup topic feature vector to ‘Topic-Topic’
Matching Machine of category c

3: Obtain the predicted service topic feature vector ST
c at the

output side
4: Calculate the KL distance between ST

c and all the services
in category c

5: Rank all the services in category c according to their KL
distance with ST

c

6: End For
7: Return each category’s candidate service ranking list together

with the category relevance ranking order

Lines 1-6 follow the working process CDSR model and
obtain the candidate service ranking list of different catego-
ries. Line 7 recommends service combining the service rank-
ing order within a category and the category relevance
ranking order. For example, if there are five categories,
CDSR places the first service in each category at top five cor-
responding to the relevance order of the category; then
CDSR places the second service in each category at 6 to 10
also corresponding to the relevance order of their catego-
ries, and so on.

5 EXPERIMENTS

We have conducted a series of experiments on Programma-
bleWeb dataset, to compare the prediction accuracy of our
proposed CDSR approach with other state-of-the-art service
recommendation methods.

5.1 Data Set Description

The metadata of services and mashups are crawled from
ProgrammableWeb.com, in the range from June 2005 to
June 2013. In this data set, the textual information of each
service consists of its description file, service tags and sum-
mary; the textual description of each mashup consists of its
requirement text, mashup tags, summary and the list of services
invoked by it. Furthermore, every service in the repository
is organized into a certain category by manual work.

After removing meaningless or vacant mashups and
services, we obtained a collection of 6,813 mashups and

TABLE 3
Notions in Category-Aware Distributed Service

Recommendation

Notions Explanations

ST
c

Ks � 1 vector, the predicted service topic
feature for category c

NT
c

of hidden units of ‘Topic-Topic’ Matching
Machine of category c

ITc NT
c �Km matrix, input weight matrix of

‘Topic-Topic’ Matching Machine of category c
BT

c NT
c � 1 vector, bias vector of ‘Topic-Topic’

Matching Machine of category c
OT

c NT
c �Ks matrix, output weight matrix of

‘Topic-Topic’ Matching Machine of category c
Nc

m # of mashups involved in category c
Sc
TF Nc

m �Ks matrix, service topic feature matrix
for training ‘Topic-Topic’ Matching Machine
of category c

Cc
TF Nc

m �Kc matrix, mashup topic feature matrix
for training ‘Topic-Topic’ Matching Machine
of category c

XIA ET AL.: CATEGORY-AWARE API CLUSTERING AND DISTRIBUTED RECOMMENDATION FOR AUTOMATIC MASHUP CREATION 681

Authorized licensed use limited to: SOUTHERN METHODIST UNIV. Downloaded on December 23,2020 at 05:10:47 UTC from IEEE Xplore. Restrictions apply.

7,186 services. The details of the data set is illustrated in
Table 4.

5.2 Evaluation Metrics

In this paper, we choose the following metrics from
information retrieval to evaluate the recommendation
performance.

5.2.1 NDCG@N

Normalized Discounted Cumulative Gain @ top N services
in ranking list is defined as follows:

NDCG@N ¼ 1

SN

XN
j¼1

ð2rðjÞ � 1Þ
log2ð1þ jÞ:

Where r(j) is the relevant score (0 or 1) of the jth recom-
mended service on the ranking list; and SN represents the
ideal maximum score that the cumulative component can
reach.

5.2.2 MAP@N

Mean Average Precision @ top N services in ranking list is
defined as follows:

MAP@N ¼
PN

r¼1
Nr
r �IðrÞ� �

Nused
:

Where Nr denotes the number of actual used services in the
top r services of the ranking list; I(r) indicates whether
the service at ranking position r is actually used; and Nused

represents the total number of actual used services in
composition.

5.3 Baseline Methods

We chose the following six types of methods for compari-
son: the details of how we used the baseline methods in our
experiments are shown as below:

1) TF-IDF: For TF-IDF method, we first obtain the Term
frequency Document Matrix (TDM) from the corpus.
Afterwards, TDM is transferred to Tf-idf Weighted-
Document Matrix (TWDM). Next, services are
recommended according to their tf-idf weight simi-
larity with composition requirement, measured by
KL divergence defined as follows:

DKLðqueryjjserviceÞ¼
XN
i¼1

TWDMði; qÞlogTWDMði; qÞ
TWDMði; sÞ:

Where N denotes the total number of term; TWDM
(i,q) denotes the tf-idf weight of ith term given the

query; and TWDM(i,s) denotes the tf-idf weight of
the ith term given a service.

2) PopK: For PopK method, we refer to [24]. In this
context, the popularity of a service is measured by
the usage frequency by compositions from histori-
cal information. Only the top K services in relative
service categories are recommended according to
the query.

3) SCTM: Single Category Topic Matching (SCTM) is a
special case of CDSR. SCTM considers the entire
services as one category, which means that it only
recommends all candidate services in a single
ranking list.

4) Km-SCTM: For Kmeans-SCTM method, we use the
traditional Kmeans algorithm to cluster services into
different categories according to their topic feature
vector’s KL divergence, then resort to SCTM to rec-
ommend services within each category.

5) OTM: Original Topic Matching (OTM) recommends
services based on the original service categories
provided by ProgrammableWeb. Such categories are
divided by manual work.

6) DTM: Domain Topic Matching (DTM) is a subset of
CDSR. The major difference of CDSR over DTM is
that CDSR considers the affinity propogation among
service categories when predicting the relevant cate-
gories according to mashup requirement.

5.4 Experiment Results

In this section, we will discuss our experimental results. We
will first compare the recommendation performance on the
overall dataset using different methods. Then, we will com-
pare different methods on long-tail recommendation, which
reflects the diversity of recommendation. After that, we
will discuss the impact of category amount. Finally, we will
discuss the impact of parameter�.

5.4.1 Overall Recommendtion Comparison

We have conducted a 10-fold cross validation on the overall
dataset to evaluate different methods: TF-IDF, PopK,
SCTM, Km-SCTM (fix category amount at 10), OTM, DTM
(fix category amount at 10), CDSR (fix category amount at
10 and fix � at 0.5). After parameters trained, we use the
mashup textual requirement as input of recommendation
methods and return a ranking list of candidate services. A
service in the list is considered a positive recommendation
only if it is actually used in the mashup; otherwise, it is con-
sidered a negative recommendation. With varying N, the
length of recommendation list, we report the NDCG and
MAP of the seven methods in Fig. 7.

As illustrated in Fig. 7, CDSR shows a superior recommen-
dation performance over other methods. Let us takeMAP@20
for example: CDSR (71.03 percent) is higher than DTM (67.63
percent), OTM (64.52 percent), Km-SCTM (55.5 percent),
PopK (46.72 percent), SCTM (38.28 percent), and TF-IDF (20.1
percent). The interpretation of this result is as follows. Since
TF-IDF is only a functional keywords-basedmethod, it shows
a relative poor performance. PopK performs relatively well
because the service usage pattern on this dataset presents a
strong power-law distribution, which means that the popular

TABLE 4
Data Set on ProgrammalbeWeb.com

Statistics Values

Total # of services 7,186
Total # of compositions 6,813
Total # of service categories of PW 62
The # of services used in at least one composition 1,155
Total # of terms in composition textual corpus 205,494
Total # of terms in services textual corpus 350,101

682 IEEE TRANSACTIONS ON SERVICE COMPUTING, VOL. 8, NO. 5, SEPTEMBER/OCTOBER 2015

Authorized licensed use limited to: SOUTHERN METHODIST UNIV. Downloaded on December 23,2020 at 05:10:47 UTC from IEEE Xplore. Restrictions apply.

service may gain more preference from developers [17].
SCTM considers both functionality and service popularity;
however, it recommends services in a single list without
considering to which categories they belong. Thus it leads
to meanlingless ranking and restricts its performance. Both
Km-SCTM and OTM cluster services first and then recom-
mend serviceswithin each category. But the service clustering
part of these two methods only considers service functional
similarity. Our previousmethodDTM remedies this flaw and
takes the service popularity into account when clustering
services. However, DTM overlooks the factor of collaborative
history among different service categories.

Compared with all above baseline methods, three ad-
vancements contribute to our CDSR’s superiority. First, the
service clustering strategy of CDSR is better than traditional
functionality-based algorithm and manual work. Second,
CDSR considers the collaborative influence among service
categories, thus promotes the category relevance ranking.
Third, CDSR recommends services in different categories
according to their category-specific service usage patterns,
thus eliminates the meanlingless ranking among services
fromdifferent categories.

5.4.2 Recommendation Diversity Comparison

In recent years, long tail recommendation gains a lot of
momentum because it reflects the diversity of the recom-
mendation results [25]. In the context of service recommen-
dation for mashup, long tail services refer to those sevices
not popular and only used in few mashups. According to
our previous empirical work [17], the service usage pattern
on ProgrammableWeb.com shows a significant power-
law distribution: nearly 5 percent popular services ever
occurred in 78 percent mashups and the other 95 percent
services are in long tail. Therefore, the potential value of
95 percent services in long tail should not be ignored. We
have evaluated the performance of different methods on
long tail recommendation (Fig. 8).

Comparing Figs. 7 and 8, we can see that most methods
are subject to the power law property and show different
performances on long tail recommendation. PopK sharply
decreases in the two metrics, because it only recommends
the most popular services in each category but ignores
the services in longtail. SCTM recommends services from
the entire repository and suffers significantly from power
law distribution. On the contrary, TF-IDF becomes better in
longtail recommendation as it only cares about functionality
and keyword, which helps it get rid of the influence of

power law distribution. Km-SCTM and OTM also descrease
a lot when it comes to long tail recommendation. DTM
reforms the services clustering strategy and performs better.
Our proposed CDSR method further considers the collabo-
rative influence among different service categories, which
in turn further remedies the influence of power law and
improves the precision in longtail recommendation.

5.4.3 Impact of Service Category Amount

Our proposed CDSRmethod provides a mechanism to adjust
the amount of service category amount. Larger service cate-
gory amountmeans a finer-grained service clustering strategy
and smaller service category amountmeans a coarser-grained
service clustering strategy. We have designed expeirments to
study the impact of service category amount.

Fig. 9 shows CDSR’s result of MAP and NDCG with dif-
ferent service category amounts (fix � at 0.5). In some range,
CDSR shows a general tendency of higher prediction preci-
sion with more service category amout. Let us take Fig. 9c
for example. When there are only two categories, CDSR
shows a relative low precision rate at both overall (e.g.,
MAP@20 is 38.26 percent) and longtail (e.g., MAP@20 is
29.65 percent) recommendation. When the service category
amount goes to ten, the precision rate increases sharply at
overall (e.g., MAP@20 is 71.03 percent) and longtail (e.g.,
MAP@20 is 61.26 percent) recommendation. However, if
the category amount continues to grow, for example to
reach 20, the precision rate of overall performance decreases
in some degree (e.g., MAP@20 is 66.07 percent) while long-
tail performance almost remains at the same level (e.g.,
MAP@20 is 61.93 percent). The reason may be too large pre-
seted category amount may weaken too much the influence
of power law distribution and the status of those popular
services. These observations imply that we should choose
appropriate service category amount for superior recom-
mendation performance.

5.4.4 Impact of �

As aforementioned in the model part, CDSR considers the
relevance of service category with mashup requirement is
the result of two factors: the functionality relevance factor
and the categories collaboration factor. The parameter � is
the coefficient to control the strength of the two factors.
The larger � is, the functionality relevance factor has more
strength and the categories collaboration factor has less
strength, and vise versa. In this section, we discuss the
impact of � on CDSR’s recommendation performance.

Fig. 7. MAP and NDCG on overall service recommendation.
Fig. 8. MAP and NDCG on longtail service recommendation.

XIA ET AL.: CATEGORY-AWARE API CLUSTERING AND DISTRIBUTED RECOMMENDATION FOR AUTOMATIC MASHUP CREATION 683

Authorized licensed use limited to: SOUTHERN METHODIST UNIV. Downloaded on December 23,2020 at 05:10:47 UTC from IEEE Xplore. Restrictions apply.

Fig. 10 demonstrates CDSR’s overall and longtail perfor-
mance with a range of � (fix service category amount at 10).
When � is 0, both of overall and longtail show low precision
rates, which means taking no consideration of functionality
relevance factor is unreasonable. As we gradually increase
the value of�, the functionality relevance factor and catego-
rires collaboration factor are leveraged: when � is 0.5, the
overall precision rate nearly reaches its peak point; when �
is 0.75, the longtail precision rate reaches nearly its peak
point. If we preset � at 1, both of overall and longtail preci-
sion rate decrease, which confirms that categories collabora-
tion factor should be taken into account. Furthermore, the
value of � can be flexibly adjusted to satisfy different
requirements: either high overall prediction accuracy rate
or high longtail prediction accuracy rate.

6 RELATED WORK

In this paper, we have presented an integrated method for
automatic mashup creation, which combines service cluster-
ing and service recommendation. Therefore, we review
related work from two aspects: service clustering and ser-
vice recommendation.

6.1 Service Clustering

With the rapid increasing number of services in a reposi-
tory, proper service clustering has become critical to facili-
tate service searching process.

Functional similarity is the basis of service clustering.
Khalid et al. [26] analyze WSDL documents and cluster
them into groups based on functional similarity. Using
WSDL documents as well, Cristina et al. [27] propose an

Fig. 9. Impact of category amount on CDSR. Large service category amount means a finer-grained service clustering strategy while small amount
means a coarser-grained strategy. In our experiment, to fix the service category amount at 10 may be a wise choice.

Fig. 10. Impact of �on CDSR. � leverages the strength of functional factor and category collaborative factor when predicting the relevance service
category regarding mashup creation. The overall and longtail peak points correspond to different value of �. The CDSR model can be adapted to dif-
ferent recommendation purpose by adjusting parameter �.

684 IEEE TRANSACTIONS ON SERVICE COMPUTING, VOL. 8, NO. 5, SEPTEMBER/OCTOBER 2015

Authorized licensed use limited to: SOUTHERN METHODIST UNIV. Downloaded on December 23,2020 at 05:10:47 UTC from IEEE Xplore. Restrictions apply.

ant-based service clustering method that groups services
based on semantic similarity. Chen et al. [28] believe utiliz-
ing WSDL documents alone for service clustering limits its
accuracy. Thus, they develop an approach called WTCluster,
in which tags are taken into consideration in addition to
WSDL documents.

Non-functional factors are also considered by many
researchers for enhancing service clustering process. Zhou
et al. [29] consider dynamic situations when a data provid-
ing (DP) service emerages or disappears, supported by a
dynamic fuzzy C-means algorithm. Zhang et al. [30] consid-
ers the hierarchical structure within each service category.
In their two-phase service clustering method, the traditional
K-means method is first used to cluster services into differ-
ent groups, followed by an algorithm to construct the hirer-
arch within each service category. Skoutas et al. [31]
develop a thematically service clustering method, where
services are categorized into groups based on customizable
query parameters.

Our service clustering method proposed in this paper
takes into account both functional and non-functional fac-
tors. Different from exsiting works, we learn from our previ-
ous empirical work and summarize the formation process of
a service category. After a core service gains popularity, fol-
lower services imitate the core service and join the service
repository. Inspired by the typical service category forma-
tion process, our proposed clustering method first identifies
the core services of each category, then clusters other non-
core services.

6.2 Service Recommendation

In recent years, a number of recommendation methods have
been developed for service compositions.

Semantic matching approaches recommend services based
on semantic relevance between services and queries. Meng
et al. [9] develop a keyword-aware service recommendation
method named KASR. Key words are used to indicate
users’ preferences, and a user-based collaborative filtering
algorithm is adopted to generate appropriate recommenda-
tions. Unlike this exact keyword-based matching method,
Li et al. [8] use probabilistic topic model LDA to extract
functional attributes of services from WSDL documents.
Their recommendation mthod is based on the topic-level
semantic matching probability.

QoS prediction approaches recommend services from the
angle of QoS optimization. Tang et al. [32] consider loca-
tions of both users and services when predicting QoS values
of Web services and recommend service candidates. Ahmed
et al. [10] propose a Hidden Markov Models (HMM)
method for QoS metrification, which measures and predicts
the behavior of web services in terms of response time.
Zheng et al. [12] use matrix factorization technique to
develop a collaborative QoS prediction approach for web
services, taking advantages of the past web service usage
experiences of services users.

Social relationship-based approaches use the collaborative
relation to enhance the service recommendation. Cao et al.
[13] extract users’ interests from their mashup service usage
history, and build a social network based on social relation-
ships information to support service recommendation
for mashup. Xu et al. [14] present a social-aware service

recommendation approach, where multi-dimensional social
relationships among potential users, topics, mashups, and
services are described by a coupled matrix model.

Regardless of clustering methods, most existing recom-
mendation methods directly recommend from all services
and offer a single service candidates ranking list. However,
mashup inherently demand services from different catego-
ries and users are not always clear about which categories
can satisfy their mashup query. Therefore, different from
existing methods, our recommendation method in this
paper offers “per category service candidate ranking list”
recommendation.

7 CONCLUSIONS

With the rapid increasing number of published services on
the Internet, how to effectively and efficiently recommend
proper services for automatic mashup creation has become
an imporatant issue. Two main deficiencies affects the accu-
racy of existing recommending approaches: first, most exist-
ing recommendation approaches only provide a single
service ranking list without considering which categories
the services belong to, which leads to meanlingless ranking
for mashup creation; second, this type of recommendation
neglect the situation when mashup developers are not clear
about which categories they need to fulfil the requirement.
Overcoming these two deficiencies and improving the ser-
vice recommendation for automatic mashup creation moti-
vate our work.

In this paper, a three-step approach is presented to
enhance the recommendation for mashup creation. We first
cluster services according to the formation process of dif-
ferent categories in repository, which provides basis for
recommending. Then, a service category relevance ranking
model is proposed to decompose mashup requirement and
explicitly predict the relevant service categories. Finally, a
distributed machine learning method is introduced for cat-
egory-aware service recommendation. Our experiments on
real-world datasets have shown that our method gains a
30 percent improvement on accuracy rate and a 20 percent
improvement for long-tail recommendation.

From a dynamic view, new services keep on joining the
repository; published services may be no longer available;
service’s popularity and usage patterns for mashup creation
are both evolving overtime. In the future, we will extend
our method and further consider these dynamic factors
when recommending service for mashup creation.

ACKNOWLEDGMENTS

This work is partially supported by the National Natural
Science Foundation of China (No. 61033005, No. 61174169)
and the Independent Research Fund of Tsinghua University
(No. 20111080998) and the Specialized Research Fund
for the Doctoral Program of Higher Education (No.
20120002110034). Yushun Fan is the corresponding author.

REFERENCES

[1] L.-J. Zhang, J. Zhang, and H. Cai, Services Computing. New York,
NY, USA: Springer, 2007.

[2] W. Yi and M. B. Blake, “Service-oriented computing and cloud
computing: Challenges and opportunities,” IEEE Internet Comput.,
vol. 14, no. 6, pp. 72–75, Nov./Dec. 2010.

XIA ET AL.: CATEGORY-AWARE API CLUSTERING AND DISTRIBUTED RECOMMENDATION FOR AUTOMATIC MASHUP CREATION 685

Authorized licensed use limited to: SOUTHERN METHODIST UNIV. Downloaded on December 23,2020 at 05:10:47 UTC from IEEE Xplore. Restrictions apply.

[3] M. Maleshkova, C. Pedrinaci, and J. Domingue, “Investigating
web APIs on the world wide web,” in Proc.IEEE 8th Eur. Conf. Web
Services, Ayia Napa, Cyprus, 2010, pp. 107–114.

[4] E. Al-Masri and Q. H. Mahmoud, “Investigating web services on
the world wide web,” in Proc. 17th Int. Conf. World Wide Web, Bei-
jing, China, 2008, pp. 795–804.

[5] L. Chen, J. Wu, H. Jian, H. Deng, and Z. Wu, “Instant recommen-
dation for web services composition,” IEEE Trans. Services
Comput., vol. 7, no. 4, pp. 586– 598, Oct.-Dec. 2014.

[6] P. Leitner, W. Hummer, and S. Dustdar, “Cost-based optimization
of service compositions,”IEEE Trans. Services Comput., 2013, vol. 6,
no. 2, pp. 239–251, Apr.–Jun. 2013.

[7] L. Xuanzhe, H. Yi, S. Wei, and L. Haiqi, “Towards service compo-
sition based on mashup,” in Proc. IEEE World Congress Services,
Salt Lake City, UT, USA, 2007, pp. 332–339.

[8] C. Li, R. Zhang, J. Huai, X. Guo, and H. Sun, “A probabilistic
approach for web service discovery,” in Proc. IEEE Int. Conf. Serv-
ices Comput., Santa Clara, CA, USA, 2013, pp. 49–56.

[9] S. Meng, W. Dou, X. Zhang, and J. Chen, “KASR: A keyword-
aware service recommendation method on mapreduce for big
data application,” IEEE Trans. Parallel Distrib. Syst., vol. 25, no. 12,
pp. 3221–3231, Dec. 2014.

[10] W. Ahmed, Y. Wu, and W. Zheng, “Response time based optimal
web service selection,” IEEE Trans. Parallel Distrib. Syst., vol. 26,
no. 2, pp. 551–561, Feb. 2015.

[11] Q. Yu, Z. Zeng, and H. Wang, “Trace norm regularized matrix fac-
torization for service recommendation,” in Proc. IEEE 20th Int.
Conf. Web Services, Santa Clara, CA, USA , 2013, pp. 34–41.

[12] Z. Zheng, H. Ma, M. R. Lyu, and I. King, “Collaborative web ser-
vice qos prediction via neighborhood integrated matrix
factorization,” IEEE Trans. Services Comput., vol. 6, no. 3, pp. 289–
299, Jul.–Sep. 2013.

[13] B. Cao, J. Liu, M. Tang, Z. Zheng, and G. Wang, “Mashup service
recommendation based on user interest and social network,” in
Proc. IEEE 20th Int. Conf. Web Services, Santa Clara, CA, USA, 2013,
pp. 99–106.

[14] W. Xu, J. Cao, L. Hu, J. Wang, and M. Li, “A social-aware service
recommendation approach for mashup creation,” in Proc. IEEE
20th Int. Conf. Web Services, Santa Clara, CA, USA, 2013, pp. 107–
114.

[15] Y. Zhou, L. Liu, C.-S. Perng, A. Sailer, I. Silva-Lepe, and Z. Su,
“Ranking services by service network structure and service attrib-
utes,” in Proc. IEEE 20th Int. Conf. Web Services, Santa Clara, CA,
USA, pp. 26–33.

[16] J. Zhang, J. Wang, P. C. K. Hung, Z. Li, J. Liu, and K. He,
“Leveraging incrementally enriched domain knowledge to
enhance service categorization,” Int. J. Web Services Res., vol. 9,
no. 3, pp. 43–66, 2012.

[17] D. M. Blei, A. Y. Ng, and M. I. Jordan, “Latent dirichlet
allocation,” J. Mach. Learning Res., vol. 3, pp. 993–1022, 2003.

[18] G. Cassar, P. Barnaghi, and K. Moessner, “Probabilistic match-
making methods for automated service discovery,” IEEE Trans.
Services Comput., vol. 7, no. 4, pp. 654–666, Oct.-Dec. 2014.

[19] K. Huang, Y. Fan, and W. Tan, “An empirical study of program-
mable web: A network analysis on a service-mashup system,”
in Proc. IEEE 19th Int. Conf. Web Services, 2012, pp. 552–559.

[20] W. Tan, J. Zhang, and I. Foster, “Network analysis of scientific
workflows: A gateway to reuse,” IEEE Comput., vol. 43, no. 9,
pp. 54–61, Sep. 2010.

[21] J. Zhang, W. Tan, J. Alexander, I. Foster, and R. Madduri,
“Recommend-as-you-go: A novel approach supporting services-
oriented scientific workflow reuse,” in Proc. IEEE Int. Conf. Services
Comput., Washington DC, USA, , Jul. 4–9, 2011, pp. 48–55.

[22] M. N. Do and M. Vetterli, “Wavelet-based texture retrieval using
generalized gaussian density and kullback-leibler distance,” IEEE
Trans. Image Process., vol. 11, no. 2, pp. 146–158, Feb. 2002.

[23] G. Huang, Q. Zhu, and C. Siew, “Extreme learning machine: The-
ory and applications,” Neurocomputing, vol. 70, pp. 489–501, 2006.

[24] K. Huang, Y. Fan, and W. Tan,” “Recommendation in an evolving
service ecosystem based on network prediction,” IEEE Trans.
Autom. Sci. Eng., 2014, vol. 11, no. 3, pp. 906–920, Jul. 2014.

[25] H. Yin, B. Cui, J. Li, J. Yao, and C. Chen, “Challenging the long tail
recommendation,” in Proc. 38th Int. Conf. Very Large Data Bases,
Istanbul, Turkey, Aug. 27–31, 2012, pp. 896–907.

[26] K. Elgazzar, A. E. Hassan, and P. Martin, “Clustering WSDL
documents to bootstrap the discovery of web services,” in Proc.
IEEE Int. Conf. Web Services, Miami, FL, USA, 2010, pp. 147–154.

[27] M. Essaaidi, M. Malgeri, C. Badica, C. B. Pop, V. R. Chifu, I.
Salomie, M. Dinsoreanu, T. David, and V. Acretoaie, Semantic
Web Service Clustering for Efficient Discovery Using an Ant-Based
Method, in Intelligent Distributed Computing IV, M. Es-Saaidi,
M. Malgeri, and C. Badica, Eds. Berlin, Heidelberg: Springer,
2010, pp. 23–33.

[28] G. Kappel, Z. Maamar, H. R. Motahari-Nezhad, L. Chen, L. Hu, Z.
Zheng, J. Wu, J. Yin, Y. Li, and S. Deng, “WTCluster: utilizing tags
for web services clustering,” in Proc. Int. Conf. Service-Oriented
Comput., 2011, pp. 204–218.

[29] Z. Zhou, M. Sellami, W. Gaaloul, M. Barhamgi, and B. Defude,
“Data providing services clustering and management for facilitat-
ing service discovery and replacement,” IEEE Trans. Autom. Sci.
Eng., vol. 10, no. 4, pp. 1131–1146, Oct. 2013.

[30] L.-J. Zhang, S. Cheng, C. K. Chang, and Q. Zhou, “A pattern-rec-
ognition-based algorithm and case study for clustering and select-
ing business services,” IEEE Trans. Syst., Man Cybernetics, Part A:
Syst. Humans, vol. 42, no. 1, pp. 102–114, Jan. 2012.

[31] D. Skoutas, D. Sacharidis, A. Simitsis, and T. Sellis, “Ranking and
clustering web services using multicriteria dominance relations-
hips,” IEEE Trans. Services Comput., vol. 3, no. 3, pp. 163–177, Jul.–
Sep. 2010.

[32] M. Tang, Y. Jiang, J. Liu, and X. Liu, “Location-aware collabora-
tive filtering for qos-based service recommendation,” in Proc.
IEEE 19th Int. Conf. Web Services, 2012, Honolulu, HI, USA, pp.
202–209.

Bofei Xia is currently working toward the PhD
degree in the Department of Automation, System
Integegration Institute Tsinghua University, Bei-
jing, China. His research interests include serv-
ices computing, service recommendation and big
data.

Yushun Fan received the PhD degree in
control theory and application from Tsinghua
University, China, in 1990. He is currently a
professor with the Department of Automation.
His research interests include enterprise
modeling methods and optimization analysis,
business process reengineering, workflow man-
agement, system integration, object-oriented
technologies and flexible software systems,
Petri nets modeling and analysis, and work-
shop management and control.

Wei Tan received the BS and PhD degrees from
the Department of Automation, Tsinghua Univer-
sity, China, in 2002 and 2008, respectively. He is
currently a research staff member with the IBM T.
J. Watson Research Center, NY. His research
interests include NoSQL, big data, cloud comput-
ing, service-oriented architecture, business and
scientific workflows, and Petri nets.

Keman Huang received the BS degree in auto-
mation and another BS degree in economics
from Tsinghua University, China, in 2009. He
received the PhD degree in control theory and
application in 2014 from Tsinghua University,
China. He is currently an assistant professor with
the School of Computer Science and Technol-
ogy, Tianjin University, China. His research inter-
ests include services computing, web service
composition, social network analysis, data min-
ing, and service recommendation. He is a mem-

ber of the ACM and IEEE.

686 IEEE TRANSACTIONS ON SERVICE COMPUTING, VOL. 8, NO. 5, SEPTEMBER/OCTOBER 2015

Authorized licensed use limited to: SOUTHERN METHODIST UNIV. Downloaded on December 23,2020 at 05:10:47 UTC from IEEE Xplore. Restrictions apply.

Jia Zhang received the BS and MS degrees in
computer science from Nanjing University, China.
She received the PhD degree in computer sci-
ence from the University of Illinois at Chicago.
She is currently an associate professor at
the Department of Electrical and Computer Engi-
neering, Carnegie Mellon University. Her recent
research interests center on service-oriented
computing, with a focus on collaborative scientific
workflows, Internet of Things, cloud computing,
and big data management. She has coauthored

one textbook titled Services Computing and has published more than
130 refereed journal papers, book chapters, and conference papers.
She is currently an associate editor of the IEEE Transactions on Serv-
ices Computing (TSC) and of International Journal of Web Services
Research (JWSR), and an editor-in-chief of International Journal of
Services Computing (IJSC).

Cheng Wu received the BS and MS degrees in
electrical engineering from Tsinghua University,
Beijing, China. He is currently a fellow of Chinese
Academy of Engineering. His research interests
include complex system modeling and optimi-
zation, and modeling and scheduling in supply
chains.

" For more information on this or any other computing topic,
please visit our Digital Library at www.computer.org/publications/dlib.

XIA ET AL.: CATEGORY-AWARE API CLUSTERING AND DISTRIBUTED RECOMMENDATION FOR AUTOMATIC MASHUP CREATION 687

Authorized licensed use limited to: SOUTHERN METHODIST UNIV. Downloaded on December 23,2020 at 05:10:47 UTC from IEEE Xplore. Restrictions apply.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Algerian
 /Arial-Black
 /Arial-BlackItalic
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BaskOldFace
 /Batang
 /Bauhaus93
 /BellMT
 /BellMTBold
 /BellMTItalic
 /BerlinSansFB-Bold
 /BerlinSansFBDemi-Bold
 /BerlinSansFB-Reg
 /BernardMT-Condensed
 /BodoniMTPosterCompressed
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /BritannicBold
 /Broadway
 /BrushScriptMT
 /CalifornianFB-Bold
 /CalifornianFB-Italic
 /CalifornianFB-Reg
 /Centaur
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /Chiller-Regular
 /ColonnaMT
 /ComicSansMS
 /ComicSansMS-Bold
 /CooperBlack
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FootlightMTLight
 /FreestyleScript-Regular
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /HarlowSolid
 /Harrington
 /HighTowerText-Italic
 /HighTowerText-Reg
 /Impact
 /InformalRoman-Regular
 /Jokerman-Regular
 /JuiceITC-Regular
 /KristenITC-Regular
 /KuenstlerScript-Black
 /KuenstlerScript-Medium
 /KuenstlerScript-TwoBold
 /KunstlerScript
 /LatinWide
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaBright
 /LucidaBright-Demi
 /LucidaBright-DemiItalic
 /LucidaBright-Italic
 /LucidaCalligraphy-Italic
 /LucidaConsole
 /LucidaFax
 /LucidaFax-Demi
 /LucidaFax-DemiItalic
 /LucidaFax-Italic
 /LucidaHandwriting-Italic
 /LucidaSansUnicode
 /Magneto-Bold
 /MaturaMTScriptCapitals
 /MediciScriptLTStd
 /MicrosoftSansSerif
 /Mistral
 /Modern-Regular
 /MonotypeCorsiva
 /MS-Mincho
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /NiagaraEngraved-Reg
 /NiagaraSolid-Reg
 /NuptialScript
 /OldEnglishTextMT
 /Onyx
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Parchment-Regular
 /Playbill
 /PMingLiU
 /PoorRichard-Regular
 /Ravie
 /ShowcardGothic-Reg
 /SimSun
 /SnapITC-Regular
 /Stencil
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TempusSansITC
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanMTStd
 /TimesNewRomanMTStd-Bold
 /TimesNewRomanMTStd-BoldCond
 /TimesNewRomanMTStd-BoldIt
 /TimesNewRomanMTStd-Cond
 /TimesNewRomanMTStd-CondIt
 /TimesNewRomanMTStd-Italic
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /VinerHandITC
 /Vivaldii
 /VladimirScript
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryStd-Demi
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Suggested" settings for PDF Specification 4.0)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

