
Confucius: A Scientific Collaboration System

Using Collaborative Scientific Workflows

Jia Zhang, Daniel Kuc

Department of Computer Science

Northern Illinois University

DeKalb, IL USA

jiazhang@cs.niu.edu

Shiyong Lu

Department of Computer Science

Wayne State University

Detroit, MI, USA

shiyong@cs.wayne.edu

Abstract—Large-scale scientific data management and

analysis usually relies on many distributed scientists

with diverse expertise. In recent years, such a

collaborative effort is often composed and automated

into a dataflow-oriented process, a so-called scientific

workflow. However, existing scientific workflow tools

are single user-oriented and do not support collaborative

scientific workflow composition, execution, and

management among multiple distributed scientists. In

this paper, we report our study of collaboration

protocols towards building a tool supporting

collaborative scientific workflow composition. Based on

a scientific collaboration ontology, we propose a

collaboration model supported by a set of collaboration

primitives and patterns. The collaboration protocols are

then applied to support effective concurrency control in

the process of collaborative workflow composition.

Keywords-collaborative scientific workflows; collaboration

protocols; Taverna.

I. INTRODUCTION

The advancement of modern science has created sheer
volume of data with increasing complexity. A phenomenon
of data deluge is witnessed in each science domain, in which
extreme scale of scientific data not only poses a grand
challenge to data storage and access, but also to high-
throughput data analysis and computation. Processing and
managing such extreme-scale scientific data sets is usually
beyond the realms of a single scientist to solve [1]; instead, it
has to rely on many domain scientists with diverse expertise
and from distributed locations. For example, the Large
Synoptic Survey Telescope (LSST) experiment [2], which
aims to repeatedly image half of the sky over a planned 10-
year survey, will produce data at a rate of 300 MB/s,
resulting in catalogs of about 130 TB for roughly 3×10

9

sources times 10 years worth of data. Analyzing and
managing such extreme-scale data sets demand collaboration
of a number of national labs and organizations with hundreds
to thousands of scientists and engineers engaged [2, 3].

Meanwhile, such extreme-scale scientific data analysis
and processing is usually composed and automated into a
dataflow-oriented process, the so-called scientific workflow.
In contrast to business workflows, which are control-flow

oriented and orchestrate a collection of well-defined business
tasks to achieve a business goal, scientific workflows are
often dataflow-oriented and streamline a collection of
scientific tasks to enable and accelerate scientific discovery
[4, 5]. Scientists use scientific workflows to integrate and
structure local and remote heterogeneous computational and
data resources to perform in silico experiments [1, 6-8]. The
increasingly important role of scientific workflows in
modern science was recently reemphasized in an article that
is published in Science and titled “Beyond the Data Deluge”
[9]. The article concludes that, “in the future, the rapidity
with which any given discipline advances is likely to depend
on how well the community acquires the necessary expertise
in database, workflow management, visualization, and Cloud
computing technologies.”

In short, scientific workflow and scientific collaboration
are two key techniques to facilitate extreme-scale scientific
data analysis and management. However, existing scientific
workflow management systems (SWFMSs) [10-15] are
single user oriented, focusing on helping individual scientists
construct scientific workflows from available applications
and services. Individual work artifacts (scientific workflows)
are manually sent to collaborators (e.g., via emails) or
uploaded into some shared social space (e.g., MyExperiment
[16]) to enable scientific collaboration. For example, a
collaborator can download a published workflow (e.g., in the
format of Taverna [11], a popular scientific workflow tool)
from MyExperiment, load it into her local Taverna
workbench, update, and send the updated workflow back to
the original collaborator for further changes.

To facilitate more interactivity between collaborators to
better support exploratory collaborative data analysis and
enable effective steering of the computational process in the
context of scientific workflows, we have been developing a
collaborative scientific workflow tool. Without reinventing
the wheel, we examined a widely used single-user scientific
workflow tool, Taverna [11], and extended it into a multi-
user version.

In this paper, we present the preliminary results of our
study of collaboration protocols supporting effective and
efficient collaborative scientific workflow composition. Here
we focus on multiple scientists cooperatively design and
compose a common scientific workflow. We propose a
scientific collaboration provenance ontology, and base on it,
a collaboration model supported by a set of collaboration

2010 IEEE International Conference on Web Services

978-0-7695-4128-0/10 $26.00 © 2010 IEEE

DOI 10.1109/ICWS.2010.103

575

primitives, and patterns. The collaboration protocols are then
applied to support effective concurrency control in the
process of collaborative workflow composition.

The remainder of the paper is organized as follows. In
Section 2, we present related work. In Section 3, we
introduce our scientific collaboration provenance ontology.
In Section 4, we present our framework of collaboration
protocols. In Section 5, we discuss composition concurrency
control. In Section 6, we discuss system design and
implementation, as well as our preliminary experiments. In
Section 7, we conclude the paper.

II. RELATED WORK

To date, several scientific workflow management
systems (SWFMSs) have been developed as single-user
environments, which run on local desktop computers or on
Grids to help individual scientists construct scientific
workflows from available resources. Representative
SWFMSs include Kepler [17], Taverna [11], Triana [12],
VisTrails [13], Pegasus [5], Swift [14], and VIEW [15, 18].

Kepler [17] is a Java-based open-source SWFMS, where
a scientific workflow is composed of uniform components
called actors and its execution is controlled by a dedicated
computational model controller called director. Taverna [11]
is an open-source SWFMS targeted for life science. Taverna
adopts an XML-based workflow language called SCUFL to
support workflow representation, each component being
either a Web service or a Java Beanshell script-based
processor supporting various bioinformatics data analysis
and transformation. Triana [12] provides a sophisticated
graphical user interface supporting workflow composition
and modification activities, including grouping, editing, and
zooming functions. VisTrails [13] focuses on workflow
visualizations supporting provenance tracking of workflow
evolution in addition to data product derivation history.
Pegasus [5] provides a framework that maps complex
scientific workflows onto distributed Grid resources.
Artificial intelligence planning techniques are used for
guiding workflow composition. Swift [14] combines a
scripting language called SwiftScript with a powerful runtime
system to support workflow specification and execution of
large loosely coupled computations over the Grid
environments. VIEW [15, 18] provides a tool that allows
domain scientists to compose a scientific workflow from
available resources and services. The system is featured with
efficient provenance management by utilizing the power of
relational databases [30].

Each of these SWFMSs provides a platform to support
individual scientists in composing scientific workflows from
various resources. Their foundations center on scientific
workflow models and provenance models.

Some systems show some collaboration features, in the
sense that they allow a scientist to compose a scientific
workflow from shared resources and services, e.g., published
Grid services. However, they provide limited support for
multiple scientists to collaboratively compose and
manipulate a shared scientific workflow. They do not
address and support user interaction and cooperation that are
required and essential for an effective and efficient scientific

collaboration [19].
Some SWFMSs, such as Taverna [11], provide limited

off-line collaborative scientific workflow composition. In
such systems, researchers can publish their composed
scientific workflows in a dedicated social workflow space
(e.g., MyExperiment [16]); others using the same SWFMS
can download the workflows, make changes, and upload the
new version into MyExperiment to initiate further
interactions. However, such SWFMSs do not support real-
time shared scientific workflow composition.

The business community recently recognized the need of
involving humans into business workflows and has
developed a preliminary model [20]. However, the model is
inapplicable to collaborative scientific workflows due to the
fundamental differences between business workflows and
scientific workflows. While business workflows are control
flow oriented, scientific workflows are dataflow oriented.
Furthermore, provenance data management for the
reproducibility of scientific results is essential for scientific
workflows but not for business workflows. Hence, scientific
workflows pose a different set of requirements [6].

Sayah and Zhang [21] present their annotated business
hyperchain technology enabling on-demand business
collaboration with the Web services technology. They
propose a set of business collaboration primitives serving
business scenarios. In contrast, our collaboration primitives
serve scientific collaboration scenarios. In addition, design-
time collaboration provenance is automatically captured for
credit acknowledgement as well as guiding future
collaborative workflow composition.

We studied the state of the art of the field of scientific
workflows toward the support of collaborative scientific
workflows and reported our observations in [19]. We also
have surveyed the literature of workflow control mechanisms
in a collaborative environment in [22] and observed that
current workflow control configurations have to be
predefined and remain immutable throughout the execution
of a workflow. With the rapid emergence of Services
Computing technology [23], a workflow may select optimal
available services (e.g., a specific data processing and
analysis service) at runtime based on some QoS
measurements. We conclude that workflow control should be
driven by demand: it should be customizable and adaptive
during runtime.

III. SCIENTIFIC COLLABORATION PROVENANCE

ONTOLOGY

We develop a scientific collaboration provenance
ontology to support the modeling of various traditional
provenance information about scientific workflow and user
interaction and collaboration patterns. The ontology is shown
in Fig. 1.

Establishing a knowledge base, our collaboration
provenance ontology is centered upon the concept of
“workflow.” Each scientific workflow comprises organized
processors (tasks) and data links (aka. data channels), as well
as predefined requirements and annotations (comments)
dynamically generated. Each workflow maintains one or
more floors that are tokens to ensure concurrency control.

576

Figure 1. A scientific collaboration provenance ontology.

Figure 2. Collaboration rule container.

Long-term collaboration on a scientific workflow forms a
meeting. A short-term synchronous collaboration is called a
session.

Each scientific workflow belongs to a project. Each
project belongs to a scientific group (could be a virtual
group). Each group may comprise multiple focuses, each
involving multiple projects. A group contains a set of
members, each may belong to different organizations.

Collaboration on a scientific workflow is conducted by
members serving in different roles. The initiator (creator) of
a scientific workflow is called a moderator. Scientists who
cooperate on the lifecycle of a workflow are called
collaborators. They have read and write privileges. A
collaboration may also involve visitors, who are granted with
read privilege only.

Our scientific collaboration provenance ontology, which
is extensible, serves as a foundation for managing
collaboration provenance. Each scientific collaboration
project may define customized ontology and add additional
annotations into the basic ontology for special purposes. For
example, a research project may introduce project-wise
particular roles in their collaboration.

IV. COLLABORATION PROTOCOLS

A. Collaboration Patterns

1) Collaboration Model
Establishing a collaboration model is important to

support effective human interaction and collaboration
throughout the life cycle of scientific workflow composition.
Such a collaboration model will be independent and can be
dynamically plugged into other models to favor
configurability and re-configurability. This requirement is
critical for our tool to become generally applicable to various
scientific collaboration projects. Different scientific research
projects may adopt different collaboration rules and patterns.
A fundamental collaboration model must be able to be
configured to support these diverse collaboration rules and
patterns, and then be plugged into a generic scientific

workflow management system to support the corresponding
research projects.

To regulate human interaction in collaborative scientific
workflows, we propose a collaboration model as a 4-tuple
container shown in Fig. 2:

>=< ValidatorMonitorOperatorOwnerRuleC ,,,_

The collaboration container comprises four basic plug-in

roles: owner, operator, monitor, and validator. An owner
role represents a group of scientists who have ownerships
over a dataset or a task. An operator role represents a group
of scientists who have the privilege to operate on a dataset
or a task. A monitor role represents a group of scientists
who have the privilege to monitor the operation process of a
task or over a dataset. A validator role represents a group of
scientists who have the privilege to validate an operation
over a dataset or a task and claim the success of such an
operation. One scientist may act in multiple roles
simultaneously.

2) Collaboration Patterns
Significantly different from business collaboration,

scientific collaboration is typically exploratory and
unpredictable, thus requiring constant human interaction and
intervention in the process. For example, a scientific
workflow may not be able to be fully composed at the
beginning; participating scientists may discuss and creatively
decide subsequent actions in the middle of the process based
on intermediate experimental results; new collaborators may
join in the middle of an exploration if the need for specific
expertise or domain knowledge arises; participating scientists
may have different schedules and hence an asynchronous
collaboration mode has to be supported in addition to a
synchronous one; a scientific workflow may not have a clear
time boundary and may last a long time, and so on.

Therefore, we have been studying scientific collaboration
scenarios to identify data-centric collaboration patterns. We
understand that in scientific collaboration, besides data to be
computed, other artifacts are also important such as,
references (for triggering discussions), ideas and initiatives
(to move work forward), and designs (blueprint before
experiments). In this paper, we only consider data-centric
collaboration. As a starting point, we focus on two-way
collaboration patterns, where only two scientists are
involved in a collaborative activity. Our preliminary set
includes six scientific collaboration patterns: (1) dataset
request, (2) analysis request, (3) validation request, (4)
discussion request, (5) co-run, and (6) co-approve.

Dataset request pattern reflects a scenario when some
specific data is required, during the execution of a scientific
workflow, to continue the exploration, while the dataset
belongs to an external scientist group. Given a scientific

577

TABLE I. COLLABORATION PRIMITIVES

Type Primitive Name

Collaboration

preparation

primitives

Request for Dataset (RFD)

Request for Data Analysis (RFA)

Request for Validation (RFV)

Request for Discussion (RFC)

Request for Co-run (RFCR)

Request for Co-approval (RFCA)

Collaboration

conduction primitives

Accept or Reject Request (A/R)

Command Submission (CS)

Data Submission (DS)

Update Submission (US)

workflow W, scientist A asks for dataset D from scientist B
before continuing.

Analysis request pattern reflects a scenario when some
particular data obtained has to be analyzed by a specific tool
or process that is owned by an external scientist group.
Given a scientific workflow W, scientist A asks scientist B to
analyze dataset D. Upon receipt of the request, B may
conduct the analysis manually, using a tool or instrument,
and return the analysis result to A. A can then continue with
the original workflow execution.

Validation request pattern reflects a scenario when an
interesting discovery is reached that requires verification and
validation by a group of scientists with specific expertise to
make a decision. In the context of a scientific workflow W,
scientist A asks scientist B to validate a specific task T or
dataset D. The result will be either positive or negative.

Discussion request pattern reflects a scenario when
discussion is needed over some specific topics, and the
results of the discussion will decide the direction (or steps) of
the following action. In the context of a scientific workflow
W, scientist A asks scientist B to discuss over a task T or a
dataset D. At the end of the discussion, they will reach an
agreement to decide the following steps.

Co-run pattern reflects a scenario when two scientists
individually run some data analysis processes over the same
dataset simultaneously. Given one dataset D, scientists A and
B perform sub-workflows w1 and w2 concurrently and
respectively, and then compare the results obtained from the
two workflows corresponding to two alternative methods.

Co-approve pattern reflects a scenario when both
scientists have to reach an agreement on an experimental
result before its release. Scientists A and B need to approve
each other to perform a workflow W.

These collaboration patterns can be represented using
our proposed simple yet powerful collaboration model. For
example, if applied to a dataset, this collaboration container
can determine that certain scientists have the ownership
over the dataset. For another example, if applied to a task
representing a data analysis process, this collaboration
container can determine that only certain scientists have the
expertise and ownership to run the corresponding data
analysis tool. These examples show that our proposed
collaboration model can be applied to any workflow
component (data products or tasks) to realize a fine-grained
collaboration control. Note that our proposed collaboration
model shows great flexibility: if a scientist reconfigures
some parameters of a particular collaboration container at
runtime, the collaboration policy affecting the scientific
workflow may be changed accordingly.

B. Services-Oriented Collaboration Realization

Our goal is two-fold: one to facilitate communication
between collaborators; the other is to enable collaboration
provenance collection, meaning that the collaboration
process is recorded and can be replayed later on. Thus, we
construct a uniform collaboration message-based
communication protocol.

1) Collaboration Primitives

Based on the collaboration patterns, we identified a set
of semi-structured collaboration primitives, as summarized
in Table 1. The primitives are divided into two categories:
collaboration preparation primitives and collaboration
conduction primitives. Since scientific collaboration may
last a long period of time, we adopt an asynchronous
communication mode, meaning that each collaboration
primitive is associated with an instant acknowledgement.

Six collaboration preparation primitives are identified:
(1) Request for Dataset (RFD), when a dataset is needed in
the middle of a workflow; (2) Request for Data Analysis
(RFA), when a data analysis process is needed in the middle
of a workflow; (3) Request for Validation (RFV), when a
data validation process is required; (4) Request for
Discussion (RFC), when a discussion is required on a
merged phenomenon; (5) Request for Co-run (RFCR), when
concurrent sub-workflows are required; and (6) Request for
Co-approval (RFCA), when an approval has to be made by
multiple parties.

Four collaboration conduction primitives are identified:
(1) Accept or Reject Request (A/R), when a request (e.g.,
RFD) is accepted or rejected by a collaborator; (2)
Command Submission (CS), when a specific computational
command is provided; (3) Data Submission (DS), when a
specific data set is transferred; and (4) Update Submission
(US), when a collaborator updates collaboration status in
response to a request.

In addition to be used individually, these collaboration
primitives serve can be used as building blocks for
collaborators to model comprehensive collaboration
patterns.

2) Collaboration Mini-Workflow
Based on the identified collaboration primitives, we

apply the concept of Service Oriented Architecture to
implement the collaboration patterns. Each collaboration
pattern is accomplished by a mini-workflow comprising a
set of configured collaboration primitives. Through different
combinations over the set of collaboration primitives,
different collaboration patterns can be realized.

We have constructed six example mini-workflows to
realize the six collaboration patterns described in Section
4.1.2. (1) dataset request: comprising the RFD primitive,

578

<process name="RFDmicroflow"

 targetNamespace="urn:CollaborationConstructs"

 xmlns:tns="urn:samples:CollaborationConstructs"

 xmlns="http://confucius.org/constructs/">

 <sequence>

 <invoke name="invokeRFD"

 partner="CollaboratorA" portType="tns:RFDoriginatorPT"

 operation="sendRFD" outputVariable="RFD">

 </invoke>

 <invoke name="ackRFD"

 partner="CollaboratorB" portType="tns:RFDreceiverPT"

 operation="ackRFD" outputVariable="RFD_Receipt_Ack">

 </invoke>

 <invoke name="acceptRFD"

 partner="CollaboratorB" portType="tns:RFDreceiverPT"

 operation="acceptRFD " outputVariable="A">

 </invoke>

 <invoke name="ackAcceptRFD"

 partner="CollaboratorA" portType="tns:RFDoriginatorPT"

 operation="ackAcceptRFD" outputVariable="A_Receipt_Ack">

 </invoke>

 <invoke name="invokeDS"

 partner="CollaboratorB" portType="tns:RFDreceiverPT"

 operation="submitDS" outputVariable="DS">

 </invoke>

 <invoke name="ackDS"

 partner="CollaboratorA" portType="tns:RFDoriginatorPT"

 operation="receiveDS" outputVariable="DS_Receipt_Ack">

 </invoke>

 </sequence>

</process>

Figure 3. Service-oriented mini-workflow.

<xsd:schema xmlns:xsd="http://www.w3.org/2001/XMLSchema"

 targetNamespace="http://confucius.org/class"

 xmlns:tns="http://confucius.org/class">

 <xsd:element name="Name" type="xsd:string"/>

 <xsd:element name="task" type="xsd:anyURI"

default="http://confucius.org/class#Task"/>

 <xsd:element name="workflow" type="xsd:anyURI"

default="http://confucius.org/class#Workflow"/>

 <xsd:element name="project" type="xsd:anyURI"

default="http://confucius.org/class#Project"/>

 <xsd:element name="Construct">

 <xsd:annotation>

 <xsd:documentation> A construct is the atomic unit of

collaborative work in a scientific workflow. </xsd:documentation>

 </xsd:annotation>

 <xsd:complexType>

 <xsd:sequence>

 <xsd:element ref="tns:Name"/>

 <xsd:element ref="tns:task"/>

 <xsd:element ref="tns:workflow"/>

 <xsd:element ref="tns:project"/>

 </xsd:sequence>

 </xsd:complexType>

 </xsd:element>

</xsd:schema>

Figure 4. Schema for a transaction.

A/R primitive, and DS primitive; (2) analysis request:
comprising the RFA primitive, A/R primitive, and CS
primitive; (3) validation request: comprising the RFV, A/R,
and CS primitive; (4) discussion request: comprising the
RFC primitive and a collection of US primitives; (5) co-run:
comprising the RFCR primitive, A/R primitive, and US
primitive; and (6) co-approve: comprising the RFCA
primitive, A/R primitive, and US primitive.

Such a mini-workflow can be formalized using the
Business Process Execution Language (BPEL). Since BPEL
is based on Pi-calculus, modeling mini-workflows in BPEL
will allow us to formally reason about the construction of a
new mini-workflow. Taking the first collaboration pattern
(dataset request) as an example, Fig. 3 shows a section of its
BPEL definition. For simplicity, we skipped the section
defining messages (collaboration messages), partners
(collaborators A and B), and variables (messages), and links
(expressing synchronization dependencies).

As shown in Fig. 3, each collaboration primitive is
wrapped as a Web service. Two parties (Collaborators A
and B) act as service providers and service requestors
alternatively. Each collaboration primitive is realized by a
service call, associated with the corresponding messages.
Once represented by BPEL, multiple collaboration

constructs may combine to form a comprehensive
collaboration scenario. Such a service-oriented model
enables platform-neutral and language-neutral collaboration.

3) Service-Oriented Collaboration Provenance
Provenance has been widely considered critical to the

reproducibility of scientific workflows [24, 25]. Compared
to existing significant amount of work focusing on
provenance for scientific workflow execution, our work
focuses on collaboration provenance tracking human
interactions in the process of scientific workflow
composition. Our method is to record all collaborative
activities leading to a composed workflow.

We decided to adopt the Web services technology [23]
to realize collaboration mini-workflows. As the best
enabling technology of Service Oriented Architecture
(SOA) to date, the Web services technology allows us to
enable universal communications among participating
scientists with platform independence and language
independence. Collaboration primitives are encapsulated in
Simple Object Access Protocol (SOAP) messages and
communicated between collaborators. To enable validation
and analysis, we adopt the XML Schema to uniform the
format of collaboration messages. Fig. 4 shows a section of
the specification of a collaboration message.

Messages are divided into request messages and
response messages. Each message contains one or more
primitives that form a transaction, meaning that they form
an atomic unit of work in a scientific workflow. Each
transaction aims to serve for a task in a workflow, which
belongs to a scientific project. A message may also contain
optional data such as annotations.

579

Figure 5. Word count workflow.

V. COMPOSITION CONCURRENCY CONTROL

The lifetime of a collaborative scientific workflow may
last for a long period of time, thus the concurrency control
over its different phases deserves consideration. In this
paper, we discuss concurrency control at workflow
composition time.

A. Locking Granularity

At composition time, multiple scientists collaborate to
develop a scientific workflow. Without reinventing the
wheel, our previous work extended Taverna, a popular
scientific workflow tool, into a collaborative version [26].
The reason why we chose Taverna is mainly based on its
popularity and big user base [11]. Another reason is that
Taverna is an open-source tool developed in Java. Thus we
can explore its code and turns it into a collaborative version.
Adopting the instrument from an extensively tested and well
proved human communication protocol, Robert’s Rules of
Order (RRO) [27], we establish a floor control mechanism.
Each scientific workflow maintains a single floor (token),
which can be assigned to one collaborator at a time. Each
collaborator requests and competes for the floor. Only the
collaborator holding the floor can propagate their changes
on the shared workflow. After done with the update, the
collaborator can release the floor and other collaborators
may get it.

Such a workflow-level floor control may not be efficient
to support large-scale scientific workflow composition.
Since scientific research is an exploratory process, the
development of a scientific workflow may undergo many
discussions and changes and may last for a long period of
time. Meanwhile, a collaboration group nowadays usually
comprises scientists from different organizations at
distributed locations. They may possess different schedules
and may even reside in different time zones; thus, their
collaboration may adopt both synchronous and
asynchronous modes. Furthermore, a large-scale scientific
workflow may involve many comprising components. It is
neither efficient nor practical, if one scientist working on
one component locks the entire workflow and other
scientists cannot work on unrelated components.

To increase composition concurrency, we investigate the
option of locking the smallest building blocks. A scientific
workflow allows multiple un-overlapped locks, so that
multiple scientists may work on the locked components
simultaneously.

According to the existing scientific workflow
management tools, the smallest building blocks in a
scientific workflow are tasks and data channels. In Taverna,
a task is called a processor; the data channels linking
between processors are called data links. Fig. 5 is a highly
simplified scientific workflow drawn in Taverna, which
illustrates a word count example using the MapReduce
programming model [28]. Two processors Mappers
repeatedly process a list of word lines, by breaking each line
into individual words and generating a list of <word, 1>
pairs over all the words found. All the intermediate <word,
1> pairs are transferred, through the data links, to the
processor Reducer that aggregates the pairs according to the

words. The results are a list of <word, value> pairs that
show the number of appearances of each word.

If we set up the locks on individual processors and data
links only, two collaborators may concurrently update one
processor Mapper1 and its output data links, respectively.
This situation may not be desirable, because the data link
directly depends on the processor. In other words, connected
processors and data links may have close semantic
relationships, which need to be preserved by requiring that
neighboring entities cannot be updated by different
collaborators at the same time.

Furthermore, adjacent processors in a workflow may
also possess semantic relationships between them. For
example, as shown in Fig. 5, in which triangles represent
workflow inputs and outputs, the Mapper1 processor and
the Reducer processor are neighbors in the workflow, and a
data link connects them together. The Reducer processor
stays at the downstream of the workflow; meaning that the
output of the Mapper1 processor servers as the input of the
Reducer processor. Assume that two collaborators are
working on the two processors simultaneously, and
collaborator A changes some business logic at the Mapper1
processor. Even if these changes may not change the input
of the Reducer processor, the collaborator working on the
Reducer processor should be aware that someone is working
on the upstream processor.

Therefore, we propose a concept of synchronization
area that represents a conceptual area in a shared scientific
workflow, which allows only one collaborator to work on it
at a given time. Such an area represents a dynamic semantic
area. In the context of a Taverna workflow, if a user tries to
lock a data link, the synchronization area is the data link. If
a user tries to lock a processor, the synchronization area is
dynamically delimited and includes all of the fan-out data
links of the processor. In Fig. 5, the manually drawn red
circle around the Mapper1 processor and its fan-out data
link represents such a synchronization area.

B. Locking Algorithms

Based on the concept of synchronization area, we built
four algorithms, on locking/releasing a processor and
locking/releasing a data link. The algorithms are shown as
below.

580

Algorithm 1: Lock Processor
Input: A user selects a processor and presses “lock”
Requirements: Lock a processor.
1: if processor ∈ locked processor list then do nothing;
2: else
3: begin transaction
4: processor_owner ← self; lock_flag ← 1
5: for each outgoing data link
6: call lock_data_link
7: if return = false then abort
8: end transaction
9: endif

Algorithm 2: Release Processor
Input: A user selects a processor, presses “release”
Requirements: Unlock a processor.
1: if processor owner ≠ self then do nothing;
2: else
3: begin transaction
4: set processor.lock_flag ← 0
5: for each outgoing data link
6: call release_data_link
7: end transaction
8: endif

Algorithm 3: Lock Data Link
Input: A user selects a data link and presses “lock”
Requirements: Lock a data link.
1: if data link ∉ database then insert

2: if data link.lock_flag = 1 then return false
3: else data_link.owner ← self; lockFlag ← 1
4: endif

Algorithm 2: Release Data Link
Input: A user selects a data link, presses “release”
Requirements: Unlock a data link.
1: if data link owner ≠ self then do nothing;
2: else set data_link.lock_flag ← 0

3: endif

If a user selects a processor and clicks to lock the
processor, we first check whether it has been locked by
another collaborator. If nobody locks it, then an
uninterruptable transaction starts. First, we set the lock flag
of the processor, and fill the name of the owner of the
processor. For each outgoing data link of the processor, we
check whether there is an active lock on it. If any outgoing
data link is currently locked by other collaborators, the
entire locking attempt is aborted. Otherwise, we call the
corresponding algorithm to lock the data link. After all
outgoing data links are locked, the transaction succeeds. In
summary, the lock action will automatically lock all
downstream data links, in addition to the processor.

To release a processor, we will first check whether the
user has the privilege, i.e., whether she is the owner of the
processor. If the answer is positive, in addition to the
processor itself, the action will call the corresponding
algorithm to release all of the downstream data links.

To lock a data link, we first check whether the data link
has been uploaded into the database (here we adopt a lazy
instantiation pattern for a higher performance). After
ensuring that the data link is in the database, we check
whether it has already been locked. If not, the data link will
be marked as being locked. Otherwise, a notification will be
sent.

To release a data link, we first check whether the user

has the privilege, i.e., whether she is the owner of the data
link. If the answer is positive, the flag of the data link will
be set as unlocked.

C. Collaboration Transactions

Our locking algorithms facilitate concurrent workflow
composition. Actions by each user can be modeled as
transactions to ensure concurrency control. We define four
basic actions (in Taverna context): 1) insert a data link, 2)
delete a data link, 3) insert a processor, and 4) delete a
processor. An update action can be modeled as a delete
followed by an insert. Thus, all collaborative composition
actions can be mapped to database update operations. As a
result, we can exploit the concurrency control facility of
database management systems to ensure the serializability
of all executions. Bad transactions will be automatically
aborted. We are working on an exception handling facility
here; which is out of the scope of this paper. After a user
update is successfully committed, all collaborators will be
notified, so that each collaborator can have the most-up-to
date workflow.

At the database level, to support concurrent updates of
scientific workflow tasks by a distributed group of
scientists, we implemented a READ COMMITTED with
first-committer-win (RC-fcw) scheme [29], which is an
extension of READ COMMITTED with the first-
committer-win feature from the SNAPSHOT isolation level.
In RC-fcw, transactions obtain long-term write locks on
items and short-term read locks. In addition, if T1 commits
to writing a data item between the time period when T2 has
read and attempted to write the same item, T2 will be
aborted (first-committer-wins). We implemented RC-fcw
using the following strategy. Each task stored in a database
is associated with a version number. When a transaction
reads a task and intends to update the same task at a later
time, a version comparison is triggered to check whether
any other transaction has updated the task in between. The
check and the update together are performed atomically.

VI. SYSTEM DESIGN AND EXPERIMENTS

A. System Implementation

We built a collaboration pattern template library. The
basic building blocks are collaboration primitives. Users can
build new collaboration patterns using existing collaboration
primitives. Identified collaboration patterns are stored as
provenance data to support the tracking, storing, and
querying of interactions and coordination among scientists.

We built a central server supporting all workflow
collaborations. Workflow evolution provenance and
collaboration provenance are stored in a shared database on
the server. Each collaborator may store an intermediate
version of the workflow on the local machine, but all
committed activities are stored at the server, in order to
support asynchronous collaboration where collaborators may
decide to work on the shared workflow at preferable time.
We consider four options for selecting database systems:
native XML, relational, XML-relational, and RDF. Currently
we use a relational database because it is the preferred choice

581

Figure 6. Screen shots of concurrent workflow updates.

Figure 7. Test results of throughputs and failed task updates.

for Taverna.
Fig. 6 shows a snapshot of our Confucius system

supporting concurrent workflow composition. To ease
illustration, we show two screens (left and right) representing
two scientists running two client versions of Confucius on
two distributed machines. Here we use remote desktop
feature of Windows to show the two screens together. When
a scientist write locks a task on the shared workflow, the
other scientist cannot update the task due to our concurrency
control.

B. Concurrency Control Experiments

We have designed and conducted a series of experiments
to evaluate our READ COMMITTED with first-committer-
win (RC-fcw) scheme for supporting concurrent updates of
scientific workflow tasks by a group of scientists. Here we
report our preliminary experimental study.

For experimental settings, without losing generality, we
adopt a randomly generated scientific workflow comprising
20 tasks. Each collaborator is simulated by an independent
Java thread, which iteratively reads a random task of the
workflow, waits for a randomly generated time interval, and
then performs an update on the task. While each
collaborator indefinitely performs such iterative random
updates, we record the total numbers of both successful task
updates and unsuccessful task updates (due to abort),
respectively, within a predefined time window. All
experiments were conducted on a PC with Intel Core 2 Duo
CPU P8800, @2.66 GHz & 2.76GHz and 3 GB main
memory, running the Windows 7 Home Premium operating
system. The database system used is Apache Derby
10.5.3.0. The database is installed in an embedded fashion
for this experiment, so that no data transportation time is
considered.

Our experiments focus on testing the throughput of the
Confucius system by varying the number of collaborators.
The throughput is defined as the number of successful task
updates per minute. The average throughput is calculated for
each collaboration group size of N (10, 20, …, 100). For
each group size, the experiment is repeatedly performed 10
times with the average calculated. We also monitor the
number of failed task updates performed per minute to show

the trend of update conflicts as the number of collaborators
increases.

Fig. 7 shows how the number of successful task updates
per minute for varying number of collaborators, from
76,242 task updates per minute for 10 collaborators, to
79,015 task updates per minute for 100 collaborators. We
can see that the collaboration productivity (represented by
the throughout) is steadily increased as the number of
concurrent scientist collaboration increases, reaching a
maximum of 119,207 task updates per minute at a group
size of 30. Afterwards, the group productivity starts to
decline due to the increase of conflicts that leads to abortion.

Fig. 7 also releases that as the number of collaborators
increases, the number of conflicts and hence the number of
failed task updates per minute also increases monotonically.
When the size of a group is smaller than 30, such an
increasing number of unsuccessful task updates is more than
compensated by the increased number of successful task
updates as a result of increased collaborators, assuming a
constant productivity for each collaborator. However, when
the size of the group goes beyond 30, the conflicts start to
dominate - an additional collaborator only decreases
productivity as she introduces less successful task updates
than the number of failed task updates that she causes due to
increased conflicts.

We also compare our RC-fcw scheme with the Two
Phase Locking No Wait (2PL-wait0) scheme, which aborts a
transaction right away if the requested lock is not available.
In Fig. 7, the experimental results using our scheme are
shown in green color; and those using the 2PL-wait0 are
shown in brown color. We can see that our RC-fcw
approach surpasses the 2PL-wait approach supporting
scientific collaboration. While the 2PL-wait approach
supports up to 15 concurrent scientists, our approach
supports up to 30 concurrent scientists. Fig. 7 also shows
that our TC-fcw approach bears much lower abort rate,
when the number of concurrent scientists increases.

In summary, from a concurrency control point of view,
there exits an optimal number for the group size that
optimizes the productivity of the system. How to increase
such a number, which is the ideal speedup of productivity, is
an interesting and challenging open research problem. We
plan to further study this problem in our future research.

VII. CONCLUSIONS AND FUTURE WORK

In this paper, we presented our ongoing work on
establishing collaboration protocols to support collaborative

582

scientific workflow composition. Our framework includes a
collaboration ontology associated with a set of collaboration
patterns, primitives, and constructs, and a number of
concurrent control mechanisms to support concurrent
collaborative workflow composition.

Based on the ontology, we plan to enhance collaboration
provenance management performance by extending our
previous work on provenance [30] to support efficient
collection, storage, and querying of collaboration
provenance, leveraging existing relational, RDF, and XML
database techniques. Furthermore, we plan to conduct more
experiments to study the effects of tuning various
parameters on concurrent productivity. For example, we
plan to tune the number of concurrent collaborators, the
productivity of individual members, the number of tasks
comprised in the shared scientific workflow, and so on.

VIII. ACKNOWLEDGEMENT

This work is supported by National Science Foundation,
under grants NSF IIS-0959215 and IIS-0960014. The
authors also like to thank Sha Liu for the assistance in the
experimental study presented here.

IX. REFERENCES

[1] G.M. Olson, A. Zimmerman, and N. Bos, eds., Scientific
Collaboration on the Internet. MIT Press, Cambridge, MA, USA,
2008.

[2] LSST, "Large synoptic survey telescope," 2009, Available
from: http://www.lsst.org/lsst/science.

[3] LHC, "Large Hadron Collider," 2010, Available from:
http://public.web.cern.ch/Public/en/LHC/Computing-en.html.

[4] B. Ludäscher, "Scientific workflows: cyberinfrastructure for e-
Science," Proc. of PNC, Oct. 19, 2007, Berkeley, CA, USA, pp.

[5] Y. Gil, E. Deelman, J. Blythe, C. Kesselman, and H.
Tangmunarunkit,"Artificial intelligence and grids: workflow
planning and beyond", IEEE Intelligent Systems, Jan.-Feb., 2004,
19(1): pp. 26–33.

[6] E. Deelman and Y. Gil, "NSF workshop on the challenges of
scientific workflows," May 1-2, 2006.

[7] S. Wuchty, B. Jones, and B. Uzzi, "The increasing dominance
of teams in production of knowledge," Science, 2007, 316: pp.
1036-1039.

[8] N.R. Council, Facilitating Interdisciplinary Research, 2004,
National Academies Press, Washington DC, USA.

[9] "Beyond the Data Deluge", Science, 2009, 323(5919): pp.
1297-1298.

[10] B. Ludäscher, I. Altintas, C. Berkley, D. Higgins, E. Jaeger, M.
Jones, E.A. Lee, J. Tao, and Y. Zhao, "Scientific workflow
management and the Kepler system," Concurrency and
Computation: Practice & Experience, 2006, 18(10): pp. 1039-1065.

[11] T. Oinn, M. Greenwood, M. Addis, M.N. Alpdemir, J. Ferris,
K. Glover, C. Goble, A. Goderis, D. Hull, D. Marvin, P. Li, P. Lord,
M.R. Pocock, M. Senger, R. Stevens, A. Wipat, and C. Wroe,
"Taverna: lessons in creating a workflow environment for the life
sciences," Concurrency and Computation: Practice & Experience,
2006, 18(10): pp. 1067–1100.

[12] D. Churches, G. Gombas, A. Harrison, J. Maassen, C.
Robinson, M. Shields, I. Taylor, and I. Wang, "Programming
scientific and distributed workflow with Triana services,"
Concurrency and Computation: Practice & Experience, 2006,
18(10): pp. 1021–1037.

[13] J. Freire, C.T. Silva, S.P. Callahan, E. Santos, and C.E.

Scheidegger, "Managing rapidly-evolving scientific workflows,"
LNCS, May, 2006, 4145/2006: pp. 10–18.

[14] Y. Zhao, M. Hategan, B. Clifford, I. Foster, G. Laszewski, V.
Nefedova, I. Raicu, T. Stef-Praun, and M. Wilde, "Swift: fast,
reliable, loosely coupled parallel computation," Proc. of SWF, Jul.
9-13, 2007, Salt Lake City, UT, USA, pp. 199–206.

[15] A. Chebotko, C. Lin, X. Fei, Z. Lai, S. Lu, J. Hua, and F.
Fotouhi, "VIEW: a visual scientific workflow management system,"
Proc. of SWF, Jul., 2007, Salt Lake City, UT, USA, pp. 207–208.

[16] D.D. Roure, C. Goble, and R. Stevens, "The design and
realisation of the myExperiment virtual research Environment for
social sharing of workflows," FGCS, 2009, 25: pp. 561-567.

[17] B. Ludäscher, I. Altintas, C. Berkley, D. Higgins, E. Jaeger, M.
Jones, E.A. Lee, J. Tao, and Y. Zhao, "Scientific workflow
management and the Kepler system," Concurrency and
Computation: Practice and Experience, 2006, 18(10): pp. 1039-1065.

[18] C. Lin, S. Lu, Z. Lai, A. Chebotko, X. Fei, J. Hua, and F.
Fotouhi, "Service-oriented architecture for VIEW: a visual scientific
workflow management system," Proc. of SCC, Jul. 9-11, 2008,
Honolulu, HI, USA, pp. 335-342.

[19] S. Lu and J. Zhang, "Collaborative scientific workflows," Proc.
of ICWS, Jul. 6-10, 2009, Los Angeles, CA, USA, pp. 527-534.

[20] A. Agrawal, M. Amend, M. Das, M. Ford, C. Keller, M.
Kloppmann, D. König, F. Leymann, R. Müller, K. Plösser, R.
Rangaswamy, A. Rickayzen, M. Rowley, P. Schmidt, I. Trickovic,
A. Yiu, and M. Zeller, "WS-BPEL extension for people
(BPEL4People), version 1.0," Jun., 2007.

[21] J.Y. Sayah and L.-J. Zhang, "On-demand business
collaboration enablement with services computing," Decision
Support Systems, Jul., 2005, 40(1): pp. 107-127.

[22] C.K. Chang, J. Zhang, and K.H. Chang, "Survey of computer
supported business collaboration in support of business processes,"
International Journal of Business Process Integration and
Management (IJBPIM), 2006, 1(2): pp. 76-100.

[23] L.-J. Zhang, J. Zhang, and H. Cai, Services Computing.
Springer, 2007.

[24] A. Chapman, H.V. Jagadish, and P. Ramanan, "Efficient
provenance storage", Proc. of SIGMOD, Jun. 9-12, 2008,
Vancouver, Canada, pp. 993-1006.

[25] M.K. Anand, S. Bowers, T.M. McPhillips, and B. Ludäscher,
"Efficient provenance storage over nested data collections", Proc.
EDBT, 2009, pp. 958-969.

[26] J. Zhang, "Co-Taverna: a tool supporting collaborative
scientific workflows", Proc. of SCC, Jul. 5-10, 2010, Miami, FL,
USA.

[27] M. Robert, W.J. Evans, D.H. Honemann, and T.J. Balch,
Robert's Rules of Order, Newly Revised, 10th Edition. Perseus
Publishing Company, 2000.

[28] J. Dean and S. Ghemawat, "MapReduce: simplified data
processing on large clusters," Proc. of OSDI, 2004, pp. 137–150.

[29] A.J. Bernstein, P.M. Lewis, and S. Lu, "Semantic conditions
for correctness at different isolation levels," Proc. ICDE, Feb. 28-
Mar. 3, 2000, San Diego, CA, USA, pp. 57-66.

[30] A. Chebotko, X. Fei, C. Lin, S. Lu, and F. Fotouhi, "Storing
and querying scientific workflow provenance metadata using an
RDBMS," Proc. e-Science, Dec. 10-13, 2007, Bangalore, India, pp.
611–618.

583

