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Abstract—A service ecosystem, consisting of various kinds
of services and mashups, evolves over time. Existing works
on the evolution of service systems focus on either evaluating
the impacts of services’ changes on the usage of services
and the stability of the whole ecosystem, or discovering co-
occurrences between services, but fail to disclose any knowledge
about the evolution of service composition patterns. Based
on our previous work of SeCo-LDA, through scrutinizing the
dependencies between different service co-occurrence topics,
this paper reveals the latent service composition trends in a
service ecosystem. We derive topic dependencies and describe
it as a directed topic evolution graph, where four topic
evolution patterns are identified. A novel methodology, named
Dependency Compensated Service Co-occurrence LDA (DC-
SeCo-LDA), is developed to calculate the directed dependencies
between different topics, build the topic evolution graph. The
evolution trend of service composition could be disclosed by
the graph intuitively, and dependency compensation could be
adopted to improve the performance when making service rec-
ommendation. Experiments on ProgrammableWeb.com show
that DC-SeCo-LDA can recommend service composition more
effectively, i.e., 2% better in terms of Mean Average Precision
compared with baseline approaches.

Keywords-SeCo-LDA; topic evolution graph; service compo-
sition recommendation

I. INTRODUCTION

As Service-Oriented Architecture (SOA) and Cloud Com-

puting are widely adopted, the amount of published web

services on the Internet has been rapidly growing [1]. By

reusing existing services (i.e., APIs), software developers are

able to quickly create service compositions (i.e., mashups) to

meet complex function needs and offer additional business

values [2] . However, users’ demands on mashups could

vary over time. As a consequence, developers’ preference

of combining certain domains of services may gradually

change, making the trend of services composition patterns

keep on evolving. The evolution of service system makes
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it challenging for developers to comprehend the trend of

service composition patterns, or to manually select proper

candidates to meet specific functional requirements. Such

challenges call for new techniques to help developers gain a

better understanding of the evolution characteristics of ser-

vice ecosystem, and to help select services more effectively

and intelligently.

In the research of service ecosystem evolution, most

works analyze the impact of a single service’s change, and

try to deal with the version problem in order to maintain

system stability [3]–[8]. Although evolution characteristics

can be mined, these works study the evolution problem

from the perspective of individual services or service de-

pendencies, which could not expose any information about

the trend of service composition, e.g., what kind of service

composition patterns are becoming more popular recently,

how they merge or branch into new ones, and so on.

Few works have considered mining evolution character-

istics of service ecosystem from the perspective of service

composition patterns. In our previous work [9], we intro-

duced a concept of “service co-occurrence topic,” which

demonstrates the existence of latent service composition

patterns described with the distribution over services in

the ecosystem. For example, a topic on peoples social life

is described by the distribution on services like Twitter,

Facebook, Yahoo Blog and so on. In this paper, we fur-

ther study the service ecosystem’s evolution problem from

the sight of service co-occurrence topics, and define the

directed evolutional relationship between topics as “topic

dependency.” Some existing probabilistic topic models on

text mining could reveal semantic topics [10]–[12], which

are described with distributions over text words. Their

results could lead to calculating topic similarity, which is

an undirected correlation between topics. In contrast, we

argue that “topic dependencies” are directed, reflecting the

latent evolution trend of service composition patterns. For

example, a topic on multimedia information and a topic on
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Figure 1. Framework of DC-SeCo-LDA. Based on SeCo-LDA, DC-
SeCo-LDA discovers topic dependencies to make compensation for service
recommendation, and builds topic evolution graph to illustrate service
composition trend intuitively.

shopping guidance might gradually merge into a new topic

on multimedia-based shopping recommendation.

To the best of our knowledge, no algorithm exists to

mine such dependencies of service co-occurrence topics. In

this paper, we propose a novel model, “Dependency Com-

pensated Service Co-occurrence LDA” (DC-SeCo-LDA), by

extending SeCo-LDA [9] to identify the evolution character-

istic of service ecosystem at the topic level. The framework

of our approach is shown in Fig. 1. We design an algorithm

to calculate the topic dependencies based on topic-service
distribution. Topic dependencies, which is directed, reveal

the latent trend of service composition patterns in the service

ecosystem. Inspired by [8], [13], we propose four “topic

evolution patterns” (i.e., Merge, Branch,Co-occur and Arise)

and construct a topic evolution graph, which provides infor-

mation more concisely and intuitively and can help people

understand the evolution of the topics from systemic aspect.

An example of topic evolution graph is presented in Fig.

1. What’s more, when making service recommendation, we

design an algorithm to use topic dependencies to compensate

the topics’ distribution over services in order to improve

the recommendation performance. The main contributions

of this paper are summarized as follows:

1) A concept of “topic dependency” is created to de-

scribe the evolution relationship between different service

co-occurrence topics. Meanwhile, four “topic evolution pat-

terns” are proposed, i.e., Merge, Branch, Co-occur and

Arise, to classify different forms of topic evolution trends.

2) A novel method DC-SeCo-LDA is developed to dis-

cover topic dependencies, build topic evolution graph and

make dependency compensation to improve the recommen-

dation performance. Topic evolution graph presents infor-

mation concisely and intuitively, revealing latent trend of

service composition patterns in a service ecosystem. De-

pendency compensation is adopted when making service

recommendation to improve the results.

3) Comprehensive experiments over real-world data set

ProgrammableWeb.com are conducted. Results show that

DC-SeCo-LDA can discover significant topic dependencies

to build evolution graph and achieve a higher MAP value

than baselines when recommending related services for a

selected one, approximately 2% better than the second-best

baseline approach.

The rest of this paper is organized as follows. Section II

provides the definition of background and DC-SeCo-LDA

model. Parameter learning, calculation of topic dependencies

and approaches to build topic evolution graph and make

dependency compensation are illustrated in Section III. Sec-

tion IV shows experimental results on a real-world data set

from ProgrammableWeb.com, including discovering topic

dependencies, building topic evolution graph and making

recommendation. Section V summarizes the related work

and then Section VI concludes the paper.

II. DC-SECO-LDA MODEL

The key idea of DC-SeCo-LDA is to discover directed

topic dependencies, build topic evolution graph, and promote

the performance of recommendation. Analogous to SeCo-

LDA [9], we first construct service co-occurrence docu-

ments and apply a probabilistic topic model. We make

some changes when calculating temporal strength, which

we will illustrate in Section III. Then we design algorithms

to discover topic dependencies, build topic evolution graph

and make compensation when recommending to improve the

results.

In this section, firstly, we will describe the definitions

about the background, then introduce the SeCo-LDA part

in our model. At last, we will pose the three problems that

DC-SeCo-LDA deals with.

A. Background

Definition 1: Topology of service ecosystem.The topology

of a service ecosystem containing mashup-service citation

records is modeled as an undirected graph G = (M ∪S,E)
in which: M = {m1,m2, ...,mNM

} is the set of mashups

and S = {s1, s2, ..., sNS
} is the set of services; NM is the

number of mashups and NS is the number of services; E ⊆
M ×S is the historical usage records between mashups and

services, i.e., if mashup j invokes service i, E(j, i) = 1.

Definition 2: Service Co-occurrence Topics. Service co-

occurrence topics [9] describe latent composition patterns

between services and are represented by the distribution

over services in the ecosystem. For example, topic k is

described by {φjk, j = 1, ..., NS}, in which φjk describes

the impact of service j on topic k when making service

composition, and
∑

j φjk = 1. In this paper, we consider

these characteristics of each service co-occurrence topic:
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Figure 2. Graphic Model of SeCo-LDA part.

1) Topic Importance: different service co-occurrence top-

ics reveal different composition patterns and have different

importances in the service ecosystem.

2) Topic Representative Services: services that are the

most popular in a service co-occurrence topic, from which

we could tell the meaning of the composition pattern.

3) Topic Temporal Strength: an distribution over time,

reflecting a service co-occurrence topic’s lifecycle and re-

vealing the change of its popularity.

4) Topic Time Expectation: time expectation could be

calculated with topics temporal strength. With this, we could

roughly distinguish new topics with old ones.

B. SeCo-LDA part

In DC-SeCo-LDA, the process of constructing service

co-occurrence documents and applying a probabilistic topic

model on the corpora are similar with those in our previous

work [9]. Here is a brief overview.

1) Service Co-occurrence Documents
For each service si ∈ S, using its co-occurring services

as word tokens, we represent si as a “bag of service co-

occurrences” di = {#(scj) = ci,j |j ∈ S} in which:

#(scj) = ci,j means service co-occurrence on sj appears

ci,j times in the description document of si, or service i and

j are composited together for ci,j times by mashups.

2) Service Co-occurrence LDA
Assume that there were K different service co-occurrence

topics expressed over NS unique services in service ecosys-

tem. We set z = 1 : K as the topic indicator variable. The

topic distribution for service co-occurrence documents (i.e.,

P (z|d)) can be represented by a NS × K matrix Θ, each

row of which, θi, being a K−dimensional multinomial dis-

tribution for document si. The distribution over services for

topics (i.e., P (s|z)) can be represented by a K×NS matrix

Φ, each column of which, φz , being a NS−dimensional

multinomial distribution for topic z.

We use symmetric Dirichlet priors for Θ and Φ with

hyper-parameters α and β [14], respectively. Graphical

model is shown in Fig. 2. The generative process of SeCo-

LDA part is described as follows. For each service i,

1) Draw topic proportions θi ∼ Dirichlet(α).
2) For each co-occurring service scin of service i,

a) Draw topic assignment zin ∼Multi(θi).
b) Draw co-occurring service scin ∼Multi(φzin).

C. Problem Definition

1) Discovering Topic Dependencies

(a) Merge (b) Branch (c) Co-occur (d) Arise

1

2

3 4

5

6

7 8 9

Figure 3. Examples of the Four Topic Evolution Patterns.

Definition 3: Topic Dependency, Child & Parent Topic.
We regard the probability of occurrence of one topic con-

ditioned on another topic as the topic dependency between

them. Specifically, we represent Pr(kj → ki|ki) as the topic

dependency from topic j to topic i, or the degree of topic j’s

evolutional influence on topic i. We define topic i as topic

j’s child topic, and topic j as topic i’s parent topic. We use

a K×K matrix TD to describe all the topic dependencies,

where td(i, j) = Pr(kj → ki|ki).
Different from topic similarity [10], [11] describing undi-

rected relationship, topic dependency refers to directed

relationship between two topics, revealing the evolutional

influence of one topic on another. The key to discover

topic dependencies is to obtain the topics distributions over

services, while traditional word-based topic model [12]

could not achieve this. With SeCo-LDA part in our model,

we can discover topic dependencies, whose algorithm will

be introduced in Section III.

2) Building Topic Evolution Graph
Understanding topic dependency, we could tell whether

a topic is generated or derived from another. Accumulating

related topic dependencies, a topic evolution graph could

be created. As the example shown in Fig.1, topic evolution

graph contains information about topics importance and time

information, as well as the dependencies between them. It

provides developers an overall view of the evolution trend

of service composition patterns.

Definition 4: Topic Evolution Graph. A topic evolution

graph is modeled as a directed graph GE = (T,TD) in

which: T = {t1, t2, ..., tK} is the nodes set of service co-

occurrence topics. Each node represents a topic; TD is the

edges set of directed topic dependencies, i.e., if td(i, j) > 0,

there exists an directed edge from topic j pointing to i.

Definition 5: Topic Evolution Patterns (Functionally).
Evolution patterns could be discovered as shown in Fig. 3.

Merge: two or more topics merge into one new topic.

Branch: one topic branches into two or more new topics.

Co-occur: if a topics child topic is its parent topic at the

same time, we call this a co-occur pattern, that is, the two

topics have influence on each other. Notice that their time

expectations must be close.

Arise: if a topic just appeared in the topic evolution graph

without any parents, we call this an arise pattern, that is, this

topic just arises without other old topics contributing to it.

3) Recommending for Service Composition
We consider such a situation as in [9], [15]: assuming

a mashup-developer selects the first API, and wants to
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find other APIs to create a new mashup. He might not

know exactly what kind of mashup he wants to make,

and just hope to find related services to make significant

compositions. Referring to the selected service as sl, the

result of recommendation is represented as a ranked list

Rl = {sl1, sl2, ...}.
III. LEARN THE DC-SECO-LDA MODEL

In this section, we first introduce the parameter learning

and discovery of service co-occurrence topics along with

their characteristics. Then We will present algorithms to

calculate topic dependencies, construct topic evolution graph

and make dependency compensation for recommendation.

A. Parameter Learning

Like [14], we use the collapsed Gibbs sampling to make

inferences with the SeCo-LDA part in our model. Posterior

expectation of θik and φjk is described as:

θik =
#(d = i, z = k) + αk∑
k #(d = i, z = k) + αk

(1)

φjk =
#(z = k, sc = j) + βj∑
k #(z = k, sc = j) + βj

(2)

Intuitively, Θ describes service-topic distribution, while

Φ indicates topic-service distribution.

B. Discovery of Service Co-occurrence Topics

For topic importance, we refer to the value of the topics’

posterior distribution [9]. For representative services, the

ranked value of services based on topic-service distribution

{φjk} reflects services’ popularity, or impact, on topic k.

When considering topics temporal strength, we use ser-

vices’ impact distribution over time to describe topics’

temporal characteristics. Instead of counting the publication

timestamps of service as in our previous work on SeCo-LDA

[9], in this paper, we take into account the invocation time

of services. The key intuition here is that if one service of

a topic is invoked at t0, it makes actual contribution to the

temporal strength of the topic at time t0, no matter when

this service is published.

We represent the set of service s’s invoked time as

TINs = {t(s)j |j = 1 : ins, t
(s)
1 ≤ ... ≤ t

(s)
ins
}, in which

t
(s)
j is the date (day as the unit) that service s is invoked

by mashups for the j-th time; ins is the total times that s
has been invoked. The accumulated temporal contribution

of all services to topic z until time t0 forms the cumulative

distribution function (CDF) of topic z as follows:

Pr(time ≤ t0|z) =
∑

s

∑
j,t

(s)
j

≤t0

φsz∑
s
ins·φsz

(3)

The time expectation of topic z can be calculated as follows:

Tz = Ez[time(s)] =
∑

s

∑
j
t
(s)
j · φsz∑

s ins · φsz
(4)

With topics’ time expectations, we can distinguish new

topics with old ones, which will be helpful when calculating

topic dependencies and building topic evolution graph.

C. Discovery of Topic Dependency

The key of DC-SeCo-LDA is to discover dependencies

between different service co-occurrence topics. According

to Def. 3, the probability of the occurrence of topic j condi-

tioned on topic i is calculated by applying total probability

formula as follows :

Pr(kj → ki|ki) = Es(Pr(topics = kj |ki))
=

∑
s P (topics = kj |services) · P (services|ki)

=
∑

s θskj
· φski

(5)

An intuitive explanation of the formula above is: whenever

randomly drawing a service co-occurrence document of

service s which contains topic i, and then generating a co-

occurring service in this document(for service s), Pr(kj →
ki|ki) is the probability that this co-occurring service is

assigned with latent service co-occurrence topic j. In other

words, Pr(kj → ki|ki) reflects the degree of topic j’s

evolutional influence on topic i.
Nevertheless, on the one hand, topic dependencies whose

values are relatively small might be noisy information and

hinder us from further analysis. On the other hand, as

investigated in [16], we treat topic dependencies of relatively

“new” topics on “old” ones as noisy information too. This

is reasonable: a new topic may have little influence on an

old one. To address these two types of situations, we design

a two-step pruning process:

Step 1: Threshold Cutting-off. We set a threshold ξ and

remove all the topic dependencies less than ξ in order to

wipe out noisy information.

Step 2: Temporal Regularization. After threshold cutting-

off, we set a tolerance number of days ε and make temporal

regularization. For dependency td(i, j) > 0 from topic j to

topic i, we prune it only if Tj−Ti > ε. This means, if topic

i is newer than topic j, we keep the dependency from j to i;
if topic i is older than topic j, we only keep the dependency

if the difference between topic i’s time expectation and j’s

is not larger than ε. Here we set ε to tolerate some degree

of deviation for calculation.

After pruning, the topic dependencies left in TD repre-

sent significant and meaningful directed dependency rela-

tionship between topics.

D. Construction of Topic Evolution Graph

According to Def. 4, we design the process of building

topic evolution graph as follows:

Step 1: Drawing the Nodes. Each node in the graph

stands for a specific service co-occurrence topic. We set

the size of these nodes in direct proportion to the topics’

importance. Similarly, we use a series of gradually varied

colors to express the differences of topics’ time expectations.
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Figure 4. Example for Dependency Compensation for Topic i. We
introduce λ to weaken the features inherited from its parent Topic j, and
μ to strength the features that Topic i influences its child Topic k.

Step 2: Drawing the Edges. Each edge in the graph stands

for a meaningful topic dependency. We draw the directed

edges according to the pruned TD, whose thickness being

in direct proportion to the value of topic dependencies.

Step 3: Integrated Layout. To make the graph more

concise and intuitive, we apply Fruchterman-Reingold Al-

gorithm [17] to the topic evolution graph’s integrated layout.

E. Dependency Compensation for Recommendation

Intuitively, we prefer the reveled topics to be more inde-

pendent so that the revealed topics could have their own

features and provide a better description of service co-

occurrence documents. Consider the worst case, if all the re-

vealed topics have the same distribution, they would make no

contribution to service recommendation, that is, the revealed

topics were insignificant. On the contrary, if the revealed

topics have mutually independent distribution, each topic

would have its own features, and these topics could provide

a more comprehensive description of service ecosystem,

resulting in better performance in recommendation. Actually,

due to the existence of dependency relationship, some topics

may have partial common features in distribution. This may

lead to poor performance on recommendation.

The key idea of dependency compensation is that if we

could weaken these inherited features between topics, the

performance of service recommendation might be improved.

Few have considered this aspect because topic dependency

relationship could not be calculated through traditional

models. We leverage a topics’ parent and child topics to

compensate the distribution of this topic, highlighting the

characteristics of its own. As shown in Fig. 4, we introduce

coefficient λ for parent-side dependency compensation, and

coefficient μ for child-side. When considering topic i’s
distribution, we intend to weaken the features inherited from

its parent topics, and strengthen the features on which it

affects its child topics (which might be topic i’s particular

features). So, intuitively, λ might be a negative value, and μ
be positive. The algorithm of dependency compensation for

recommendation is provided as Algorithm 1. The complexity

of the compensation part is O(K).
Note that some of the compensated topic-service distri-

butions may dissatisfy
∑

i φik
′ = 1. It is caused by the

compensation process, which, in a sense, makes adjustment

of the topics importance in service ecosystem. Also, there

Algorithm 1: Topic Dependency Compensation for Recommendation

Input:
1) Φ & Θ: topic-service and service-topic distribution
2) TD: topic dependency matrix
3) sl: a service selected by the developer
Output:
1) Rl: recommended service list
Procedure:
01. Initialize compensated topic-service distribution Φ′ = Φ
02. For each topic i (i = 1, 2, ...,K)
03. For topic i’s each parent topic j
04. Use parent-side dependency to compensate i’s distribution

φ′(i) = φ′(i) + λ · TD(i, j) · φ(j)
05. End
06. For topic i’s each child topic k
07. Use child-side dependency to compensate i’s distribution

φ′(i) = φ′(i) + μ · TD(k, i) · φ(k)
08. End
09. End
10. Get the compensated topic-service distribution Φ′
11. Calculate sl’s expected co-occurrence with another service sm

c∗(l,m) =
∑

z
Pr (sc = m|topic = z) · Pr(topic = z|sl)

=
∑

z
φ′
m,z · θl,z

12. Return the recommended list for sl:
Rl = {sl1, sl2, ...|c∗(l, sl1) ≥ c∗(l, sl2) ≥ ...}

may occur negative value in φ′(i), indicating the topic’s

degree of rejecting specific service.

IV. EXPERIMENTS

In this section, we will firstly introduce the Pro-

grammableWeb.com data set on which we apply DC-SeCo-

LDA. We will not present detail results of individual topics

and their characteristics, which are analogous to those in

our previous work [9]. Instead, we will focus on discussing

the results of discovering topic dependencies. Afterwards,

we will provide results of building topic evolution graph

and finding topic evolution patterns. At last, we will present

the experiments conducted to compare DC-SeCo-LDA with

baselines for recommendation.

A. Data Set

ProgrammableWeb.com has been accumulating a variety

of services and mashups since established in 2005 [18], [19].

To evaluate our methodology, we crawled the information of

all service APIs and mashups from its inception (September

2005) to August 2016, including their descriptions and

mashup-service usage records. Details of the dataset received

is presented in Table I.

Table I
DATA SET OF PROGRAMMABELWEB.COM

Total # of services 13,931
Total # of services that have been used by mashups 1,241
Total # of mashups 6,295
Average # of services in the mashups 2.06

To make comparison with SeCo-LDA, which doesn’t

consider topic dependency compensation, we set K = 35,

hyper-parameters α = 50/K and β = 0.01 as [9].
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Figure 5. Topic Evolution Graph of ProgrammableWeb.com with K = 35.

B. Discovery of Topic Dependency

After obtaining topic-service distributions, we calculated

the probability of occurrence of any topic conditioned on

the other one according to Eqn. 6, and obtained the original

topic dependency matrix TD0. To get significant results, a

pruning process was performed.

We set the tolerance number of days ε = 365, that is to

say, if the difference of time expectations of two topics is

less than one year, we keep the dependency from the newer

one to the older one if it exists. This setting is reasonable

for that there might be deviation when calculating topics

time expectation and it allows the existence of “Co-occur”

evolution pattern.

We let ξ vary from 0.01 to 0.1 with interval 0.01, and

counted the number of topic dependencies after the pruning

process. According to experiments, empirically, ξ = 0.07
is an appropriate choice. If ξ < 0.07, there were too many

dependencies left after pruning, containing noisy informa-

tion; if ξ > 0.07, the number of topic dependencies may be

very small, losing some important information about topic

evolutional characteristics. Therefore, we set ξ = 0.07 and

got 22 significant topic dependencies in service ecosystem.

C. Building Topic Evolution Graph and Finding Topic Evo-
lution Patterns

The topic evolution graph for ProgrammableWeb.com is

shown in Fig. 5. Specifically, we use a series of gradient

colors from peach to green to express the topics time

information. The green nodes are relatively new topics, while

the peach ones are old. There’re 4 major topic groups.

In Group 1, Topic 23 and Topic 2 constitute a “Co-
occur” pattern. Topic 23 is Twilio-centered and Topic 2

is Twilio SMS-centered. After checking the original data

crawled from website, we found that Twilio and Twilio SMS
are actually the same service on voice and SMS message

delivering. So it’s obvious that these two topics have strong

dependency relationship on each other.

Group 2 contains Topic 10 and Topic 13. Topic 13,

whose representative services are Google AdSense, Google
AdWords, Google Earth, etc., is a Google service group

that mainly focuses on online advertising. To improve the

performance, tracking website visitors and evaluating the

ads’ effects should be necessary. This is what Google
Analytics Management solves. Since it appeared, developers

began to invoke it with other Google services to promote

the performance of advertisement, which makes it easy

to understand Topic 13 has influence on (or generates)

Topic 10, a Google Analytics Management-centered Google

service group.

Topics in Group 3 are relatively new, revealing the

trend of service composition on social network sharing with

text or multimedia information. Topic 33 provides a set of

tools that are invoked together often, e.g., Yahoo Weather,

Blogger, Instapaper, etc. Developers used them to create

mashups. Then, new kinds of social network platforms were

created and co-occurred more frequently, illustrated by Topic

29. Afterwards, developers began to combine Twitter and

Facebook with other services to enrich social network’s

functionality, generating Twitter-centered (Topics 3 & 24)

and Facebook-centered (Topic 18) topics.

Group 4 is the biggest group in the graph, composed of

relatively older topics and revealing the trend of location-

aware information storing, sharing, searching and recom-

mending. Two core topics of this group are Topics 4 &

5. Topic 4 is a Google Maps-centered topic, and Topic 5

reflects service composition about geographical databases,

containing all kinds of information about each site. An

obvious “Merge” evolution pattern shown here is that Topic

17 is generated from Topics 4, 5, 6 and 34. Topic 6

is about YouTube-centered product advertising. Topic 34,

whose representative services are del.icio.us and eBay, is

about the organization of online information. Together with

Topics 4 and 5, the four topics generated Topic 17, which

is Flickr-centered. Flickr can organize photos according to

interpersonal relationship or content relation, and provide

some functionality of social network. In other words, its

function is a combination of Topics 4, 5, 6 and 34, which

shows an example of service composition about location-

aware information sharing and recommending. A representa-

tive “Branch” evolution pattern is that Topic 5 branched into

Topic 17, 32 and 20. Topic 32 reveals service composition

about property business based on location information; and

Topic 20 reveals web tools that are frequently used together

with Google Maps. As shown in Fig. 5, except the four

groups identified, other topics are individual ones without

significant dependencies with other topics.

From the topic evolution graph, we could in general

identify the trend of service composition patterns of Pro-

grammableWeb.com from 2005 till now. Supported by ser-

vices like Google Maps, location-aware information storing,

sharing, searching and recommending (Group 4) was a
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popular service composition trend in earlier days. In recent

years, however, developers prefer to make service compo-

sitions to realize sharing text or multimedia information in

social networks (Group 3).

D. Dependency Compensation for Recommendation

To demonstrate that dependency compensation is signifi-

cant, we compared the results of recommendation for service

composition using DC-SeCo-LDA model and four baselines.

For each service, we recommended the most related N
services for it, and compared the results with the original

service co-occurrence relationships revealed by the dataset.

1) Evaluation Metric
MAP (Mean Average Precision) [20] was used as evalu-

ation metric in this part:

MAP =
1

|S|
∑

i∈S

1

N

∑
s∈SCi

n(s)

r(s)
(6)

where S denotes the set of testing services; N represents

the recommended number of services; SCi denotes the co-

occurring services of service i. For each s ∈ SCi, r(s)
refers to the ranking position of s in recommended list

and n(s) represents the number of co-occurring services in

SCi that rank higher than or equal to s in recommendation

list. In reality, most mashups in data set contain less than

five services, so we make N vary from 1 to 8 when doing

experiments on recommendation.

MAP is a real number between 0 and 1. The higher MAP

indicates a better accuracy of the recommendation method.

2) Determining Coefficients for Dependency Compensation
To determine the sign of parent-side coefficient λ, setting

μ = 0, we made λ vary from −4 to 4 with interval 0.5 to

make dependency compensation and recommend services.

We calculated the mean MAP value with different numberd

of N to evaluate the performance. With experiments we

concluded that when λ is set a proper negative value, rec-

ommendation performance could be improved. The highest

mean MAP value 0.4900 is reached when λ = −2.

Similar experiments show that only when μ is set a small

positive value between 0 and 0.5, child-side dependency

could contribute to recommendation. The highest mean

MAP 0.4809 is reached when μ = 0.5.

In accordance with our conjecture in Section III, the

proper sign for λ is negative and positive for μ. It is

reasonable for that as in Fig. 4, in order to highlight Topic i’s

own features, we have to erase the features inheriting from

parent Topic j (λ < 0) and strength the features it affects its

child Topic k (μ > 0).

To consider parent-side and child-side dependency com-

pensation at the same time, we made λ vary from −4 to 0
with interval 0.5 and μ vary from 0 to 1 with interval 0.1
to realize dependency compensation and record the mean

MAP results. Ultimately, we found that when λ = −1
and μ = 0.5, the highest mean MAP value (N = 1...8)

1 2 3 4 5 6 7 8

N

0

0.1

0.2

0.3

0.4

0.5

0.6

M
A

P

SeCo-LDA
DC-SeCo-LDA
AA
CMSD
MUR-LDA

Figure 6. The MAP for DC-SeCo-LDA, SeCo-LDA, AA, CMSD and
MUR-LDA with different numbers of N . AA is the convention method in
association rule learning. CMSD and MUR-LDA use different information
to apply topic model and make recommendation. β is set to 0.5 in AA. In
other three probabilistic topic models, we set the number of topics K = 35,
α = 50/K and β = 0.01. In DC-SeCo-LDA, we set λ = −1 and μ = 0.5

0.4907 can be achieved, which is better than either of using

one direction of topic dependencies to make compensation.

Furthermore, the result is approximately 2% better than

SeCo-LDA, whose highest mean MAP is 0.4807.

3) Baselines
Baseline Method 1: SeCo-LDA. In our previous work

[9], for a selected service sl, we calculate its expected

co-occurrence with other services as step 11 in Algo-

rithm 1, using Φ instead of Φ′. In other words, there

is no dependency compensation. We give the results of

recommendation for service composition as a service list

R′
l = {sl1, sl2, ...|c∗(l, sl1) ≥ c∗(l, sl2) ≥ ...}.
We choose Baselines 2∼4 (AA, CMSD and MUR-LDA)

and set their parameters as those in our previous work [9].

4) Results of Recommendation
The MAP results of DC-SeCo-LDA and baselines with

different numbers of N are shown in Fig. 6, along with the

parameter settings.

SeCo-LDA gets a higher MAP value than AA, CMSD

and MUR-LDA with different numbers of N , approxi-

mately 5% better than MUR-LDA. DC-SeCo-LDA achieves

the highest MAP, 2% better than the second-best baseline

SeCo-LDA. Extending SeCo-LDA, DC-SeCo-LDA calcu-

lates topic dependencies and makes dependency compen-

sation to topic distributions when recommending services.

Dependency compensation weakens evolutional relationship

between different service co-occurrence topics so that their

particular features are relatively highlighted, thus improving

the recommendation performance.

In summary, we can conclude that by making dependency

compensation, DC-SeCo-LDA could perform better than the

baselines when recommending service composition.

V. RELATED WORK

Most researches on service evolution focus on analyzing

the impact of single services changes and how to deal with
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the version problem to ensure system stability. Different

service changes have been examined in [1] to construct a

unifying theoretical framework for controlling the evolution

of services. Usage Profile has been used to evaluate service

changes’ impact [3], [4]. Changes to the WSDL specification

of a service interface have been considered in [5] and [6].

An impact analysis model based on service dependency

is proposed in [7] to discovery the way in which the

change affects the services. Four service evolution patterns

(i.e., compatibility, transition, split-map, and merge-map) are

proposed in [8] to estimate the impact changes to services.

However, few have considered to discover the latent trend

of service composition in service system and find out topic

dependencies and topic evolution patterns.

Some popular topic models could revel semantic topics

considering time information, such as Dynamic Topic Model

[10] and Correlated Topic Model [11]. However, with their

results, we can only get the undirected semantic similarities

of topics, which is quite different from the directed “topic

dependency” defined in this paper.

VI. CONCLUSIONS

In this paper, we have extended our previous work and

proposed a novel approach to make service recommendation

from the evolution of composition patterns. The key idea

is to define and calculate “topic dependencies” with topic-
service and service-topic distributions. Our work in this

paper includes three parts: (1) defining “topic dependen-

cies” and calculating them with DC-SeCo-LDA model; (2)

drawing topic evolution graph and finding topic evolution

patterns; (3) designing the algorithm to make dependency

compensation when recommending to improve the perfor-

mance.

Topic dependencies would help developers to understand

the trend of service composition patterns in a service ecosys-

tem. Comparison with baseline approaches also demonstrate

that due to dependency compensation, DC-SeCo-LDA per-

forms 2% better than the second-best baseline approach in

terms of MAP when recommending for service composition.

In the future, leveraging information about service co-

occurrence topics, we plan to design a framework to deal

with service-side cold-start problem.
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