
Learning Context-Aware Service Representation for
Service Recommendation in Workflow Composition

Xihao Xie, Jia Zhang
Department of Computer Science

Southern Methodist University
Dallas, USA

{xihaox; jiazhang}@smu.edu

Rahul Ramachandran
Marshall Space Flight Center

NASA
Huntsville, USA

rahul.ramachandran@nasa.gov

Tsengdar J. Lee
Science Mission Directorate

NASA Headquarters
Washington, USA

tsengdar.j.lee@nasa.gov

Seungwon Lee
Jet Propulsion Laboratory

NASA
Pasadena, USA

seungwon.lee@jpl.nasa.gov

Abstract—As increasingly more software services have been
published onto the Internet, it becomes critical yet highly
challenging to recommend suitable services to facilitate scientific
workflow composition. This paper proposes a novel Natural
Language Processing (NLP)-inspired approach to recommending
services throughout a workflow development process, based on
incrementally learning latent service representation from work-
flow provenance. A workflow composition process is formalized
as a step-wise, context-aware service selection procedure, which is
mapped to next-word prediction in a natural language sentence
generation. Historical service dependencies are extracted from
workflow provenance to build and enrich a knowledge graph.
Each path in the knowledge graph reflects a scenario in a
data analytics experiment, which is analogous to a sentence in
a conversation. All paths are thus formalized as composable
service sequences and are mined, using various patterns, from the
established knowledge graph to construct a corpus. Service em-
beddings are then learned by applying deep learning model from
the NLP field. Extensive experiments on the real-world dataset
demonstrate the effectiveness and efficiency of the approach.

Index Terms—service representation, service recommendation,
workflow composition

I. INTRODUCTION

In recent years, increasingly more software programs have
been deployed and published onto the Internet as reusable
web services, so-called APIs or services for short. Scientific
researchers can thus leverage and compose existing services
to build new data analytics experiments, so-called scientific
workflow or workflow in short [1]. However, studies over the
life science field [2] have revealed that the reusability rate of
life science services in workflows remains rather low. Earlier
studies believe one of the major obstacles making researchers
unwilling to reuse existing services is the data shimming
problem [5], meaning preparing and transforming data types
to feed in the required inputs of a downstream service. Unless
a user fully understands each of the parameters, both of its
syntactic and semantic meaning and requirements, he/she may
not feel comfortable to reuse the service.

Our research project moves one step further, to argue that
the adoption of a software service is not only dependent
on its direct upstream service, but also the context of all
selected services in the current workflow under construction.
In order to add into consideration of such workflow-contextual
information for more precise service recommendation in a

recommend-as-you-go manner, this research presents a novel
machine learning technique over service provenance knowl-
edge graph. Inspired by the latest advancements in Natural
Language Processing (NLP), we formalize the problem of ser-
vice recommendation as a problem of next service prediction,
where services and workflows are mapped to “tokens” and
“sentences” in NLP, respectively. Note that some services used
together (unit of work [4]) are analogous to “phrases” in NLP,
thus are mapped to “tokens” as well. In this way, our goal
has turned into predicting and recommending the next suitable
services that might be used for a user during the process of
workflow composition.

Inspired by Word2Vec [9], we leverage the skip-gram model
to learn latent representation of services and their relation-
ships for context-aware workflow recommendation. A corpus
of “sentences” (i.e., service chains extracted from historical
workflow provenance) are generated from the knowledge
graph. Our rationale is that, each path (i.e., a sequence of
services) in a workflow reflects a scenario of data analytics
experiment, which is analogous to a sentence in a conversation.
Thus, all paths are extracted from the knowledge graph, analo-
gous to all sentences are accumulated to train a computational
model from NLP. In other words, a service sequence carries a
context when a service was invoked in the past.

To the best of our knowledge, we make the first attempt
to seamlessly exploit the state-of-the-art machine learning
techniques in both NLP and knowledge graph to facilitate
service recommendation and workflow composition. Our ex-
tensive experiments over real-world dataset have demonstrated
the effectiveness of our approach. In summary, our main
contributions are three-fold:

• We formalize the service recommendation problem as a
problem of context-aware next service prediction.

• We develop a technique to generate a corpus of service-
oriented-sentences (service sequences) by traversing over
the knowledge graph established from workflow and
service usage provenance.

• We develop an approach to learning service representa-
tions offline based on sequential context information in
accumulated knowledge graph and then recommending
potential services real-time.

978-1-6654-9463-2/22/$31.00 ©2022 IEEE
ICIS2022, June 26-28, 2022, Zhuhai, China

60

20
22

 IE
EE

/A
C

IS
 2

2n
d

In
te

rn
at

io
na

l C
on

fe
re

nc
e

on
 C

om
pu

te
r a

nd
 In

fo
rm

at
io

n
Sc

ie
nc

e
(I

C
IS

) |
 9

78
-1

-6
65

4-
94

63
-2

/2
2/

$3
1.

00
 ©

20
22

 IE
EE

 |
D

O
I:

10
.1

10
9/

IC
IS

54
92

5.
20

22
.9

88
24

42

Authorized licensed use limited to: SOUTHERN METHODIST UNIV. Downloaded on October 18,2024 at 15:17:25 UTC from IEEE Xplore. Restrictions apply.

(a) (b)

𝑠1

𝑠2

𝑠3

𝑠4

𝑠5

𝑠6

𝑠7

𝑠8

Knowledge Graph
Construction

Sequence
Generation

…

(c)

𝑠1 𝑠8 𝑠4 𝑠3 𝑠2

𝑠1 𝑠8 𝑠5

𝑠6 𝑠2 𝑠4 𝑠5 𝑠7

context window

central services

𝑠4

Service
Embedding

…
…

𝑣4

d

…

𝑠8

…

𝑠3

…

𝑠5

…

(d)

Embedding
Matrix

(e)

?
𝑠4

𝑠8

successor
probability

service
similarity

Skip-gram model

𝑠3 0.7395

𝑠5 0.4618

(f)

…

Recommendation Triggered
Top K

Recommendation 𝑠3

𝑠5

…

(g)

Online Recommendation

Offline Learning

composition finished

Fig. 1. Blueprint of proposed approach.

II. CONTEXT-AWARE SERVICE RECOMMENDATION
APPROACH

Fig. 1 presents the high-level blueprint of our methodology.
First, based on workflow provenance (a), we construct a
knowledge graph (b) by extracting service dependencies from
workflow structure. Second, we generate sequences of service
tokens (c) from the knowledge graph. Third, we use language
modeling techniques to learn latent representations of services
(d). As shown in Fig. 1, the above steps are conducted offline.
The results of the offline learning phase will support the online
recommendation at run-time. Given a workflow which is under
composition online (e), we rank the potential services respect
to their semantic similarities in the context (f), and recommend
top-K of them (g) to the user at real time. Note that once
a new workflow is completely composed, it will be saved
into the workflow repository thus to trigger incremental offline
learning. This section will present the procedure in detail.

A. Problem Definition

Let W =
{
w1, w2, ..., w|W|

}
denote a set of workflows,

C =
{
c1, c2, ..., c|C|

}
be a set of available software services,

T =
{
t1, t2, ..., t|T |

}
be a set of service tokens. Note that

each service token represents either an individual service or
a subset of services, where an example may be a unit of
work (several services always used together) [4]. Let list
Sw′ =

[
sw

′
1 , ..., sw

′
k , ..., sw

′
|Sw′ |

]
denote a service sequence

with length as |Sw′ | for workflow w′ /∈ W which has not
been completed yet, where sw

′
k is the service token tk ∈ T

generated at time step k and tk ⊆ C is a subset of services.
Given a specific existing service sequence Sw′ of a workflow
w′ under construction, our goal is to rank the probability over
all service tokens t ∈ T at next time step |Sw′ |+ 1:

pt = p(tw
′

|Sw′ |+1 = t|Sw′) (1)

and recommend top-n tokens list T ⊆ T , where n is the size
of the list T .

B. Knowledge Graph Construction

Similar to our earlier work [6], we define web service
knowledge graph (WSKG) as a directed graph (digraph)
carrying historical service invocation dependencies extracted
from workflow repository:

WSKG = ⟨C,R⟩ (2)

where each software service c ∈ C is regarded as an entity, and
R =

{
rwi,j

}
is a set of relationships between service entities.

rwi,j = ⟨ci, cj , w⟩ refers to a relationship that ci is an upstream
service of cj in workflow w. We can regard the relationship
rwi,j as an edge starting from ci and ending at cj with label w.
Note that there might be multiple edges between two nodes in
the knowledge graph with different labels, meaning that such a
service invocation dependency happens in multiple workflows.

C. Offline Service Representation Learning

The offline representation learning phase aims to learn
latent service representations over the service sequence corpus.
Two models, skip-gram and CBOW in Word2Vec, are widely
applied neural network models in NLP to learn word repre-
sentations given a corpus of sentences [9]. In our study, we
decide to employ the skip-gram model mainly because it works
well with small amount of training data and represents well
even for rare tokens [12]. In our scenarios, existing scientific
workflow datasets are not so large as that in the field of NLP.
Furthermore, the significant amount of long-tail services (e.g.,
newly published services) may be able to receive reasonable
exposure using the skip-gram model, although they rarely
appear in the service sequence corpus.

Algorithm 1 illustrates the step-wise procedure of offline
representation learning. Note that during the training process,
we update vectorized representations with stochastic gradient
descent, as shown in lines 6 and 7.

D. Online Service Recommendation

Following the skip-gram model, given a specific sequence
of service tokens [tl−u, ..., tl−1, tl], the offline learnt service

61

Authorized licensed use limited to: SOUTHERN METHODIST UNIV. Downloaded on October 18,2024 at 15:17:25 UTC from IEEE Xplore. Restrictions apply.

representations enable us to identify the top-K most relevant
service tokens to be the most potential service tokens following
tl. According to the skip-gram model, though, the predicted
contextual service tokens may not only be upstream of tl in
some workflows, but also be downstream service tokens as
well. However, in the scenario of workflow composition, what
we need to recommend is the service tokens that are potentially
appear after tl. Therefore, we define a scoring function which
is used to rank next potential service tokens in descending
order as follows:

score(tl, t) = psuc(tl, t)× sim(tl, t) (3)

psuc(tl, t) =
exp(Nsuc(tl, t))

exp(Npre(tl, t)) + exp(Nsuc(tl, t))
(4)

where psuc(tl, t) empirically models the probability that t
appears after tl, Nsuc(tl, t), Npre(tl, t) are the numbers of
occurrences that any service c ∈ t appeared in repository as a
successor or a precursor service of tl, respectively. sim(tl, t)
is the similarity between tl and t that can be calculated from
the service representations learnt offline.

Algorithm 1 Offline Learning Service Representation
Input: workflows W , windows size w, dimension size d and

sequence generation type T
Output: vectorised service representations Ω ∈ R|C|×d

1: Initialize Ω ∈ R|C|×d

2: D ← GenerateSequences(W,T)
// generate service token sequences according to specific gen-
eration type T, see in next section.

3: for each sequence S ∈ D do
4: for each token ti ∈ S do
5: for each tj ∈ S [i− w : i+ w] do
6: J (Ω) = − log p (tj |Ω(ti))
7: Ω = Ω− η × ∂J

∂Ω
// η is the learning rate.

8: end for
9: end for

10: end for

III. SERVICE SEQUENCES GENERATION

In this section, we explore three different ways, each of
which might be adopted for a specific scenario, to generate
sequential service tokens from the constructed knowledge
graph WSKG introduced in the previous section. The three
generation methods are: DFS-based generation, BFS-based
generation, and PW-based generation.

A. Depth First Search (DFS) based Generation

In this method, we consider a workflow composition process
as a path extension process from start to end. Particularly, we
consider individual workflows. In order to model the sequential
behaviour of composing a specific workflow w ∈ W , depth
first search method is applied in WSKG, along the path
with the label w to generate sequences of service tokens.
Specifically, for any service entity ci ∈ C, let Sw

i,m = ti1
w−→

ti2
w−→ ...

w−→ ti|Si
w| denote a generated sequence starting from

ci and going along the path with label w, representing a
workflow, to next unvisited neighbor services until meeting

terminal services which have no successor services along label
w. Here ti1 = ci, tij ∈ T and ∀tij has

∣∣tij
∣∣ = 1, which means

every token is a single service. m ∈ [1,M] and M is the total
number of sequences starting from ci.

Note that for a workflow with label w, the sequences are
generated from not only its starting services but also all
intermediate services. In this way, the generated sequences
can cover as many as possible sequential dependencies among
services in the workflow w.

B. Breadth First Search (BFS) based Generation

The main idea of the BFS based service tokens generation
lies in multiple items recommendation. In order to better
achieve business goal, a real-world recommender system typ-
ically not only recommend single items but also a bundle of
items. Actually, recommending next bundle of services can be
regarded as recommending next basket of items that a user
might want to buy in a single visit in e-commerce scenarios
[7], [8]. Our earlier research also studied how to recommend
unit of work (UoW) with a collection of services usually used
together, based on network analysis [4].

For the similar reason, we consider service bundles as
services tokens when generating sequential services tokens
from WSKG. Applying BFS based generation strategy, for any
service ci ∈ C in a workflow w, the sequence of service tokens

starting from ci can be generated as: Sw
i =

[
ti1, t

i
2, ..., t

i

|Sw
i |

]
,

where tik ⊆ C is a set of multiple services that are at the kth

level of the breadth first searching path. Specially, ti1 is a set
containing only ci, and it can be either a starting service or
an intermediate service.

C. Probabilistic Walk (PW) based Generation

Inspired by DEEPWALK [11], which uses random walk to
generate sequences of nodes to learn latent representations for
vertices in a graph, we leverage a variant of random walk, i.e.,
probabilistic walk, to generate sequences of services based on
the constructed knowledge graph WSKG.

Recall that the DFS and BFS based generation algorithms
discussed earlier both generate a service sequence starting
from service token tj along the path with a specific label
w. In contrast, the probabilistic walk based sequence genera-
tion algorithm considers the generation of next service token
rooted at tj as a stochastic process, with random variables
T 1
j , T

2
j , ..., T

l
j where T l+1

j is a service generated with proba-
bilities from the neighbors of service token tl. Note that, such a
service token T l+1

j existing in the sequence of
[
T 1
j , T

2
j , ..., T

l
j

]

is not allowed, meaning that the generated sequence is acyclic.
On the one hand, restarting from a vertex did not show any
improvement in our experimental results. On the other hand,
it is generally meaningless to invoke a previously invoked
service in the same workflow. Specifically, for a service u ∈ C,
let Nu ⊆ C denote the set of directed neighbor services in

62

Authorized licensed use limited to: SOUTHERN METHODIST UNIV. Downloaded on October 18,2024 at 15:17:25 UTC from IEEE Xplore. Restrictions apply.

the whole WSKG, we model the probability pu,v that service
token v can be generated after u:

pu,v = p(v|u) = σ(
ou,v
ou

) =
exp(

ou,v

ou
)

∑
n∈Nu

exp(
ou,n

ou
)

(5)

where v ∈ N(u), σ is the commonly used softmax function,
ou,v is the number of occurrence of relationships between u
and v in the whole WSKG and ou =

∑
n∈N(u) ou,n.

Two factors may impact the effectiveness of the PW based
generation strategy. One factor is the length of a visiting path,
i.e., l, which determines when to stop while walking along a
path. The other factor is the number of walks starting at each
vertex, i.e., θ. In practice, without specifying θ, some linkages
may not be traversed. As a result, the generated sequences
may not cover all tangible dependency relationships, tampering
the ability of trained representations to predict next suitable
services. As [11] suggested, although it is not strictly required
to do this, it is a common practice to tune the two factors
to speed up the convergence of stochastic gradient descent
in Algorithm 1. In the next section of experiments, We will
discuss in detail the effects of l and θ.

IV. EXPERIMENTS

A. Dataset

Our testbed is myExperiment.org [3]. We examined all
Taverna-generated workflows published on myExperiment.org
up to October 2021, with a total of 2,910 workflows and
9,120 services. Table I lists the summarized information of
the dataset.

TABLE I
STATISTICAL INFORMATION ABOUT MYEXPERIMENT DATASET

Total # of workflows 2,910
Total # of services 8,837

BFS 10,788
Total # of sequences DFS 41,163

PW 50,314
BFS 5.0

Average length of sequences DFS 9.0
PW 7.0

B. Experimental Setup

We randomly used 80% of the workflows to generate service
sequences as training data to learn service representations. The
remaining 20% of workflows were utilized as the test data.
In the offline learning phase, we set the number of window
size as 3, and the dimension size d as 50. The generated
service sequences with length smaller than 2 were removed
from the training set. As for the online recommendation phase,
similar to the leave-one-out task that has been widely used in
sequential recommendation, we adopted the leave-last-service-
out cross-validation to evaluate our approach.

For each workflow in the test set, we removed the terminate
services of the workflow and used the services just before the
terminate services as the inputs of the trained representation

model to rank top K service tokens as candidates. Hence, the
experiments were turned to evaluate whether the recommended
service tokens hit the ground truth. Additionally, in the test
set, we removed the linkages which never occurred in the
sequences generated from the training data, considering that
the skip-gram model is not able to predict tokens that are not
in the vocabulary.

C. Evaluation Metrics

All of our evaluation metrics aim to measure whether the
recommended top K entries hit the ground truth or not. For
DFS-based and PW-based generation strategy, each entry is a
single service token. An entry ei ∈ R hits the ground truth
G if ei ∈ G, where R is the recommended result, and |R| =
K. For BFS-based generation strategy, an entry ei ⊆ C in
the recommended list might be a service token comprised of
multiple services. In this case, the entry ei hits the ground
truth G if ∃cj ∈ ei such that cj ∈ G.

We employed PRE@K, REC@K and F1@K, which are
short for precision, recall and F1 Score, respectively, as the
evaluation metrics of our recommendation approach. For every
workflow in the testing set, they can be calculated as follow:

precision =
|R ∩G|
|R| (6)

recall =
|R ∩G|
|G| (7)

F1 = 2 · precision · recall
precision+ recall

(8)

where |R ∩G| means the number of hit entries in the top K
recommended results. Additionally, note that the index of the
hit result (i.e., idx) in the recommended list is a significant
factor to users’ willingness to reuse recommended services.
We thus introduced a variant of MRR, aka VMRR, as an
evaluation metric as well. It helps us to capture the overall
performance of the rank of the hit entries in the recommended
results. The calculation of VMRR is:

VMRR =

{
0 R ∩G = ∅
|R|−idx

|R| = 1− idx
K else

(9)

For these four metrics, we reported their mean values over
all workflows in the test dataset. The higher the value, the
better the performance.

D. Parameter Sensitivity

We designed experiments to evaluate how changes to l and
θ will effect the performance of the probabilistic walk based
generation strategy. In such experiments, duplicate generated
sequences were removed. Figs. 2, 3 and 4 show the effects
of l and θ to the PW-based generation strategy. In terms of
precision, recall and F1, l = 5 is better than l = 3, l = 10,
l = 15 and l = 20. Note that the median and mean lengths
of workflows are 8 and 9.49, respectively, both of which are
closed to 9. Approximately, for a workflow with length of
9, the average length of generated sequences with BFS-based

63

Authorized licensed use limited to: SOUTHERN METHODIST UNIV. Downloaded on October 18,2024 at 15:17:25 UTC from IEEE Xplore. Restrictions apply.

Fig. 2. The effect of l and θ with top-3 recommendations

Fig. 3. The effect of l and θ with top-5 recommendations

Fig. 4. The effect of l and θ with top-10 recommendations

TABLE II
OVERALL RECOMMENDATION RESULTS

Metrics PRE@3 REC@3 F1@3 VMRR@3 PRE@5 REC@5 F1@5 VMRR@5 PRE@10 REC@10 F1@10 VMRR@10
BFS 0.3059 0.6258 0.4109 0.7651 0.2191 0.6897 0.3323 0.8730 0.1031 0.7397 0.1810 0.9412
DFS 0.2384 0.6142 0.3435 0.7516 0.1591 0.6721 0.2573 0.8612 0.0893 0.7455 0.1595 0.9362
PW 0.2564 0.6457 0.3609 0.7735 0.1668 0.6967 0.2692 0.8681 0.0912 0.7617 0.1629 0.9392

BFS-DR 0.3144 0.6465 0.4231 0.7789 0.2249 0.6979 0.3402 0.8779 0.1099 0.7579 0.1920 0.9445
DFS-DR 0.2449 0.6243 0.3518 0.7607 0.1630 0.6835 0.2632 0.8668 0.0922 0.7624 0.1645 0.9404
PW-DR 0.2668 0.6862 0.3842 0.8186 0.1808 0.7609 0.2922 0.8994 0.0993 0.8226 0.1772 0.9552

generation strategy is around 5. A lower l results in lower
coverage over all linkages between services, which reduces the
capability of discovering suitable services following a specific
service. A higher l makes it more likely to generate service
sequences that are not existed in workflows.

The parameter θ in this work is similar to the parameter
γ in [11]. For θ, 10 is almost the best option. The reason
might be that, for all nodes in the constructed WSKG, their
mean out-degrees and mean numbers of downstream nodes
are 2.38 and 1.69, respectively, both of which are close to 2.0.
Approximately, for a binary tree with height of 5, to reach a
specific leaf from the root with probabilities at forks, it needs
about 10 attempts. On the one hand, a lower θ might result

in higher probability to miss tangible dependencies that are
useful for next service recommendation. On the other hand, a
higher θ tends to generate duplicate sequences, which might
be misleading for representation learning.

In summary, our experiments demonstrated that l and θ mat-
ter for probabilistic walk based sequence generation strategy.
Our suggestion is that when applying the PW-based strategy,
it will be good to get a glimpse at the length of workflows
and the out-degree of service nodes in the constructed graph.

E. Performance Comparison

We designed experiments to answer two research questions.
(1) Which sequence generation strategy acts the best? (2)

64

Authorized licensed use limited to: SOUTHERN METHODIST UNIV. Downloaded on October 18,2024 at 15:17:25 UTC from IEEE Xplore. Restrictions apply.

Should duplicates from the generated sequences be removed?
Table II presents the overall recommendation performance
metrics over six generation strategies. BFS-DR, DFS-DR and
PW-DR are results of BFS, DFS and PW with duplicate
sequences removed, respectively. For each metric, the best
result is highlighted in bold and the second best is underlined.
According to the lessons we learnt as discussed earlier, we set
l and θ to 5 and 10, respectively, for PW and PW-DR.

RQ1: Which sequence generation strategy is the best?
According to the experimental results, in terms of precision
and F1, BFS-based strategies outperform others; in terms of
recall and VMRR, PW-DR performs the best. Specifically, we
hold that recall and VMRR are better metrics than precision
and F1 to gauge the performance between different strategies.
Recall that our goal is to find the most suitable services
following a specific service. It means that we care more
about how many adjacent services we can fetch, instead of
how many candidates are adjacent services. The higher recall
means higher possibility to help a user increase the efficiency
of service composition. Besides, for the hit index, we hope
it could be as low as possible. The higher VMRR could
encourage users to reuse the recommended services more.
Therefore, our experiments have demonstrated that PW-based
strategies outperform others.

Table II shows that the recall remains around 70% for
all strategies at K = 5, meaning that in the ground truth,
over half of adjacent services are found if we recommend 5
services. Especially, the VMRR@5 is around 0.90. It means
that generally the first or the second entry in the recommended
list hits the ground truth. We thus have demonstrated that our
approach is quite useful to help users save time to composite
a workflow by reusing recommended services.

RQ2: Should duplicates from the generated sequences be
removed? For all three aforementioned types of strategies,
there might appear duplicate service sequences. The reason
is that some services and their dependency relationships in
a workflow wi might exist in another workflow wj , in a
form of service chain. As for the PW-based strategy, three
factors may result in duplicates: the length of a path, the
frequencies of the dependency relationships in the path and
the predefined parameter θ. A shorter path with more frequent
dependency relationships tends to be generated as a sequence
with higher probability in case of a higher θ. Similar to
insurmountable duplicates in a natural language corpus [10],
duplicates in the corpus of service token sequences generated
from the knowledge graph might impact the effectiveness of
our approach. It is a feature-but-not-bug problem.

Table II also shows that, for all generation strategies, re-
moving duplicates achieves better performance than remaining
them in the training set. As for PW-based strategies, the
higher probability of a linkage is, the more potential it would
be traversed while walking, which makes it more likely to
generate duplicate sequences. PW-DR is better than PW in
terms of all metrics. Therefore, we suggest to investigate
the impact of duplicate sequences in advance, when applying
language modeling techniques to learn service representations.

V. CONCLUSIONS & FUTURE WORK

In this paper, we have applied deep learning methods in
NLP to study workflow recommendation problem. Workflow
composition process is viewed as a sequential service gen-
eration process, and the problem of service recommendation
is formalized as a problem of next word prediction in NLP.
A knowledge graph is constructed on top of workflow prove-
nance, and we develop three strategies to create a corpus of
service sequences from the knowledge graph. Deep learning
method in NLP is then applied to learn service representa-
tions. The resulted service embeddings are used to support
incremental workflow composition at run-time, associated with
structural information embedded in the knowledge graph.

In the future, we plan to extend our research by taking
into account users’ profile information to enable personalized
workflow recommendation.

ACKNOWLEDGMENT

Our work is partially supported by National Aeronautics
and Space Administration under grants 80NSSC21K0576 and
80NSSC21K0253.

REFERENCES

[1] A. L. Lemos, F. Daniel, & B. Benatallah, “Web Service Composition:
A Survey of Techniques and Tools”, ACM Computing Surveys (CSUR),
48(3), 2015, pp. 1-41.

[2] W. Tan, J. Zhang, & I. Foster, “Network Analysis of Scientific Work-
flows: A Gateway to Reuse”, Computer, 43(9), 2010, pp. 54-61.

[3] C. A. Goble, J. Bhagat, S. Aleksejevs, D. Cruickshank, D. Michaelides,
D. Newman, M. Borkum, S. Bechhofer, M. Roos, P. Li, & D. D. Roure,
“myExperiment: A Repository and Social Network for the Sharing
of Bioinformatics Workflows”, Nucleic Acids Research, 38, 2010, pp.
W677-W682.

[4] J. Zhang, M. Pourreza, S. Lee, R. Nemani, & T. J. Lee, “Unit of Work
Supporting Generative Scientific Workflow Recommendation”, in Pro-
ceedings of International Conference on Service-Oriented Computing,
Nov. 2018, pp. 446-462.

[5] J. Zhang, W. Wang, X. Wei, C. Lee, S. Lee, L. Pan, & T. J. Lee, “Climate
Analytics Workflow Recommendation as A Service-provenance-driven
Automatic Workflow Mashup”, in Proceedings of IEEE International
Conference on Web Services, Jun. 2015, pp. 89-97.

[6] J. Zhang, W. Tan, J. Alexander, I. Foster, & R. Madduri, “Recommend-
as-you-go: A Novel Approach Supporting Services-oriented Scientific
Workflow Reuse”, in Proceedings of IEEE International Conference on
Services Computing, Jul. 2011, pp. 48-55.

[7] F. Yu, Q. Liu, S. Wu, L. Wang, & T. Tan, “A Dynamic Recurrent
Model for Next Basket Recommendation”, in Proceedings of The 39th
ACM SIGIR International Conference on Research and Development in
Information Retrieval, Jul. 2016, pp. 729-732.

[8] S. Rendle, C. Freudenthaler, & L. Schmidt-Thieme, “Factorizing Person-
alized Markov Chains for Next-basket Recommendation”, in Proceed-
ings of The 19th International Conference on World Wide Web, Apr.
2010, pp. 811-820.

[9] T. Mikolov, K. Chen, G. Corrado, & J. Dean, “Efficient Esti-
mation of Word Representations in Vector Space”, arXiv preprint,
arXiv:1301.3781, 2013.

[10] A. Schofield, L. Thompson, & D. Mimno, “Quantifying the Effects of
Text Duplication on Semantic Models”, in Proceedings of the 2017
Conference on Empirical Methods in Natural Language Processing,
2017, pp. 2737-2747.

[11] B. Perozzi, R. Al-Rfou, & S. Skiena, “Deepwalk: Online Learning of
Social Representations”, in Proceedings of The 20th ACM International
Conference on Knowledge Discovery and Data Mining, Aug. 2014, pp.
701-710.

[12] K. Stoitsas, “The Use of Word Embeddings for Cyberbullying Detection
in Social Media”, Doctoral dissertation, Tilburg University, Jul. 2018.

65

Authorized licensed use limited to: SOUTHERN METHODIST UNIV. Downloaded on October 18,2024 at 15:17:25 UTC from IEEE Xplore. Restrictions apply.

