
1

Cost-minimized Microservice Migration with
Autoencoder-assisted Evolution in Hybrid Cloud

and Edge Computing Systems
Jiahui Zhai, Student Member, IEEE, Jing Bi, Senior Member, IEEE, Haitao Yuan, Senior Member, IEEE,

Mengyuan Wang, Jia Zhang, Senior Member, IEEE, Yebing Wang, Senior Member, IEEE, and
MengChu Zhou, Fellow, IEEE

Abstract—Hybrid cloud-edge systems combine the advantages
of cloud computing and mobile edge computing (MEC) to achieve
flexible integration and fluidity of data between the cloud and the
edge. To address dynamic and stochastic loads caused by mobile
users (MUs) and time-varying tasks, MEC network operators
need to continuously migrate installed services among edge
servers, significantly increasing network maintenance costs. Ex-
isting studies often overlook the service migration cost resulting
from MU mobility. Therefore, we present a joint optimization
scheme focusing on minimizing the operational cost of hybrid
cloud-edge systems while considering the dynamic service migra-
tion cost induced by MUs. With the rapid development of 5G/6G
technologies, many MUs require connectivity to edge nodes (ENs)
or cloud data centers (CDCs) for processing. Minimizing the
operational cost of hybrid cloud-edge systems while considering
many heterogeneous decision variables is a challenge. To solve
this complex high-dimensional mixed-integer nonlinear problem,
we develop a novel deep learning-based evolutionary algorithm
called Autoencoder-based Multi-swarm Grey wolf optimizer
based on Genetic learning (AMGG). Experimental results with
real data demonstrate that AMGG achieves lower system cost by
49.69% while strictly meeting task latency requirements of MUs
compared with state-of-the-art algorithms.

Index Terms—Mobile edge computing, service migration, au-
toencoders, high-dimensional optimization algorithms, grey wolf
optimizer.

I. INTRODUCTION

With the emergence of mobile services such as instant
messaging, navigation, autonomous driving, and streaming

This work was supported by the National Natural Science Foundation of
China under Grants 62173013 and 62073005, the Beijing Natural Science
Foundation under Grants L233005 and 4232049, in part by Beihang World
TOP University Cooperation Program, and China Scholarship Council. (Cor-
responding author: Haitao Yuan.)

J. Zhai and J. Bi are with the College of Computer, Beijing University of
Technology, Beijing 100124, China. (e-mail: zhaijiahui@emails.bjut.edu.cn;
bijing@bjut.edu.cn).

H. Yuan is with the School of Automation Science and Electrical Engineer-
ing, Beihang University, Beijing 100191, China. (e-mail: yuan@buaa.edu.cn).

M. Wang is with the School of Energy and Power Engineering, Beihang
University, Beijing 100191, China. (e-mail: mengyuanwang@buaa.edu.cn).

J. Zhang is with the Department of Computer Science, Southern Methodist
University, Dallas, TX 75206, USA. (e-mail: jiazhang@smu.edu).

Y. Wang is with the Mitsubishi Electric Research Laboratories, Cambridge,
MA 02139, USA. (e-mail: yebinwang@ieee.org).

M. Zhou is with the Department of Electrical and Computer Engineering,
New Jersey Institute of Technology, Newark, NJ 07102, USA. (e-mail:
zhou@njit.edu).

Copyright (c) 2024 IEEE. Personal use of this material is permitted.
However, permission to use this material for any other purposes must be
obtained from the IEEE by sending a request to pubs-permissions@ieee.org.

media, the demand for delay-sensitive and compute-intensive
services among mobile users (MUs) has rapidly increased
[1]. A revolutionary paradigm of mobile cloud computing
has emerged, allowing latency-sensitive and compute-intensive
services of MUs to run remotely in cloud data centers (CDCs)
[2]. However, due to the significant geographical distance
between MUs and CDCs, the remote physical location of
CDCs often leads to unpredictable long-term latency issues,
severely affecting the quality of service (QoS) for MUs. Mo-
bile edge computing (MEC) has emerged to address this issue.
It provides cloud computing capabilities at edge nodes (ENs)
in mobile networks. The basic principle of MEC involves
deploying a small base station (SBS) near MUs in each
EN, with each SBS connected to an MEC server [3]. This
proximity deployment routes tasks from MUs to nearby ENs in
the coverage range, thereby accelerating task execution speed
and effectively reducing significant communication latency
and cost between MUs and CDCs [4]. However, in 5G/6G
communication, due to limited computing and communication
capabilities in ENs, MEC cannot meet higher demands for MU
service mobility and greater data processing capabilities. To
address this issue, distributing MU services to a hybrid cloud-
edge system to facilitate real-time collaborative management
of communication and computing resources can further en-
hance resource utilization efficiency, effectively meeting MUs’
QoS requirements [5].

However, hybrid cloud-edge systems face several major
challenges. First, to accommodate the mobility of MUs,
MEC network operators implement frequent service migra-
tions among various microservices of MU requests [6]. This
architecture allows MUs to move in different EN coverage
areas while receiving real-time services. However, this strategy
significantly increases network operating cost [7]. For network
operators, the significant challenge of microservices in a
hybrid cloud-edge system is minimizing the system cost while
ensuring the QoS of MUs. Second, with the development
of 5G/6G technologies and the widespread deployment of
ENs, the density of ENs continues to increase. EN density
is expected to reach 50 ENs per square kilometer in the future
[8]. MUs may simultaneously be in the overlapping coverage
areas of multiple ENs. In this multi-MEC environment, MUs
can send tasks to any covered EN for processing [9]. However,
given the constraints of limited resources and dense EN
deployments, effectively performing appropriate task routing

This article has been accepted for publication in IEEE Internet of Things Journal. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/JIOT.2024.3457488

© 2024 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: SOUTHERN METHODIST UNIV. Downloaded on October 18,2024 at 04:02:24 UTC from IEEE Xplore. Restrictions apply.

2

and service deployment is a significant challenge [10]. Despite
the numerous solutions proposed for service migration in
MEC networks [6], [7], [18]–[25], several challenges remain.
Specifically, MEC networks’ dynamic and stochastic nature,
such as MU mobility and temporal variability of tasks, pose
challenges for the required request routing and service deploy-
ment. Additionally, MEC servers’ limited computing, memory,
and storage resources greatly impact decision variables of
optimization problems, which are overlooked in some related
studies [6], [7]. Furthermore, with the rapid increase in MUs in
MEC networks, there is a sharp increase in decision variables.
Therefore, this problem has become typical high-dimensional
complex optimization that must be quickly addressed in a hy-
brid cloud-edge system. The optimization problems discussed
above are low-dimensional, and their methods cannot solve
high-dimensional complex optimization problems [11], [12].

This work makes the following three novel contributions to
the hybrid cloud-edge domain to address the above-mentioned
challenges.

1) This work introduces an improved architecture for hybrid
cloud-edge systems comprising multiple MUs, ENs, and
a CDC. Additionally, it proposes a large-scale constrained
cost minimization problem subject to various constraints,
including transmission, computation, and dynamic ser-
vice migration cost. The problem is a high-dimensional
mixed-integer nonlinear program (MINLP).

2) To address it, this work introduces a deep learning-driven
hybrid optimization algorithm termed as Autoencoder-
based Multi-swarm Grey wolf optimizer based on Genetic
learning (AMGG). AMGG synergistically combines an
autoencoder [13] and a novel Multi-swarm Grey wolf
optimizer based on Genetic learning (MGG) proposed in
this work.

3) To balance exploration and exploitation during the opti-
mization process, two sub-populations of AMGG evolve
cooperatively in an asynchronous manner: one sub-
population evolves in the high-dimensional space fol-
lowing the original MGG. In contrast, the other sub-
population evolves in a lower-dimensional space by
integrating feature extraction and dimension reduction
techniques alongside MGG. Besides, AMGG exchanges
information dynamically between two sub-populations.

In addition, this work employs real-world data and evalu-
ates the performance of AMGG. Extensive results with real
data demonstrate that AMGG achieves lower system cost
by 49.69% than other state-of-the-art peers, including self-
adaptive bat algorithm with genetic operations (SBAGO) [14],
genetic simulated annealing (SA)-based particle swarm opti-
mization (GSP) [15], hybrid genetic-grey wolf optimization
(HGGWO) [16], and SA-based particle swarm optimization
(SAPSO) [17]. To clearly show the novelty of our work, we
compare this work with state-of-the-art studies in Table I.

Section II provides an overview and a comparison of
relevant studies. Section III elucidates the architecture of
hybrid cloud-edge systems and formulates the system cost
optimization problem. Section IV outlines specific details
of AMGG. Section V discusses the performance evaluation

results of AMGG. Section VI concludes the work.

II. RELATED WORK

A. Cost optimization in hybrid cloud-edge systems

Several studies on MEC network optimization focus on op-
timizing the cost in hybrid cloud-edge systems [7], [18]–[20].
Ouyang et al. [7] primarily focus on optimizing performance
in mobile services perception under long-term cost constraints,
with a principal emphasis on exploring the trade-off between
migration cost and latency in mobile services. However, it fails
to consider edge servers’ computational capacity, memory, and
disk storage limitations. Taleb et al. [18] introduce Follow-Me
Cloud (FMC), an architecture for codifying cellular mobile
networks. FMC optimizes service delivery and connectivity
for MUs, employing a Markov decision process and two
continuity schemes. Analytical modeling and experiments
highlight FMC’s user experience and resource utilization ad-
vantages. However, it only considers service deployment in
cloud servers and ignores user associations between MUs and
ENs in a hybrid cloud-edge system. Yuan et al. [19] propose a
multi-agent deep reinforcement learning algorithm to address
service migration cost issues and mobility optimization in
vehicular edge computing. However, it overlooks the energy
constraints of edge servers in ENs. Additionally, Wang et al.
[20] investigate a computation cost-based prediction method
to forecast the future time cost parameters for optimizing the
deployment locations of services, to minimize the average cost
in a specified time frame. However, it ignores the service
migration cost brought by the mobility of MUs.

Unlike these methods, this work considers the diverse
costs associated with migrating MU services across multiple
cloud-edge systems. Specifically, the cost of service migration
for MUs fluctuates due to their dynamic location changes.
Additionally, factors such as service latency, data transmission
cost during migration, computational expenses for service
execution, and migration cost vary depending on the types of
services being migrated and the deployment scenarios. More-
over, our method emphasizes analyzing service migration costs
across multiple system layers during the dynamic movement of
MUs rather than solely focusing on static service deployment
in a single system. Furthermore, it considers the practical
constraints of task routing and service deployment in the
hybrid cloud-edge system, enhancing its comprehensiveness
and applicability.

B. Joint optimization of request routing and service deploy-
ment

Some related studies concentrate on the joint optimization
of request routing and service deployment. Wang et al. [6]
propose a reinforcement learning-based algorithm to deter-
mine the optimal edge for offloading computation, aiming
to optimize the overall migration costs and service latency
during user mobility. It jointly considers the decision variables
of microservice coordination under the available processing
capacity of edge servers, data transmission conditions, and
service requests. Unlike it, we focus on jointly optimizing
request routing and service deployment to minimize the total

This article has been accepted for publication in IEEE Internet of Things Journal. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/JIOT.2024.3457488

© 2024 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: SOUTHERN METHODIST UNIV. Downloaded on October 18,2024 at 04:02:24 UTC from IEEE Xplore. Restrictions apply.

3

TABLE I
COMPARISON OF THE PROPOSED METHOD AND STATE-OF-THE-ART STUDIES

Novelties Our work [7] [18] [19] [20] [6] [23] [24] [25] [26]

System architectures

Hybrid cloud-edge systems ✓ ✓ ✓ ✓ ✓ ✓
Multi-task offloading ✓ ✓ ✓ ✓ ✓

Dynamic microservice migration ✓ ✓ ✓ ✓ ✓ ✓
Mobility-aware service deployment ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

Algorithms

Task priority ✓ ✓
Heuristic algorithms ✓ ✓ ✓

Deep learning-based algorithms ✓ ✓ ✓
High-dimensional optimization ✓ ✓

Performance analysis Cost minimization ✓ ✓ ✓ ✓
Latency minimization ✓ ✓ ✓ ✓ ✓ ✓

cost of the cloud-edge environment. He et al. [23] investi-
gate the optimal edge service configuration that satisfies the
requirements of both shareable resources (storage) and non-
shareable resources (computing and communication). Never-
theless, it does not consider the memory resource requirements
of edge servers. Yu et al. [24] conduct an effective three-stage
method to optimize request routing and service deployment
to minimize resource consumption and end-to-end response
time. However, it only considers a service provider that
provides a cloud infrastructure with a set of microservices
in a service environment. Unlike this, we aim to design a
request routing and service deployment framework following
a collaborative paradigm with edge and cloud. In [25], the
joint optimization of request routing and service deployment
in MEC networks is studied. This work proposes a solution
that considers various MEC constraints in practical scenarios,
aiming to minimize the number of requests routed to the
cloud center while ensuring the overall system performance
without violating MEC resource constraints. However, the
solution above does not consider the dynamic movement of
MUs over time and the long-term cost of the system. Sahil et
al. [26] propose a Fog-Cloud centric Internet of Things(IoT)-
based collaborative framework that enables machine learning-
based situation-aware traffic management. The integrated Fog-
Cloud-IoT framework can improve real-time data processing,
reduce network congestion, and improve situation awareness.

Different from the above studies, this work initially con-
structs a microservice-based service migration architecture
for a hybrid cloud-edge system, including MUs, ENs, and
CDC. Subsequently, we consider the cost components of all
constituents in the entire system and formulate them into a
constrained long-term total cost optimization problem. We
jointly optimize request routing and service deployment, with
decision variables including request routing, CPU resource
allocation for ENs, service deployment decisions for ENs,
service migration cost for ENs, transmission power, and
channel bandwidth allocation for MUs. To tackle the high-
dimensional optimization problem, we propose a novel algo-
rithm named AMGG, which integrates the evolution of MGG
in high-dimensional search spaces and an autoencoder-assisted
optimization approach in low-dimensional spaces to extract the
most useful information and key features from the population.

In contrast to our preliminary work [27], this work makes
three major enhancements. First, this work designs a novel

mechanism where two sub-populations evolve in high and
low-dimensional spaces asynchronously to reduce the space
and time complexity of AMGG significantly. Second, a cost-
computing model is enhanced. Specifically, we consider the
modeling of CPU, memory, and storage in ENs under realistic
service migration scenarios. Third, this work evaluates AMGG
more comprehensively, including two benchmark scenarios to
demonstrate its superiority in solving the formulated MINLP
over its peers.

SBSSBS

EN 1

MEC Servers

MU 1

MU 2

MU M

...

MU 1

MU M

...

EN 2

SBSSBS
MEC Servers

...

SBS
MEC Servers

MU 1

...

MU 2

MU MEN J

CDC

Wireless connections

Wired connections

Microservice components

Path and request

Fig. 1. The proposed service migration architecture for microservices in the
hybrid cloud-edge systems.

III. PROBLEM FORMULATION

We emphasize the scalability and adaptability of potential
real-world applications of our framework to address pressing
challenges such as frequent service migrations required for
MU mobility, raising network costs while maintaining QoS
and increasing EN density in task routing and service de-
ployment, especially with limited resources. Specifically, our
proposed solution is designed to provide real-time, data-driven,
and cost-minimized decision-making capabilities, which are
critical for managing complex systems in dynamic environ-
ments.

To further demonstrate its applicability, this work considers
microservice applications similar to [28]. Each MU appli-
cation is decoupled into multiple functionally independent
microservices. Fig. 1 illustrates that MUs can send tasks to
SBSs in the coverage area of ENs via wireless connections.
These route requests are made to request the migration of
microservices to MEC servers connected via wired links to
SBSs or to be executed in CDC. A service scheduler deployed
in MEC servers covered by ENs gathers information regarding
the real-time dynamic movement of MUs, uplink/downlink

This article has been accepted for publication in IEEE Internet of Things Journal. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/JIOT.2024.3457488

© 2024 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: SOUTHERN METHODIST UNIV. Downloaded on October 18,2024 at 04:02:24 UTC from IEEE Xplore. Restrictions apply.

4

channel conditions, completion time requirements of MUs, and
available resources in ENs/CDCs. Subsequently, the scheduler
determines the optimal service migration and deployment
strategy. This section formulates the problem of minimizing
the total cost of hybrid cloud-edge systems. We introduce the
system model, followed by the system total cost model, the
model for CPU, memory, and storage in ENs, and the latency
model. Finally, we formulate a constrained cost minimization
problem. For clarity, Table II lists the system’s main notations
and decision variables in this section.

A. System model

Let M denote the number of MUs. It is assumed that
an application comprises K microservices, each microservice
skm(1≤m≤M, 1≤k≤K) is characterized by a four tuple, and
skm=(ςkm, wk

m, qkm, ϖk
m). Here, ςkm represents the storage ca-

pacity occupied by skm (bits). wk
m denotes the computational

intensity required by skm (cycles/sec.). qkm represents the data
scale of the service request of skm (bits). ϖk

m represents
the total computational workload of skm (cycles). We denote
each time slot as t(1≤t≤T) as the unit of time. At each
time slot t, MU m generates K tasks, denoted as skm(t),
skm(t)=

(
ςkm(t), wk

m(t), qkm(t), ϖk
m(t)

)
. λm,j(t) and λm,0(t)

are binary variables that denote the routing status of service
request of skm(t) at time slot t. Specifically, λm,j(t)∈{0, 1}
and λm,0(t)∈{0, 1}, i.e., when an EN accepts a service request
of skm(t) from MU m and forwards it to EN j (1≤j≤J) for
computation at time slot t, λm,j(t)=1; otherwise, it’s directed
to CDC, λm,0(t)=1. Service request of skm(t) is exclusively
routed for processing to either EN or CDC. Hence, for each
MU m covered by EN j, we express:

J∑
j=0

λm,j(t)=1 (1)

It’s crucial to emphasize that this work is centered on
processing decisions at the current time slot. If a task is not
completed in the current time slot, its remaining portion is
treated as a new task at the subsequent time slot. Based on
the routing decision for the request, the system can manage
this task in the new time slot. Only the execution environment
configured for skm(t) can execute the task on the edge server
in EN.

This work utilizes a multi-access communication model
with orthogonal frequency division for each MU and its
respective EN/CDC [31]. Following the communication model
proposed by [32], (dm,j)

−v denotes the trajectory loss linking
MU m and its corresponding EN j. dm,j represents the
distance from MU m to EN j. v denotes the path loss
exponent. Let RU

m,j(t) denote the uplink data rate between
MU m and EN j at time slot t, i.e.,

RU
m,j(t)=µm,j(t)W

U
j log2(1+

Pm(t)(dm,j)
−v |h1|2

G0
) (2)

where µm,j(t)(0≤µm,j(t)≤1) represents the uplink channel
bandwidth utilized by MU m in EN j at time slot t. WU

j

denotes the uplink channel bandwidth of EN j. Pm(t) signifies
the transmission power of MU m at time slot t. h1 denotes the

TABLE II
MAIN NOTATIONS IN SECTION III

Notations Definition

M Number of MUs
K Number of services
J Number of ENs
ςkm Service skm size of occupying storage capacity (bits)
qkm Data scale of the service request of skm (bits)
ϖk

m Total computational workload of skm (cycles)
dm,j Distance from MU m to EN j
v Path loss exponent
h1 Uplink fading coefficient
G0 Power of the additive white Gaussian noise
WU

j Uplink channel bandwidth of EN j

P 0
m Power consumption of MU m in an idle state

ρm Power amplifier utilized to transmit data from MU m

β1
Data transmission cost per unit in each uplink channel
from each MU to each EN

ϵ(ν)
Coefficients that measure the cost of communication via
the uplink (downlink) channels

P̂m Maximum limit of transmission power of MU m
σj Fixed value determined by the chip structure of EN j

P 1
δ

Power consumption when each EN transmits service request
of skm to CDC via the wired line

β2
Data transmission cost per unit in each uplink channel
from each EN to CDC

e0 Energy consumed by each CPU cycle in the CDC

r0
Transmission rate (bits/sec.) of the backhaul connection
between ENs and CDC

Êj Maximum available energy in EN j

F̃j Maximum CPU speed of EN j
τ Weighting factor for the cost of energy consumption
ẑ Maximum cost of migrating service skm(t) to EN j

C̃ Cost budget of the T time slots
Ψ Total cost of the hybrid cloud-edge system
Âj Maximum value of CPU cycles in each EN j

Ĝj Maximum limit of memory in EN j

ϑk
m

Amount of memory required for each data bit
of service request of skm

Ŝj Maximum limit of storage in EN j
w0 Computing speed of CDC (cycles/sec.)

Tm
Total completion time required for transmitting and processing
K services in ENs and CDC

T̂m Latency constraint of Tm

℧ Vector of decision variables

∆̃
Transformed new objective function utilized to
compute the fitness value of each solution in AMGG

N Significantly big positive constant
Θ Total penalty for all constraints
N=(N ̸=) Number of equality (inequality) constraints
Variable Definition
wk

m Computational intensity required by skm (cycles/sec.)

λm,j
Binary variable that denotes the routing status of service
request of skm between MU m and EN j

λm,0
Binary variable that denotes the routing status of service
request of skm between MU m and CDC

µm,j Uplink channel bandwidth utilized by MU m in EN j
Pm Transmission power of MU m

ykj
Binary variable that represents the decision to deploy
service skm in EN j

zkj Cost of migrating service k to EN j

uplink fading coefficient, and G0 represents the power of the
additive white Gaussian noise. We assume all MUs connected
to EN j share its channel bandwidth. Therefore, for each EN

This article has been accepted for publication in IEEE Internet of Things Journal. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/JIOT.2024.3457488

© 2024 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: SOUTHERN METHODIST UNIV. Downloaded on October 18,2024 at 04:02:24 UTC from IEEE Xplore. Restrictions apply.

5

j, we have:
M∑

m=1

λm,j(t)µm,j(t)=1 (3)

For most traditional delay-sensitive services, the downlink
has significantly lower energy consumption and latency than
the uplink, so we simplify by overlooking the downlink’s
energy consumption and latency [33].

B. Total cost model

For a given service request of skm(t), associated costs
are incurred in transmitting and processing it. These costs
comprise three aspects: a) the cost of transmitting the data
related to service request of skm(t); b) the computational cost
incurred by ENs/CDC in executing service skm(t); and c) the
cost of migrating service skm(t) in the EN.

1) Cost model of data transmission
P 0
m represents the power consumption of MU m in idle

state. ρm represents the coefficient of the power amplifier
utilized to transmit data from MU m. Let ϕ1

m,j and C1
m,j

denote the energy and cost of uploading data between MU m
and EN j, respectively. ϕ1

m,j and C1
m,j are computed as:

ϕ1
m,j(t)=

K∑
k=1

{(P 0
m+ρmµm,j(t)Pm(t))

β1(λm,j(t)+λm,0(t))q
k
m(t)

RU
m,j(t)

}
(4)

C1
m,j(t)=

K∑
k=1

{(λm,j(t)+λm,0(t))q
k
m(t)(ϵ+ν)} (5)

where β1 (β1 > 0) represents the data transmission cost per
unit in each uplink channel from each MU to each EN [34]. ϵ
and ν denote the coefficients that measure communication cost
via uplink and downlink channels, respectively. Additionally,
P̂m denotes represents the upper boundary of Pm(t). Then,

0≤Pm(t)≤P̂m (6)

2) Cost model of ENs/CDC
Let Em,j(t) represent the energy consumption incurred

when MU m’s service request of skm(t) is routed to EN j
or CDC at time slot t. Naturally, Em,j(t) comprises two
components, denoted as ϕm,j(t) and ϕm,0(t), which represents
the energy consumption when MU m’s service request of
skm(t) is routed to EN and CDC respectively. Em,j(t) is
expressed as:

Em,j(t)=ϕm,j(t)+ϕm,0(t) (7)

ϕm,j(t) also consists of two components including ϕ1
m,j(t)

and ϕ2
m,j(t). ϕ1

m,j(t) denotes the energy consumption for
uploading service request data of skm(t) and ϕ2

m,j(t) denotes
the energy consumption for executing the service skm(t) from
MU m in EN j. Therefore, we can derive:

ϕm,j(t)=ϕ1
m,j(t)+ϕ2

m,j(t) (8)

ϕ2
m,j(t)=

K∑
k=1

{σjλm,j(t)ϖ
k
m(t)(wk

m,j(t))
2} (9)

where σj represents a fixed value determined by the chip
structure of EN j [15].

In addition, ENs and CDC are connected via low-latency
wired optical fiber transmission [35]. P 1

δ denotes the power
consumption when each EN transmits service request of skm(t)
to CDC via the wired line. β2 (β2 > 0) represents the data
transmission cost per unit in each uplink channel from each
EN to CDC. e0 represents the energy consumed by each CPU
cycle in the CDC. Therefore, we obtain ϕm,0(t) as:

ϕm,0(t)=

K∑
k=1

(
P 1
δ β2λm,0(t)q

k
m(t)

r0
+ϖk

m(t)λm,0(t)e0) (10)

where r0 represents the transmission rate (bits/sec.) of the
backhaul connection between ENs and CDC.
Êj deotes the maximum available energy in EN j. The total

energy consumed by the tasks of MUs to EN j cannot exceed
Êj . Therefore,

M∑
m=1

λm,j(t)ϕm,j(t)≤Êj (11)

F̃j denotes the maximum CPU speed of EN j. Therefore,
the total execution speed for servicing K services from M
MUs cannot exceed F̃j , i.e.,

M∑
m=1

K∑
k=1

λm,j(t)w
k
m,j(t)≤F̃j , w

k
m,j(t)∈N+ (12)

Let C2
m,j(t) denote the energy cost for transmitting K tasks

and performing K services for MU m covered by EN j.
Therefore, C2

m,j is given as:

C2
m,j(t)=τEm,j(t) (13)

where τ represents a weighting factor for the cost of energy
consumption [36].

3) Cost model of service migration
A binary ykj (t)∈{0, 1} is defined where if service skm(t)

is deployed in EN j at time slot t, ykj (t)=1; otherwise,
ykj (t)=0. Given the uncertain nature of MU mobility, it is
essential to quickly deploy microservices to ENs near MUs
to ensure uninterrupted real-time services. Nevertheless, ser-
vices’ dynamic deployment and relocation result in increased
operational expenses. Let C3

j (t) denotes the cost of migrating
a service to EN j at time slot t, i.e.,

C3
j (t)=

K∑
k=1

{zkj (t)Φ(ykj (t)>ykj (t−1))} (14)

where zkj (t) represents a decision variable for the cost of
migrating service k to EN j at time slot t, and ẑ is the maxi-
mum of zkj (t). Φ(·) is the 0-1 indicator function that indicates
the necessity of migration. If ykj (t)=1 and ykj (t−1)=0, i.e.,
Φ(ykj (t)>ykj (t−1))=1, service k is migrated from CDC to EN
j. To route the service request of skm(t) from MU m to EN

This article has been accepted for publication in IEEE Internet of Things Journal. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/JIOT.2024.3457488

© 2024 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: SOUTHERN METHODIST UNIV. Downloaded on October 18,2024 at 04:02:24 UTC from IEEE Xplore. Restrictions apply.

6

j, it is necessary to deploy the corresponding service k in EN
j, i.e.,

λm,j(t)⩽ykj (t),∀j∈J (15)

C̃ denotes the cost budget of the T time slots. Therefore,
we have:

T−1∑
t=0

J∑
j=1

C3
j (t)≤C̃ (16)

4) Total cost
According to (5), (13), and (14), Ψ denotes the total system

cost, which is calculated as:

Ψ=

T−1∑
t=0

J∑
j=1

(C3
j+

M∑
m=1

C1
m,j+C2

m,j) (17)

C. CPU, memory, and storage models in ENs

Âj denotes the maximum value of CPU cycles in each EN
j. Then, the total number of CPU cycles required in EN j
for computing K services of M MUs must not exceed the
corresponding limit, i.e.,

M∑
m=1

K∑
k=1

(λm,j(t)ϖ
k
m(t))≤Âj (18)

Ĝj denotes the upper limit of memory in EN j. Then, the
total amount of memory consumed by K services of M MUs
in EN j must not exceed the corresponding limit, i.e.,

M∑
m=1

K∑
k=1

(λm,j(t)q
k
m(t)ϑk

m)≤Ĝj (19)

where ϑk
m represents the memory required for each data bit

of service skm(t).
Ŝj denotes the upper limit of storage in EN j. Consequently,

the total size of K services of M MUs stored in EN j must
not exceed its storage capacity, i.e.,

M∑
m=1

K∑
k=1

(
ykj (t)ς

k
m(t)

)
≤Ŝj (20)

D. Latency model

The latency is determined by the delay in data uploading
and processing skm(t) in ENs/CDC. The service request of
skm(t) is transmitted to a specific EN or further transmitted
from EN to CDC. Let T k

m,j(t) denote the time that MU m
spends transmitting the service request of skm(t) and executing
skm(t) in EN j and CDC at time slot t. Specifically, T̈ k

m,j(t)
denotes the total time required for uploading and processing
skm(t) in EN j, and T̃ k

m,j(t) denotes the corresponding time
in the CDC, i.e,

T k
m,j(t)=T̈ k

m,j(t)+T̃ k
m,j(t) (21)

Referring to (2), β1 (λm,j(t)+λm,0(t)) q
k
m(t)/RU

m,j(t) de-
notes the transmission data time for service request of skm(t)

uploaded from MU m to EN j. λm,j(t)ϖ
k
m(t)/wk

m,j(t) de-
ontes the calculation time of the service skm(t) in EN j. Thus,
T̈ k
m,j(t) is calculated as:

T̈ k
m,j(t)=

β1 (λm,j(t)+λm,0(t)) q
k
m(t)

RU
m,j(t)

+
λm,j(t)ϖ

k
m(t)

wk
m,j(t)

(22)

Similar to (22), T̃ k
m,j(t) is calculated as:

T̃ k
m,j(t)=

β2λm,0(t)q
k
m(t)

r0
+
λm,0(t)ϖ

k
m(t)

w0

(23)

where w0 denotes the computing speed of CDC (cycles/sec.).
Tm denotes the total completion time required for trans-

mitting and processing K services in ENs/CDC, which is
calculated as:

Tm=

T−1∑
t=0

K∑
k=1

J∑
j=1

T k
m,j(t) (24)

T̂m represents the latency constraint of Tm, i.e.,

Tm≤T̂m (25)

E. Cost minimization problem

℧℧℧ is a vector of decision variables, containing λm,j(t),
λm,0(t), µm,j(t), Pm(t), wk

m,j(t), y
k
j (t), and zkj (t). The cost

minimization problem is formulated as:

argMin
℧℧℧
{Ψ=

T−1∑
t=0

J∑
j=1

(C3
j+

M∑
m=1

C1
m,j+C2

m,j)} (26)

subject to (1), (3), (6), (11), (12), (15), (16), (18-20).

λm,j(t)∈{0, 1} (27)

λm,0(t)∈{0, 1} (28)

0≤µm,j(t)≤1 (29)

0≤zkj (t)≤ẑ (30)

ykj (t)∈{0, 1} (31)

Here, λm,j(t), λm,0(t), and ykj (t) are discrete integer vari-
ables, while µm,j(t), Pm(t), wk

m,j(t), and zkj (t) are continuous
variables. It is evident that (3) and (12) are nonlinear about
λm,j(t), µm,j(t), and wk

m,j(t). Moreover, (2) is nonlinear
with respect to Pm(t), and therefore (25) is also nonlinear
concerning Pm(t). In sum, (26) is a constrained MINLP
problem.

Theorem 1: The solution complexity of this problem is NP-
hard.

Proof : In generalized edge computing, we consider the com-
putation offloading problem in a given un-directed complete
graph G=(Mp, Jp), where Mp and Jp are the positions of
each MU and EN. The problem offloads the computing tasks
into ENs for calculation, which has been proven NP-hard [37].
This work focuses on the computation offloading problem in
edge computing by determining task routing, service deploy-
ment, and cloud-edge collaborative computing. We construct
a collaborative cloud-edge computing network G

′
=(Mp, Q)

from network G=(Mp, Jp), where Q denotes the location

This article has been accepted for publication in IEEE Internet of Things Journal. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/JIOT.2024.3457488

© 2024 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: SOUTHERN METHODIST UNIV. Downloaded on October 18,2024 at 04:02:24 UTC from IEEE Xplore. Restrictions apply.

7

decision of task offloading, i.e., Q=Mp∪Jp∪Cp. Cp denotes
the position of the CDC. Therefore, the optimal solution to the
offloading problem is also that of G. Since the task offloading
problem in G is NP-hard, our proposed offloading problem is
also NP-hard. Thus, no polynomial-time approaches exist for
our problem [38]. To address these limitations, we employ
a penalty function approach to transform each constraint
into a positive penalty [39]. Afterwards, the limited problem
discussed earlier is converted into an unrestricted problem,
which is expressed as:

Min
℧℧℧
{∆̃=NΘ+Ψ} (32)

Θ=

N ̸=∑
p=1

(max {0,−gp(℧℧℧)})2 +
N=∑
q=1

|hq(℧℧℧)|2 (33)

gp(℧℧℧) ≥ 0 (34)

hq(℧℧℧)=0 (35)

where ∆̃ is a transformed new objective function utilized to
compute the fitness value of each solution in AMGG. N
represents a significantly big positive constant. Θ represents
the total penalty for all constraints, N= refers to the numbers
of equality and N ̸= are inequality constraints respectively.
To address the unconstrained problem, this work devises an
innovative autoencoder-assisted evolutionary algorithm, i.e.,
AMGG, to obtain solutions close to the optimum. The fol-
lowing section provides a detailed description of AMGG.

IV. PROPOSED AMGG

For the MINLP with a small number of decision variables,
traditional evolutionary algorithms (EAs) such as genetic al-
gorithms (GA) [29], particle swarm optimization (PSO) [15],
grey wolf optimizer (GWO) [30], and simulated annealing
(SA) [17] have shown effective solving capabilities. However,
as the dimensionality and quantity of decision variables in real-
world problems increase, such as the number of MUs (M),
services (K), and ENs (J) in this work, the dimensionality
of the search space and the complexity of solving real-world
problems with EAs grow exponentially, resulting in what is
commonly referred to as the curse of dimensionality [40].

To tackle the high-dimensional expensive problems (HEPs),
this work introduces a two-stage high-dimensional optimiza-
tion framework based on deep learning named AMGG. As
shown in Fig. 2, AMGG includes two stages: autoencoder
training and population coevolution process between two sub-
populations.

1) In stage 1, the population is first initialized. Leveraging
the superior ability of MGG to procure high-quality solution
sets in high-dimensional complex problems, high-quality pop-
ulation data (Ω) are provided for training the autoencoder.
After a predefined number of generations, the trained autoen-
coder (ℸ) and the final population (P) are obtained through
the training of the selected individuals.

2) In stage 2, P is divided into two sub-populations based
on fitness value, i.e., P1 and P2. P1 directly evolves to P

′

1 with
MGG in the high-dimensional space. The major component of

MGG is made up of Grey wolf optimizer based on Genetic
learning (GG) and three different proposed strategies for
achieving an appropriate balance between exploration and ex-
ploitation capabilities. Specifically, MGG is based on a multi-
swarm framework, which combines the high-quality search
capability of GG with three innovative strategies, namely the
dynamic-subgroup number strategy (DNS), sub-population re-
combination strategy (SRS), and purposeful detection strategy
(PDS). Meanwhile, the high-dimensional population P2 is
further encoded into a low-dimensional population P̌2 by a
well-trained autoencoder. The evolution of P̌2 through MGG
yields P̌

′

2. The low-dimensional population P̌
′

2 is decoded into
P

′

2, enabling fitness evaluation in the high-dimensional space.
Elite individuals from sub-populations P1 and P2 are chosen
based on their fitness values and combined to form a new
population P for the following generation’s evolution.

If the termination condition is not met, P will undergo fur-
ther division, facilitating the dynamic exchange of information
between the two sub-populations. Thus, AMGG comprises
two main components: high-dimensional optimization and
autoencoder-assisted optimization.

Start
Population

initialization

Enough

Samples?

Perform MGG

to obtain Ω

Fitness

evaluation

Selection

& updating

No

Current population ℙ

Autoencoder training to obtain ך

Divide current population ℙ into ℙ1 and ℙ2 in an

ascending order according to fitness values

Sub-population I Sub-population II

H
ig

h
-d

im
en

sio
n

a
l sp

a
c
e

Fitness

Evaluation

L
o

w
-d

im
en

sio
n

a
l sp

a
c
e

Selection

& Updating

g ≤ 0.9 * ĝ ?

No

Yes
MGG

Selection

& updating

g ≤ ĝ ?

Yes

Reconstruct ℙ1 and ℙ2

Combine ℙ1 and ℙ2

into ℙ

End

Output the best

individual

Stage 1

Stage 2

H
ig

h
-d

im
en

sio
n

a
l

o
p

tim
iza

tio
n

A
u

to
e
n

c
o

d
e
r-a

ssisted

o
p

tim
iza

tio
n

DNS

SRS

PDS

GG
Encode into with

trained autoencoder ך

Evolve into with

MGG

Decode into with

trained autoencoder ך

2
in

2 22

22 2

¢

2

2

¢

2

¢

2

¢

2

Fig. 2. Process of AMGG.

A. High-dimensional optimization

MGG adopts a typical meta-heuristic algorithm that com-
bines GG and the multi-swarm mechanism of DNS, SRS, and
PDS to solve the HEPs. The specific principles of MGG are
as follows.

(1) Grey wolf optimizer based on Genetic learning (GG)
The core of GWO is its population updating mechanism,

which mimics the hierarchical structure and hunting behavior
of grey wolves for iterative optimization. This gives GWO
advantages in convergence speed, efficiency, and precision
over traditional EAs like PSO and differential evolution [30].
However, GWO can suffer from premature convergence and

This article has been accepted for publication in IEEE Internet of Things Journal. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/JIOT.2024.3457488

© 2024 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: SOUTHERN METHODIST UNIV. Downloaded on October 18,2024 at 04:02:24 UTC from IEEE Xplore. Restrictions apply.

8

local optima in complex high-dimensional problems. To ad-
dress this, we integrate genetic operations from GA and the
Metropolis acceptance rule from SA into GWO to enhance
population diversity and search space coverage. Our approach
introduces two main innovations: incorporating elite individ-
uals to initialize a high-quality population, and optimizing
the population updating strategy by using elite individuals as
reference points for the three best individuals.

Each population has |P1| individuals in GWO. xα, xβ , and
xδ denote the first three best positions of P1. D denotes the
total number of elements in each position. Here, we design a
superior exemplar ei for each individual i (1≤i≤|P1|), and its
d (1≤d≤D) entry is ei,d, i.e.,

ei,d=
c1·r1·xα,d+c2·r2·xβ,d+c3·r3·xδ,d

c1·r1+c2·r2+c3·r3
(36)

where c1, c2, and c3 denote the constant of social acceleration
for the effect of xα, xβ , and xδ , and r1, r2, and r3 is a random
number uniformly generated in (0,1).

The four core operations developed in GG are crossover,
mutation, selection, and position update for each individual.

1) Crossover operation: In traditional GA, the crossover of
two selected individuals involves different segments of their
chromosomes. However, in this case, the crossover operation
utilizes the globally optimal individual and the second and
third-best individuals in the current population. This approach
aims to improve the search performance and enhance the
quality of individuals. Let ∆̃(℧℧℧i) denote the value of ∆̃
for each individual i. A crossover operation is performed
for each entry d of individual i. Firstly, a random indi-
vidual κ (κ∈{1, 2, . . ., |P1|}) is selected. Then, a crossover
is applied to xα, xβ , and xδ to generate a new offspring
oi=(oi,1, oi,2, . . ., oi,D), i.e.,

oi,d=

{
r1d·xα,d+r2d·xβ,d+(1−r1d−r2d)·xδ,d ∆̃(xi)<∆̃(xκ)

xκ,d otherwise
(37)

where rd is a uniformly generated random number in the range
(0,1). Specifically, if ∆̃(xi)<∆̃(xκ), oi,d is generated through
a linear combination of xα,d, xβ,d, and xδ,d; otherwise, oi,d
is assigned from xκ,d.

2) Mutation operation: To enhance the diversity of popu-
lation individuals and overcome local optimal solution con-
straints, thereby increasing the quality of each exemplary
instance, we perform the following mutation operation on
individual oi:

oi,d=rand(b̌d, b̂d), if rd<ζ (38)

where rand(·) denotes a rand function, b̂d(b̌d) is an upper
(lower) limit of element d of ℧℧℧i, ζ denotes a specified mutation
probability.

3) Selection operation: After obtaining the mutated indi-
vidual oi, it is necessary to filter the exemplary instances in the
iteration to increase the likelihood of receiving a high-quality
solution set subsequently. We employ the Metropolis accep-
tance rule from the SA algorithm as the filtering criterion. Υ0

denotes the starting temperature. Φ denotes the cooling rate.
The specific formula is as follows:

ei=

oi, ∆̃oi)<∆̃(ei),

oi, ∆̃(oi)≥∆̃(ei) and exp(− oi−ei
Υg

)
>ℵ,

ei, ∆̃(oi)≥∆̃(ei) and exp(− oi−ei
Υg

)≤ℵ.

(39)

where Υg denotes the current temperature value of each
iteration g, and ℵ is a random number between 0 and 1.

4) Position update of each individual: In the original GWO,
the parameter A is crucial for controlling the hunting behavior
of the wolf population. The convergence factor a, which
linearly decreases from 2 to 0, directly influences A. However,
for complex problems, this linear strategy often results in
insufficient search space exploration. We aim to maintain
a larger a value in the early stages for thorough global
exploration, and a smaller a value in the later stages to promote
local exploitation and faster convergence. Thus, we propose a
non-linear convergence factor a, defined as follows:

a=1+cos(
π·g
ĝ2

) (40)

where ĝ2 represents the maximum number of iterations of
AMGG in stage 2.

Let vα, vβ , and vδ denote the distances between xα, xβ ,
and xδ and other individuals, respectively. Then, x indicates
the position vector of an individual, and it is updated as:

vα= |h1 · xα−e| ,vβ= |h2 · xβ−e| ,vδ= |h3 · xδ−e| (41)

x1=xα−a1·vα,x2=xβ−a2·vβ ,x3=xδ−a3·vδ (42)

x(g+1)=
ι(x1+x2+x3)

3
(43)

where ι=(ι̂−ι̌)· gĝ2+ι̌, h is coefficient vector in [0,2], x(g+1)
represents the updated position of the next generation’s search
individual. ι ensures individuals’ strong social learning ability
in the early stages and exploration ability towards the global
optimum position, enhancing search space coverage. In later
stages, it tends to search near the α individual to accelerate
convergence. GG is described as Algorithm 1.

(2) Multi-swarm mechanism of DNS
The purpose of DNS is to stabilize the sub-population

adjustment process. It determines and adjusts the number
of sub-populations in ascending order during evolution. This
ensures efficient information transmission and selection among
populations, meeting exploitation requirements. DNS faces
two key issues: determining the number of sub-populations
within each population, and deciding when to adjust these
numbers. Regarding the first issue, we assume the total pop-
ulation size to be U , and U represents a decreasing ordered
sequence, i.e., U={u1, u2, · · ·, uv}, where u1>u2> · · ·>uv .
uv in U represent the number of sub-populations. In this work,
the individual counts in each sub-population are identical. For
instance, if U=60, U={30, 20, 15, 12, 10, 6, 5, 4, 3, 2, 1}, ϱ⋄

denotes the individual count in each sub-population, which is
2 when u1=30 at the start of the iterations. At the end of the
iterations, all sub-populations merge into the entire population.
Concerning the second issue, we adjust the number of sub-
populations after every χ fitness evaluation and χ= ĝ2

|U| , |U|

This article has been accepted for publication in IEEE Internet of Things Journal. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/JIOT.2024.3457488

© 2024 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: SOUTHERN METHODIST UNIV. Downloaded on October 18,2024 at 04:02:24 UTC from IEEE Xplore. Restrictions apply.

9

Algorithm 1: GG
Input: population for high-dimensional optimization

(P1), objective function (∆̃), maximum number
of iterations of AMGG in stage 2 (g2)

Output: final population (P1)
1 Obtain the fitness value of each individual i with (32);
2 Update a global optimum of current population (xα);
3 Initialize ζ of GA, Υ0 and Φ of SA, a and h of GWO,

parameters of GG including c1, c2, c3, and ι;
4 Initialize superior exemplars (e) with (36);
5 g←1;
6 while g≤ĝ2 do
7 Perform the crossover operation of GA with (37)

to obtain oi;
8 Perform the mutation operation of GA with (38)

on oi;
9 Υg←Υg−1Φ;

10 Perform the selection operation of SA with (39) to
update ei;

11 Update a with (40);
12 ι=(ι̂−ι̌)· gĝ2+ι̌;
13 Update x(g+1) of GWO with (41), (42), and (43);
14 Calculate the fitness value of each individual i with

(32);
15 Update xα;
16 g←g+1;
17 end

represents the number of elements in U, which in this example
is U=11. DNS is described in Algorithm 2.

Algorithm 2: DNS
Input: frequency of adjustment of sub-populations (χ),

total population size (U), decreasing ordered
sequence (U), v=1, and population for
high-dimensional optimization (P1)

Output: uv sub-populations of size ϱ⋄

1 if mod(g, χ)==0 and v≤|U| then
2 uv∈U;
3 ϱ⋄= U

uv
;

4 Randomly divide the whole population P1 into uv

sub-populations;
5 v=v+1;
6 end

(3) Multi-swarm mechanism of SRS
SRS aims to facilitate sharing valuable information among

sub-populations, ensuring timely recombination of high-
quality data across multiple populations and enhancing de-
velopment during the search process. Since the neighbor
topology of each sub-population in SRS is modeled as a ring,
multiple iterations are required to thoroughly extract useful
information from other individuals. To address this issue, we
introduce ℏ to represent the number of consecutive stagnation
generations at the global optimum (xα). We utilize it as the
criterion for sub-population recombination in the population

and promptly recombine the entire population into uv sub-
populations. Specifically, we set ℏ=

⌊
ϱ⋄

2

⌋
as the recombination

threshold. For instance, if ϱ⋄=10, and ℏ exceeds 5, the pop-
ulation is reorganized. The details of SRS can be represented
as Algorithm 3 based on the information above.

Algorithm 3: SRS
Input: uv sub-populations of size ϱ⋄, the number of

consecutive stagnation generations at the global
optimum (ℏ)

Output: uv sub-populations of size ϱ⋄, the number of
consecutive stagnation generations at the
global optimum (ℏ)

1 if ℏ≥ϱ⋄

2 then
2 Randomly regroup the whole population into uv

sub-populations;
3 ℏ=0;
4 end

(4) Multi-swarm mechanism of PDS
PDS aims to enhance global exploration, helping popu-

lations escape local optima. It uses historical information
about individuals to guide targeted detection operators for the
global optimal individual (xα), aiding in overcoming local
optima. PDS addresses three issues: selecting relevant infor-
mation, determining when to execute detection operations, and
performing these operations. Each search space dimension
is partitioned into S segments for the first issue. Here, ξds
represents the segment s in the dimension d of the search
space. We employ Md

s (1≤s≤S, 1≤d≤D) to denote the
frequency of elite individuals fall into segment s of dimension
d, serving as an evaluation criterion for the segment. In other
words, the more frequently elite individuals fall into a segment,
the more useful information ξds possesses. xd

∗ denotes the
dimension d of elite individuals (xα, xβ , and xδ). Therefore,
Md

s can be obtained as follows:

Md
s=Md

s+1, if xd
∗ lies in ξds (44)

Regarding the second issue, we conduct periodic detection
operations due to the varying characteristics of populations
across different evolutionary stages. Specifically, based on
Md

s , which is utilized to aid elite individuals in locating the
most promising solutions in the population, early evolutionary
stages with fewer individuals promote more frequent execu-
tion of detection operations, facilitating enhanced exploration.
However, detection operations almost ceased in later evolu-
tionary stages when the population size is larger, favoring
exploitation. Regarding the third issue, we propose a simple
detection operation, which involves calculating the Md

s of
xd
∗. We randomly select positions of individuals that do not

frequently detect segments and only replace the position of the
individual being detected by xd

∗ when the performance of the
generated new individual position improves over the original
xd
∗. To avoid detecting the same segment s for xd

∗ at different
periods, thereby avoiding interference with exploration, we
introduce a flag denoted by Fd

s . Specifically, if segment s has
been detected by xd

∗, Fd
s is set to 1; otherwise, it is set to 0.

This article has been accepted for publication in IEEE Internet of Things Journal. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/JIOT.2024.3457488

© 2024 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: SOUTHERN METHODIST UNIV. Downloaded on October 18,2024 at 04:02:24 UTC from IEEE Xplore. Restrictions apply.

10

xd
∗ cannot detect segments set to 1 until they are reset to 0.

When all flags are set to 1, they are reset to 0. In summary,
PDS is described as follows:

Algorithm 4: PDS
Input: global optimum of current population (xα),

frequency of elite individual falling into
segment s of dimension d (Md

s), and flag bit
(Fd

s), objective function (∆̃)
Output: global optimum of current population (xα),

flag bit (Fd
s)

1 for d←1 to D do
2 if

xd
∗∈{ξds | Md

s is larger than Md
k(1≤k≤S, k ̸=s)}

then
3 xd

∗ is replaced by a random value in a less
visited segment ξdk where Fd

k==0;
4 if ∆̃(xα)>∆̃(x∗) then
5 xα←x∗;
6 end
7 Fd

k←1;
8 if ∀ Fd

k==1 then
9 Fd

k←0;
10 end
11 end
12 end

(5) Framework of MGG
By merging the Algorithm 1, 2, 3, and 4, the detail of

MGG is described in Algorithm 5. Moreover, the multi-swarm
mechanism offers an inclusive cooperation mechanism for all
sub-populations, allowing MGG to maximize the benefits of
each sub-population.

Algorithm 5: MGG

Input: χ, U , U, v=1, ℏ, Md
s , Fd

s , ∆̃, P1

Output: final population (P1)
1 Partition the search space into S equally sized

sub-regions;
2 Fd

s←0;
3 Md

s←0;
4 repeat
5 P1=GG(P1);
6 Perform DNS;
7 Update ℏ;
8 Perform SRS;
9 Update Md

s with (44);
10 Perform PDS;
11 Update Fd

s , xα;
12 until Combine all sub-populations into P1;

B. Autoencoder-assisted optimization

Fig. 3 illustrates the autoencoder-assisted optimization pro-
cess. First, the high-dimensional population is compressed
into a low-dimensional space via an encoder, which includes

the optimal individual and the search space bounds for each
individual. In the low-dimensional space, GG’s operations,
such as crossover, mutation, and update, along with population
strategies, including DNS, SRS, and PDS, are performed to
generate high-quality solutions based on previously learned
population information. A crucial aspect of this process is
evaluating the fitness of low-dimensional individuals. This
requires reconstructing them into the high-dimensional space
via a decoder for meaningful computation. Finally, high-
quality solutions generated in the low-dimensional space are
reconstructed and combined into a high-dimensional popula-
tion.

Input high-dimensional

population, the globally best

individual, and low-dimensional

upper and lower limits

Yield low-dimensional population

and low-dimensional expression of

the globally best individual

Perform crossover on each low-

dimensional individual

Perform mutation on each low-

dimensional individual

Perform selection on each low-

dimensional individual

Update low-dimensional

individuals and best individual

DNS

SRS

PDS

Termination

condition

Output population and the best in

low-dimensional space

No

Yes

Output population and the best in

high-dimensional space

Yield high-dimensional individualsEvaluate objective function values

Decoder

Decoder

Encoder

Encoder

Encoder

Decoder

DecoderEncoder

Input layer

Original high-dimensional space

Hidden layer

Compressed low-dimensional space

Output layer

Original high-dimensional space

Fig. 3. Process of Autoencoder-assisted Optimization.

C. AMGG

(1) Stage 1: Autoencoder training
The details of AMGG are described in Algorithm 6. Train-

ing the autoencoder is to explore the search space of high-
dimensional complex problems and capture the relationships
between decision variables. In this stage, the initialized data
samples undergo several generations of evolution through
MGG. As MGG searches, population individuals progress
towards better solutions, and a well-trained autoencoder is
increasingly likely to learn compressed representations of
regions closer to the optimum. Line 1 initializes the parameters
of MGG. Line 2 randomly initializes the population positions
of MGG to obtain the population P. Line 3 executes MGG
ĝ1 counts to obtain a new population P and utilizes it as
initialized data samples Ω. Line 4 selects and updates the latest
population P and data samples Ω by evaluation of population
individuals xi utilizing ∆̃(xi). Line 5 trains the autoencoder
utilizing the data samples Ω and obtains the autoencoder ℸ.
The for loop terminates if g≤0.9×ĝ2 holds in Line 6.

(2) Stage 2: Population coevolution
1) Population splitting: To enhance the solving capability

for high-dimensional complex problems and avoid falling into
local optima, the current population of AMGG is divided into
two sub-populations, which evolve in a distributed parallel
manner. Line 7 of AMGG performs the population split to
divide P into P1 and P2. Individuals in P are arranged in
ascending order based on their fitness values. The better fitness
|P1| individuals are put into P1, and the worse fitness |P2|
individuals are put into P2.

This article has been accepted for publication in IEEE Internet of Things Journal. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/JIOT.2024.3457488

© 2024 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: SOUTHERN METHODIST UNIV. Downloaded on October 18,2024 at 04:02:24 UTC from IEEE Xplore. Restrictions apply.

11

Algorithm 6: AMGG
Input: maximum iteration count of AMGG in stage 1

(ĝ1) and stage 2 (ĝ2), database to train
autoencoder (Ω), objective function (∆̃)

Output: global optimum of current population (xα)
1 Initialize the parameters of MGG;
2 Initialize the positions of individuals to obtain P

randomly;
3 Perform MGG for ĝ1 counts to obtain Ω;
4 Evaluate ∆̃(xi) of each xi to select and update P;
5 Train an autoencoder with a training set Ω to obtain

the autoencoder ℸ;
6 for g←1 to 0.9×ĝ2 do
7 Perform population split to P1 and P2;
8 P

′

1←MGG(P1);
9 Update ∆̃(xi) of each xi in P

′

1;
10 Select the best |P1| individuals from P1 and P

′

1 for
constructing P1;

11 P̌2←encode(ℸ,P2);
12 P̌

′

2←MGG(P̌2);
13 P

′

2←decode(ℸ, P̌′

2);
14 Update ∆̃(xi) of each xi in P

′

2;
15 Select the best |P2| individuals from P2 and P

′

2 for
constructing P2;

16 P←P1 ∪ P2;
17 end
18 for g←0.9×ĝ2 to ĝ2 do
19 P←MGG(P);
20 end
21 Select xα from P, and update its fitness value ∆̃α;

2) High-dimensional population coevolution: P1 conducts
the evolution process of the high-dimensional population,
leveraging MGG’s powerful search capability to identify op-
timal solutions in the vicinity of the present solutions. P1

evolves into P
′

1 with MGG in Line 8. This evolution process
in the second stage continues the same procedure as in the
first. Line 9 updates ∆̃(xi) of each xi in P

′

1. Line 10 selects
the best |P1| individuals from P1 and P

′

1 for constructing P1.
3) Autoencoder-assisted population coevolution: P2 exe-

cutes the autoencoder-assisted population evolution process to
capture the distribution characteristics of its search space. It
compresses individuals from low-quality populations into a
low-dimensional space and generates a new set of solutions
based on the features learned from high-quality solutions,
thus more effectively guiding its evolution. Line 11 com-
presses each individual in P2 into its low-dimensional one
in P̌2 through encode(·) obtained by autoencoder ℸ. Then, P̌2

evolves with a proposed MGG in Line 12 to avoid stagnation
and yield P̌

′

2. Because of the dimensionality reduction, the
original fitness function cannot be applied directly to the
evaluation of P̌

′

2. Thus, Line 13 decodes P̌
′

2 through decode(·)
obtained by autoencoder ℸ into high-dimensional P

′

2 in the
original search space with ℸ. Line 14 updates ∆̃(xi) of each
xi in P

′

2. Line 15 selects the best |P2| individuals from P2

and P
′

2 for constructing P2.
4) Information exchange: After each iteration of the two

sub-populations P1 and P2, the populations are recombined
into a new population P at Line 16, allowing the dynamic ex-
change of information between them. To enhance the coverage
of the search space by AMGG in the later iterations, Lines 18–
20 utilizes MGG on the entire population P for 0.1×ĝ2 counts
to generate more promising offsprings. Line 21 selects xα

from P, and updates its ∆̃α. Finally, output the best solution
xα.

The complexity analysis of AMGG is given as follows. In
stage 1, as shown in Section IV-A, the complexity of MGG
in each iteration is O(|P|D). According to ℧℧℧ in Section
III-E, D = M(2J + JK + 2) + 2JK, and the complexity
of each iteration is O|P|(M(2J + JK + 2) + 2JK)) in
MGG. Thus, the complexity of MGG is O(ĝ1|P|(M(2J +
JK + 2) + 2JK)). The complexity of training autoencoder
is O((M(2J + JK +2)+ 2JK)|Ω|ℏ). ℏ denotes the number
of epochs in the autoencoder training, and |Ω| denotes the
size of the training set Ω. In stage 2, the complexity of
the high-dimensional optimization and autoencoder-assisted
optimization is O(ĝ2|P|(M(2J + JK + 2) + 2JK)). To sum
up, the time complexity of AMGG is O((ĝ1|P| + |Ω|ℏ +
ĝ2|P|)(M(2J+JK+2)+2JK)). In Algorithm 6, the for loop,
which terminates after ĝ2 iterations, contributes significantly
to the execution overhead. As shown in Lines 7–16, the
complexity of AMGG is O(|P|(M(2J + JK + 2) + 2JK))
in each iteration. Consequently, AMGG has a complexity of
O(ĝ2|P|(M(2J + JK + 2) + 2JK)). In summary, AMGG
effectively mitigates the curse of dimensionality and tackles
high-dimensional MINLP challenges.

V. PERFORMANCE EVALUATION

This work employs real-world data obtained from Google
cluster1 to simulate the proposed scenario model to validate
the optimization performance of AMGG. AMGG is imple-
mented and coded using MATLAB 2023a, and executed on
a server equipped with an Intel(R) Xeon(TM) Gold 6248R
CPU operating at 3.0 GHz, DDR4 REGS 2933 memory with
a capacity of 8 × 32 GB, and two NVIDIA RTX 3090 24G
graphics cards. MATLAB’s Deep Learning Toolbox serves
as the autoencoder’s framework tool. This work can also
adopt Pytorch as the framework of our autoencoder module.
The autoencoder architecture consists of three layers of fully
connected neural networks, comprising an input layer, a hidden
layer, and an output layer. Additionally, the number of neurons
in the hidden layer is half that of the input and output layers.
The loss function for training the autoencoder utilizes the mean
squared error. ReLU is employed as the activation function for
the autoencoder neural network. The training data are collected
from high-quality solutions generated during the evolutionary
process of AMGG.

A. Experimental settings

This work considers a network topology comprising mul-
tiple MUs, ENs, and a CDC [41]. We set the number of

1https://github.com/google/cluster-data

This article has been accepted for publication in IEEE Internet of Things Journal. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/JIOT.2024.3457488

© 2024 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: SOUTHERN METHODIST UNIV. Downloaded on October 18,2024 at 04:02:24 UTC from IEEE Xplore. Restrictions apply.

12

MUs (M) in [1, 20] and the number of ENs (J) from 2 to
4, assuming three microservices per application, i.e., K=3.
Considering the practical scenario of MU mobility and the
random deployment of ENs in our architecture, MUs are ran-
domly distributed and continually move during experiments.
We assume that each MU remains in the coverage range of at
least one EN in a time slot and does not transition between the
coverage ranges of different ENs in a time slot. MUs generate
tasks randomly. Each time slot (t) in our work is set to a
duration of 5 minutes, resulting in 288 time slots (T) per
24 hours [15]. Furthermore, to realistically simulate service
migration during MU mobility, we employ a simulator [42]
to generate MU movement trajectories. Specifically, 70% of
MUs are simulated using a map-based mobility model, while
30% use a random walk mobility model [7]. Parameters for
the actual model are derived from [41] as outlined in Tables
III and IV, while parameters for AMGG are set as detailed in
Table V according to [43]. We design two benchmark test sce-
narios to evaluate AMGG: one focusing on final optimization
performance and the other concentrating on service migration
strategies.

B. Experimental results for benchmark 1

To evaluate AMGG, this work compares it with four
state-of-the-art algorithms, i.e., SBAGO, GSP, HGGWO, and
SAPSO. The reasons for selecting these algorithms as com-
parative counterparts are given as follows.

1) SBAGO [14]. It combines the genetic operations of GA
extensively with the advanced search information of the
bat algorithm, aiming to generate diverse and high-quality
new exemplars of individuals, thereby enhancing the
accuracy of the search process.

2) GSP [15]. It integrates the genetic operations of GA and
the Metropolis acceptance criterion of the SA algorithm
into PSO, aiming to enhance global search ability.

3) HGGWO [16]. It incorporates the dynamic crossover
and mutation ratios from GA into the traditional GWO,
aiming to address the scalability selection issue of GWO
and enhance the accuracy of the search process.

4) SAPSO [17]. It integrates the Metropolis acceptance
criterion from the SA algorithm into PSO, aiming to
select elite particles to enhance the search efficiency and
diversity.

To comprehensively evaluate the optimization performance
of AMGG, we have selected multiple performance metrics
for experimental validation, including system cost and penalty
value for unsatisfied constraints.

(1) System cost: For a hybrid cloud-edge system, a key
performance metric is the system cost of serving requests at
ENs and CDC. System cost is characterized as the services
communication, computation, and migration cost, which is
crucial for the deployment and operation of service schedulers
for mobile operators, facilitating the provisioning of cloud-
edge services.

Fig. 4 presents the comparative results of the total cost for
AMGG, SBAGO, GSP, HGGWO, and SAPSO at different
time slots. It is evident from the figure that, under identical

0 50 100 150 200 250 288

Time slots (t)

0

5

10

15

T
o
ta

l
co

st
 (

$
)

AMGG SBAGO GSP HGGWO SAPSO

Fig. 4. Total cost ($) of AMGG, SBAGO, GSP, HGGWO, and SAPSO in
terms of varying t.

conditions qkm for all algorithms in each time slot, SAPSO
consistently exhibits higher total cost compared to the other
algorithms, indicating its inferior optimization performance.
The reason lies in SAPSO’s tendency to converge to local
optima in the optimization space and its limited capability
to escape from such local optima, thereby failing to obtain
a high-quality solution set in the high-dimensional decision
space of the dynamic migration environment. HGGWO and
GSP suffer from similar issues. Furthermore, the results in the
graph indicate that although SBAGO generally yields lower
total cost compared to GSP, HGGWO, and SAPSO, it still
surpasses AMGG in most time slots. This is primarily due
to SBAGO’s deficiencies in population update mechanisms
and its ability to select global optima in high-dimensional
spaces despite possessing mechanisms for escaping local op-
tima. In contrast, AMGG consistently outperforms all other
algorithms in each time slot. Specifically, compared to SAPSO,
HGGWO, GSP, and SBAGO, AMGG achieves average re-
ductions in the total cost of 66.04%, 56.02%, 45.31%, and
31.42%, respectively. This superiority of AMGG is attributed
to its combined approach, which incorporates an autoencoder-
assisted optimization phase for extracting useful information
and critical features from the population, as well as integrating
genetic operations and SA conditional acceptance rules into
the MGG optimization phase of the GWO in a multi-swarm
and multi-strategy manner. This approach allows for better
handling of high-dimensional complex problems and exhibits a
stronger trade-off between local exploration and global search
capabilities.

1 100 200 300 400 500 600 700 800 900 1000

Iteration count

1

2

3

4

5

6

7

T
o
ta

l
co

st
 (

$
)

AMGG SBAGO GSP HGGWO SAPSO

Fig. 5. Evolutionary curves of total cost in each iteration of AMGG, SBAGO,
GSP, HGGWO, and SAPSO, respectively.

This article has been accepted for publication in IEEE Internet of Things Journal. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/JIOT.2024.3457488

© 2024 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: SOUTHERN METHODIST UNIV. Downloaded on October 18,2024 at 04:02:24 UTC from IEEE Xplore. Restrictions apply.

13

TABLE III
PARAMETER SETTING-PART 1

v h1 G0 WU
j P 0

m (P 1
δ) ρm β1 (β2) ϵ (ν) P̂m σj

4 0.98 1.6×10−11 [10,20] MHz 0.2 W (0.001 W) [16,20] 1 1.16×10−10 (0.5×10−10) 0.1 W $ [0.8×10−25,1.3×10−25]

TABLE IV
PARAMETER SETTING-PART 2

e0 r0 Êj F̃j τ ẑ C̃ Âj Ĝj ϑk
m Ŝj w0

1 W/GHz 1 Gbps 15 J 5×106 cycles/sec. 2.44×10−4 $/J [0,1] $ 45 $ 2×1010 cycles 2 GB [50,100] [5,300] GB 7×1014 cycles/sec.

TABLE V
PARAMETER SETTING-PART 3

Ω |P| |P1| (|P2|) U c1(c2,c3) ζ Υ0 Φ ĝ1 S ĝ2 ℏ

100 120 60 (60) {30, 20, 15, 12, 10, 6, 5, 4, 3, 2, 1} 0.5 0.04 108 0.95 1000 10 1000 300

Fig. 5 presents the evolution curves of total cost over
1000 iterations for AMGG, SBAGO, GSP, HGGWO, and
SAPSO when M=10, J=4, K=3, and D = 244. The figure
shows that although SAPSO converges to the final solution
by the 43-rd iteration, its total cost is significantly higher
than that of the other four algorithms, indicating the poorest
convergence result. Even though HGGWO achieves a final
converged total cost 20.50% lower than SAPSO, it takes until
the 939-th iteration to converge. GSP reaches convergence
at the 575-th iteration, while SBAGO achieves convergence
at the 645-th iteration, with their final converged total cost
being 61.37% and 38.46% higher than AMGG, respectively.
However, AMGG converges to a lower total cost value than
the other four algorithms in only 225 iterations. Experimental
results demonstrate AMGG’s superior ability to explore high-
dimensional spaces and obtain high-quality solution sets and
its excellent search accuracy during the evolution phase. MGG
ensures excellent global search capability for AMGG when the
dimensionality is low. Furthermore, the autoencoder enhances
AMGG’s optimization capability when dealing with higher-
dimensional optimization problems.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Number of MUs

0

0.5

1

1.5

2

2.5

T
o
ta

l
co

st
 (

$
)

AMGG SBAGO GSP HGGWO SAPSO

Fig. 6. Total cost ($) of AMGG, SBAGO, GSP, HGGWO, and SAPSO in
terms of varying M .

Fig. 6 compares the total cost with AMGG, SBAGO, GSP,
HGGWO, and SAPSO for varying MUs (M). The results
reveal that as the number of MUs increases, so does the

dimensionality of decision variables. Among the algorithms
considered, AMGG demonstrates the least significant impact
on the escalating number of decision variables while achieving
the lowest total cost in optimization outcomes. Specifically,
the total cost of optimization results with AMGG is, on
average, 20.02%, 31.72%, 46.35%, and 62.09% lower than
those with SBAGO, GSP, HGGWO, and SAPSO, respectively.
Furthermore, it should be mentioned that when M increases,
the total cost decrease of AMGG becomes more noticeable
compared to the other four algorithms. The problem dimension
grows as M increases. As a result, AMGG’s overall cost is
lower than that of the other four algorithms, and its ability
to solve high-dimensional problems becomes more apparent.
This notable advantage can be primarily attributed to AMGG’s
balanced exploration-exploitation strategy during optimization.
In this strategy, two subgroups evolve in a distributed manner.
One subgroup employs an autoencoder to compress the high-
dimensional landscape into an informative low-dimensional
space, thereby facilitating effective global search operations
by MGG in the low-dimensional space to drive the population
toward optimal solutions. Simultaneously, the other subgroup
undergoes MGG’s multi-swarm and multi-strategy evolution
process. The dynamic exchange of information between these
two subgroups fosters both high-dimensional local exploration
and low-dimensional global search.

Fig. 7 illustrates the results of optimizing hybrid cloud-
edge system cost with AMGG, SBAGO, GSP, HGGWO, and
SAPSO under different maximum completion time constraints.
As shown in Fig. 7, AMGG significantly outperforms the other
four algorithms regarding cost optimization. On average, the
optimized cost of AMGG is reduced by 13.56%, 25.00%,
34.62%, and 41.71% compared to SBAGO, GSP, HGGWO,
and SAPSO, respectively. Additionally, the optimization trend
of AMGG is more pronounced compared to other algorithms,
highlighting its superior optimization performance. AMGG
consistently identifies the optimal service migration strategy
in the hybrid system, maintaining strict latency boundaries for
services. These results demonstrate the feasibility of AMGG

This article has been accepted for publication in IEEE Internet of Things Journal. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/JIOT.2024.3457488

© 2024 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: SOUTHERN METHODIST UNIV. Downloaded on October 18,2024 at 04:02:24 UTC from IEEE Xplore. Restrictions apply.

14

1 2 3 4 5 6 7 8 9
Maximum completion time limit (s)

1

1.2

1.4

1.6

1.8

2
T

o
ta

l
co

st
 (

$
)

AMGG SBAGO GSP HGGWO SAPSO

Fig. 7. Total cost ($) of AMGG, SBAGO, GSP, HGGWO, and SAPSO in
terms of varying T̂m.

in balancing QoS and cost. This is attributed to AMGG’s
utilization of a two-stage evolutionary framework aided by
an autoencoder to enhance the capability of evolutionary
algorithms in solving high-dimensional optimization problems.
Furthermore, AMGG employs a multi-swarm optimization
framework, MGG, which combines hybrid GWO, i.e., GG, and
three dynamic optimization strategies to improve the ability
of evolutionary algorithms to achieve the exploration and
exploitation balance for enhanced search accuracy.

Table VI presents the ablation studies demonstrating the
impact of the two key components of AMGG on optimizing
the system cost. Each component is independently executed 50
times to obtain statistical results regarding the best, average,
standard deviation, and p values. Furthermore, a logical p-
value of 1 indicates that AMGG significantly outperforms
the comparative components. The addition of each component
effectively improves the optimization performance.

TABLE VI
ABLATION STUDIES OF AMGG WITH TWO COMPONENTS

Components Best Avg. Std. p value

w/o high-dimensional optimization 1.3791 1.6034 1.4757 1
w/o autoencoder-assisted optimization 1.6876 1.8526 1.9267 1

AMGG 1.0468 1.2572 1.0693 N/A

To validate and compare the efficiency and effectiveness
of AMGG in addressing HEPs, AMGG is compared with a
recent state-of-the-art approach that uses deep learning, i.e.,
genetic simulated annealing-based particle swarm optimizer
with autoencoders (GSPAE) [44]. The experimental setup
follows the configuration in Table VI. Table VII presents
the comparison results between GSPAE and AMGG. The
experiment demonstrates that AMGG achieves a 13.22% im-
provement in the system cost compared to GSPAE.

TABLE VII
COMPARISON BETWEEN GSPAE AND AMGG

Methods Best Avg. Std. p value

GSPAE 1.1749 1.2856 1.5452 1
AMGG 1.0035 1.1792 1.3409 N/A

(2) Penalty: In addition, penalty value is a key performance
metric for the service scheduler to operate the hybrid cloud-

edge system. Thus, we utilize it to evaluate whether different
algorithms strictly satisfy the constraints in the formulated
high-dimensional optimization problem.

1 100 200 300 400 500 600 700 800 900 1000

Iteration count

0

2

4

6

8

10

12

P
en

al
ty

AMGG SBAGO GSP HGGWO SAPSO

Fig. 8. Evolutionary curves of penalty in each iteration of AMGG, SBAGO,
GSP, HGGWO, and SAPSO, respectively.

Fig. 8 presents the penalty evolution curves over 1000
iterations for the algorithms AMGG, SBAGO, GSP, HGGWO,
and SAPSO, with M=10, J=4, K=3, and D=244. It can
be observed from the figure that, except AMGG, the penalty
values of the other four algorithms do not approach zero as the
iterations progress. Indeed, these results indicate that the other
four peers are unsuccessful in addressing high-dimensional
optimization problems and satisfying the constraints. Overall,
Fig. 8 demonstrates that AMGG achieves the best results for
high-dimensional problems compared with other peers.

C. Experimental results for benchmark 2

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Number of MUs

0

0.5

1

1.5

2

2.5

T
o
ta

l
co

st
 (

$
)

FR

FRE

FRC

AMGG

Fig. 9. Total cost ($) comparison of different routing strategies.

To demonstrate the effectiveness of the proposed AMGG
service migration strategy, we compare its optimized strategy
results with three advanced benchmark strategies, i.e., Fixed
Routing (FR) [32], Full Routing to ENs (FRE) [41], and Full
Routing to CDC (FRC) [45]. The details of each strategy are
shown as follows:

• FR [32]. Following a pragmatic and established approach,
tasks from each MU are routed to their respective EN.
In some instances, when the resources of each EN are
deemed inadequate to handle the tasks, they may be
rerouted to CDC.

• FRE [41]. All MU tasks are directed to ENs for remote
execution.

This article has been accepted for publication in IEEE Internet of Things Journal. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/JIOT.2024.3457488

© 2024 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: SOUTHERN METHODIST UNIV. Downloaded on October 18,2024 at 04:02:24 UTC from IEEE Xplore. Restrictions apply.

15

• FRC [45]. All MU tasks are directed to the CDC for
remote execution.

• The proposed AMGG. Different from FR, all MU tasks
are directed to ENs or the CDC dynamically, i.e., the
stage 1 of autoencoder training in AMGG is deployed in
the CDC, while the stage 2 of population co-evolution in
AMGG is deployed either in ENs or the CDC.

Fig. 9 validates the cost optimization results of AMGG and
three benchmark strategies as M increases. The graph shows
that the cost optimization results for each strategy increase
with M . Furthermore, keeping M constant, the optimization
results of AMGG are significantly superior to FRC, FRE,
and FR. Specifically, the total cost of AMGG is on average
24.88%, 45.56%, and 58.04% lower than that of FRC, FRE,
and FR, respectively. The rationale is that FR heavily relies on
its predetermined strategies, resulting in significantly higher
total cost than AMGG with the same M . Additionally, in
FRC and FRE, CDC and EN serve as the sole routers for all
tasks, leading to a substantial increase in data transmission
cost between MU, ENs, and CDC, as well as execution
cost, thereby inflating the total cost. AMGG optimizes the
proposed strategies by reasonably allocating task routing de-
cisions among MU, ENs, and CDC, optimizing CPU speeds
in ENs, computing appropriate EN service deployment nodes,
optimizing service migration cost caused by MU’s dynamic
movement, and focusing on MU’s data transmission power
and channel bandwidth allocation to achieve minimization of
system cost.

10 20 30

Number of services

0

1

2

3

4

5

6

7

8

T
o
ta

l
C

o
st

 (
$
)

AMGG

FRC

FRE

FR

Fig. 10. Total cost ($) of AMGG, FRC, FRE, and FR with varying K.

Fig. 10 illustrates the impact of the number K of de-
coupled microservices on the optimization total cost results
for four different strategies in the application. As K affects
the number of decision variables in the optimization space,
the experimental results from the graph show that as the
number of K increases, the total cost optimized by each
strategy sharply rises. It is noteworthy that among the four
strategies, AMGG exhibits the best optimization performance.
Specifically, compared to FRC, FRE, and FR, AMGG achieves
an average reduction of 24.22%, 31.61%, and 49.83% in
total cost, respectively. Additionally, an interesting trend in
the graph is observed: when K=30, the number of decision
variables sharply increases, yet AMGG demonstrates signifi-
cantly better optimization performance in total cost compared
to the other strategies, indicating that AMGG’s effectiveness

becomes more pronounced in addressing higher-dimensional
and more complex problems.

VI. CONCLUSION

The emergence of hybrid cloud-edge systems, comprising
mobile users (MUs), edge nodes (ENs), and cloud data centers,
enhances traditional cloud computing and mobile edge com-
puting (MEC) paradigms. It caters better to the diverse data
processing needs of modern enterprises. However, dynamic
and stochastic characteristics of MEC networks, including
the mobility of MUs and temporal variability of tasks, pose
significant challenges to MU request routing and service
deployment. Furthermore, existing studies often overlook the
cost of transferring tasks due to MU mobility. Mobile network
operators have difficulty efficiently directing tasks in dis-
tributed hybrid cloud-edge systems to decrease the overall cost
of intricate applications involving microservices. As the num-
ber of MUs in 5G/6G communications grows quickly, these
challenges become high-dimensional and complex. We formu-
late a total cost minimization problem as a high-dimensional
mixed-integer nonlinear program (MINLP) to address this. We
propose a novel Autoencoder-based Multi-swarm Grey wolf
optimizer based on Genetic learning (AMGG) to minimize
the high-dimensional MINLP problem. Real-life data-driven
simulations demonstrate that the cost of AMGG consistently
outperforms the other state-of-the-art algorithms. Our future
work aims to further enhance AMGG by integrating more
improved variants of autoencoders, e.g., sparse and denois-
ing autoencoders. Moreover, we further plan to extend our
approach to the industrial Internet of Things applications
and Fog-Cloud-IoT frameworks [26] can also enhance the
efficiency and scalability of our proposed approach while
considering workflows and load balancing problems. Specif-
ically, by leveraging fog computing’s proximity to the data
source and cloud computing’s scalability, we can enhance the
system’s ability to handle large-scale and real-time tasks more
effectively.

REFERENCES

[1] W. Zhang, G. Zhang, and S. Mao, “Joint Parallel Offloading and Load
Balancing for Cooperative-MEC Systems with Delay Constraints,” IEEE
Transactions on Vehicular Technology, vol. 71, no. 4, pp. 4249–4263,
Apr. 2022.

[2] A. Irshad, S. A. Chaudhry, O. A. Alomari, K. Yahya, and N. Kumar,
“A Novel Pairing-Free Lightweight Authentication Protocol for Mobile
Cloud Computing Framework,” IEEE Systems Journal, vol. 15, no. 3, pp.
3664–3672, Sept. 2021.

[3] N. Piovesan, D. López-Pérez, M. Miozzo, and P. Dini, “Joint Load
Control and Energy Sharing for Renewable Powered Small Base Stations:
A Machine Learning Approach,” IEEE Transactions on Green Commu-
nications and Networking, vol. 5, no. 1, pp. 512–525, Mar. 2021.

[4] S. Mao, J. Wu, L. Liu, D. Lan, and A. Taherkordi, “Energy-Efficient
Cooperative Communication and Computation for Wireless Powered
Mobile-Edge Computing,” IEEE Systems Journal, vol. 16, no. 1, pp. 287–
298, Mar. 2022.

[5] S. Long, Y. Zhang, Q. Deng, T. Pei, J. Ouyang, and Z. Xia, “An Efficient
Task Offloading Approach Based on Multi-Objective Evolutionary Algo-
rithm in Cloud-Edge Collaborative Environment,” IEEE Transactions on
Network Science and Engineering, vol. 10, no. 2, pp. 645-657, 1 March-
April 2023.

[6] S. Wang, Y. Guo, N. Zhang, P. Yang, A. Zhou, and X. Shen, “Delay-Aware
Microservice Coordination in Mobile Edge Computing: A Reinforcement
Learning Approach,” IEEE Transactions on Mobile Computing, vol. 20,
no. 3, pp. 939–951, Mar. 2021.

This article has been accepted for publication in IEEE Internet of Things Journal. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/JIOT.2024.3457488

© 2024 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: SOUTHERN METHODIST UNIV. Downloaded on October 18,2024 at 04:02:24 UTC from IEEE Xplore. Restrictions apply.

16

[7] T. Ouyang, Z. Zhou, and X. Chen, “Follow Me at the Edge: Mobility-
Aware Dynamic Service Placement for Mobile Edge Computing,” IEEE
Journal on Selected Areas in Communications, vol. 36, no. 10, pp. 2333–
2345, Oct. 2018.

[8] X. Ge, S. Tu, G. Mao, C. -X. Wang, and T. Han, “5G Ultra-Dense Cellular
Networks,” IEEE Wireless Communications, vol. 23, no. 1, pp. 72–79,
Feb. 2016.

[9] D. Calabuig et al., “Resource and Mobility Management in the Network
Layer of 5G Cellular Ultra-Dense Networks,” IEEE Communications
Magazine, vol. 55, no. 6, pp. 162–169, Jun. 2017.

[10] F. Zeng, K. Zhang, L. Wu, and J. Wu, “Efficient Caching in Vehicular
Edge Computing Based on Edge-Cloud Collaboration,” IEEE Transac-
tions on Vehicular Technology, vol. 72, no. 2, pp. 2468–2481, Feb. 2023.

[11] X. Xiao et al., “Novel Workload-Aware Approach to Mobile User
Reallocation in Crowded Mobile Edge Computing Environment,” IEEE
Transactions on Intelligent Transportation Systems, vol. 23, no. 7, pp.
8846–8856, Jul. 2022.

[12] X. Zhu and M. Zhou, “Multiobjective Optimized Deployment of Edge-
Enabled Wireless Visual Sensor Networks for Target Coverage,” IEEE
Internet of Things Journal, vol. 10, no. 17, pp. 15325–15337, 1 Sept.1,
2023.

[13] H. El-Fiqi, M. Wang, K. Kasmarik, A. Bezerianos, K. C. Tan, and H.
A. Abbass, “Weighted Gate Layer Autoencoders,” IEEE Transactions on
Cybernetics, vol. 52, no. 8, pp. 7242–7253, Aug. 2022.

[14] J. Bi, H. Yuan, J. Zhai, M. Zhou, and H. V. Poor, “Self-adaptive Bat
Algorithm With Genetic Operations,” IEEE/CAA Journal of Automatica
Sinica, vol. 9, no. 7, pp. 1284–1294, Jul. 2022.

[15] J. Bi, H. Yuan, S. Duanmu, M. Zhou, and A. Abusorrah, “Energy-
Optimized Partial Computation Offloading in Mobile-Edge Computing
With Genetic Simulated-Annealing-Based Particle Swarm Optimization,”
IEEE Internet of Things Journal, vol. 8, no. 5, pp. 3774–3785, Mar. 2021.

[16] E. Daniel, “Optimum Wavelet-Based Homomorphic Medical Image
Fusion Using Hybrid Genetic-Grey Wolf Optimization Algorithm,” IEEE
Sensors Journal, vol. 18, no. 16, pp. 6804–6811, Aug. 2018.

[17] F. Javidrad and M. Nazari, “A New Hybrid Particle Swarm and
Simulated Annealing Stochastic Optimization Method,” Applied Soft
Computing, vol. 60, pp. 634–654, Nov. 2017.

[18] T. Taleb, A. Ksentini, and P. A. Frangoudis, “Follow-Me Cloud: When
Cloud Services Follow Mobile Users,” IEEE Transactions on Cloud
Computing, vol. 7, no. 2, pp. 369–382, 1 April-June 2019.

[19] Q. Yuan, J. Li, H. Zhou, T. Lin, G. Luo, and X. Shen, “A Joint
Service Migration and Mobility Optimization Approach for Vehicular
Edge Computing,” IEEE Transactions on Vehicular Technology, vol. 69,
no. 8, pp. 9041–9052, Aug. 2020.

[20] S. Wang, R. Urgaonkar, T. He, K. Chan, M. Zafer, and K. K. Leung,
“Dynamic Service Placement for Mobile Micro-Clouds with Predicted
Future Costs,” IEEE Transactions on Parallel and Distributed Systems,
vol. 28, no. 4, pp. 1002–1016, 1 April 2017.

[21] Y. Ma, W. Liang, J. Li, X. Jia, and S. Guo, “Mobility-Aware and Delay-
Sensitive Service Provisioning in Mobile Edge-Cloud Networks,” IEEE
Transactions on Mobile Computing, vol. 21, no. 1, pp. 196–210, 1 Jan.
2022.

[22] S. Schneider, R. Khalili, A. Manzoor, H. Qarawlus, R. Schellenberg,
H. Karl, and A. Hecker, “Self-Learning Multi-Objective Service Coor-
dination Using Deep Reinforcement Learning,” IEEE Transactions on
Network and Service Management, vol. 18, no. 3, pp. 3829–3842, Sept.
2021.

[23] T. He, H. Khamfroush, S. Wang, T. La Porta, and S. Stein, “It’s
Hard to Share: Joint Service Placement and Request Scheduling in Edge
Clouds with Sharable and Non-Sharable Resources,” 2018 IEEE 38th
International Conference on Distributed Computing Systems (ICDCS),
Vienna, Austria, 2018, pp. 365–375.

[24] Y. Yu, J. Yang, C. Guo, H. Zheng, and J. He, “Joint optimization
of service request routing and instance placement in the microservice
system,” Journal of Network and Computer Applications, vol. 147, Dec.
2019.

[25] K. Poularakis, J. Llorca, A. M. Tulino, I. Taylor, and L. Tassiulas,
“Service Placement and Request Routing in MEC Networks With Storage,
Computation, and Communication Constraints,” IEEE/ACM Transactions
on Networking, vol. 28, no. 3, pp. 1047–1060, Jun. 2020.

[26] Sahil, S. Sood, and V. Chang, “Fog-Cloud-IoT Centric Collaborative
Framework for Machine Learning-based Situation-aware Traffic Manage-
ment in Urban Spaces,” Computing, vol. 106, no. 4, pp. 1193–1225, Oct.
2022.

[27] J. Zhai, J. Bi, H. Yuan, and J. Zhang, “Cost-Effective and Dynamic
Migration for Microservices in Hybrid Cloud-Edge Systems,” 2023 IEEE

International Conference on Systems, Man, and Cybernetics (SMC),
Honolulu, Oahu, HI, USA, 2023, pp. 3110–3115.

[28] Y. Yu, J. Liu and J. Fang, “Online Microservice Orchestration for IoT via
Multiobjective Deep Reinforcement Learning,” IEEE Internet of Things
Journal, vol. 9, no. 18, pp. 17513–17525, Sept. 2022.

[29] Y. Yu, J. Mo, Q. Deng, C. Zhou, B. Li, X. Wang, N, Yang, Q. Tang, and
X. Feng, “Memristor Parallel Computing for a Matrix-Friendly Genetic
Algorithm,” IEEE Transactions on Evolutionary Computation, vol. 26,
no. 5, pp. 901–910, Oct. 2022.

[30] Mirjalili, Seyedali, Seyed Mohammad Mirjalili, and Andrew Lewis,
“Grey wolf optimizer,” Advances in Engineering Software, vol. 69, no.
1, pp. 46–61, Mar. 2014.

[31] N. Nouri, J. Abouei, M. Jaseemuddin, and A. Anpalagan, “Joint Access
and Resource Allocation in Ultradense mmWave NOMA Networks With
Mobile Edge Computing,” IEEE Internet of Things Journal, vol. 7, no.
2, pp. 1531–1547, Feb. 2020.

[32] Y. Wang, M. Sheng, X. Wang, L. Wang, and J. Li, “Mobile-Edge
Computing: Partial Computation Offloading Using Dynamic Voltage
Scaling,” IEEE Transactions on Communications, vol. 64, no. 10, pp.
4268–4282, Oct. 2016.

[33] M. -H. Chen, M. Dong, and B. Liang, “Resource Sharing of a Com-
puting Access Point for Multi-User Mobile Cloud Offloading with Delay
Constraints,” IEEE Transactions on Mobile Computing, vol. 17, no. 12,
pp. 2868–2881, Dec. 2018.

[34] O. Muñoz, A. Pascual-Iserte, and J. Vidal, “Optimization of Radio and
Computational Resources for Energy Efficiency in Latency-Constrained
Application Offloading,” IEEE Transactions on Vehicular Technology,
vol. 64, no. 10, pp. 4738–4755, Oct. 2015.

[35] J. Ren, G. Yu, Y. He, and G. Y. Li, “Collaborative Cloud and Edge
Computing for Latency Minimization,” IEEE Transactions on Vehicular
Technology, vol. 68, no. 5, pp. 5031–5044, May 2019.

[36] Y. Kim, J. Kwak, and S. Chong, “Dual-Side Optimization for Cost-Delay
Tradeoff in Mobile Edge Computing,” IEEE Transactions on Vehicular
Technology, vol. 67, no. 2, pp. 1765–1781, Feb. 2018.

[37] W. Li, X. Sun, B. Wan, H. Liu, J. Fang, and Z. Wen, “A Hybrid GA-
PSO Strategy for Computing Task Offloading towards MES Scenarios,”
PeerJ Computer Science, 9:e1273, Apr. 2023.

[38] F. Boukouvala, R. Misener, and C. A. Floudas, “Global Optimiza-
tion Advances in Mixed-Integer Nonlinear Programming, MINLP, and
Constrained Derivative-Free Optimization, CDFO,” European Journal of
Operational Research, vol. 252, no. 3, pp. 701–727, Aug. 2016.

[39] A. Jayswal, “An Exact L1 Penalty Function Method for Multidi-
mensional First-order PDE Constrained Control Optimization Problem,”
European Journal of Control, vol. 52, pp. 34–41, Mar. 2020.

[40] M. Cui, L. Li, M. Zhou, and A. Abusorrah, “Surrogate-Assisted
Autoencoder-Embedded Evolutionary Optimization Algorithm to Solve
High-Dimensional Expensive Problems,” IEEE Transactions on Evolu-
tionary Computation, vol. 26, no. 4, pp. 676–689, Aug. 2022.

[41] Y. Dai, D. Xu, S. Maharjan, and Y. Zhang, “Joint Computation Offload-
ing and User Association in Multi-Task Mobile Edge Computing,” IEEE
Transactions on Vehicular Technology, vol. 67, no. 12, pp. 12313–12325,
Dec. 2018.

[42] A. Keränen, J. Ott, and T. Kärkkäinen, “The ONE simulator for DTN
protocol evaluation,” Proc. 2nd Int. Conf. Simulat. Tools Techn. (ICST),
Mar. 2009, pp. 50-55.

[43] J. Zhai, J. Bi, and H. Yuan, “Collaborative Computation Offloading for
Cost Minimization in Hybrid Computing Systems,” 2022 IEEE Inter-
national Conference on Systems, Man, and Cybernetics (SMC), Prague,
Czech Republic, 2022, pp. 1772–1777.

[44] H. Yuan, Q. Hu, J. Bi, G. Gong, J. Zhang, and M. Zhou, “Machine-Level
Collaborative Manufacturing and Scheduling for Heterogeneous Plants,”
IEEE Internet of Things Journal, vol. 11, no. 9, pp. 16591–16603, May
1, 2024.

[45] Y. Shi, S. Chen, and X. Xu, “MAGA: A Mobility-Aware Computation
Offloading Decision for Distributed Mobile Cloud Computing,” IEEE
Internet of Things Journal, vol. 5, no. 1, pp. 164–174, Feb. 2018.

This article has been accepted for publication in IEEE Internet of Things Journal. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/JIOT.2024.3457488

© 2024 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: SOUTHERN METHODIST UNIV. Downloaded on October 18,2024 at 04:02:24 UTC from IEEE Xplore. Restrictions apply.

17

Jiahui Zhai is currently a Ph.D. student in the
Faculty of Information Technology, School of Soft-
ware Engineering, Beijing University of Technology,
Beijing, China. Before that, he received his B.E.
degree in Software Engineering from Zhengzhou
University in 2019 and M.E. degree in Software
Engineering from Beijing University of Technology
in 2022. His research interests include cloud/edge
computing, data center, task scheduling, computation
offloading, intelligent optimization algorithms, ma-
chine learning, and reinforcement learning. He was

the recipient of the Best Paper Award-Finalist at the 18th IEEE International
Conference on Networking, Sensing, and Control (ICNSC).

Jing Bi (M’13–SM’16) received her B.S., and Ph.D.
degrees in Computer Science from Northeastern
University, Shenyang, China, in 2003 and 2011,
respectively. From 2013 to 2015, she was a Post-
doc researcher in the Department of Automation,
Tsinghua University, Beijing, China. From 2011 to
2013, she was a research scientist at the Beijing
Research Institute of Electronic Engineering Tech-
nology, Beijing, China. From 2009 to 2010, she
was a research assistant and participated in research
on cloud computing at the IBM Research, Beijing,

China. From 2018 to 2019, she was a Visiting Research Scholar with the
Department of Electrical and Computer Engineering, New Jersey Institute of
Technology, Newark, NJ, USA. She is currently a Professor with the Faculty of
Information Technology, School of Software Engineering, Beijing University
of Technology, Beijing, China. She has over 150 publications in international
journals and conference proceedings. Her research interests include distributed
computing, cloud computing, large-scale data analytics, machine learning and
performance optimization. Dr. Bi was the recipient of the IBM Fellowship
Award, the Best Paper Award in the 17th IEEE International Conference
on Networking, Sensing and Control, and the First-Prize Progress Award
of Chinese Institute of Simulation Science and Technology. She is now an
Associate Editor of IEEE Transactions on Systems Man and Cybernetics:
Systems. She is a senior member of the IEEE.

Haitao Yuan (S’15–M’17–SM’21) received the
Ph.D. degree in Computer Engineering from New
Jersey Institute of Technology (NJIT), Newark, NJ,
USA in 2020. He is currently an Associate Pro-
fessor at the School of Automation Science and
Electrical Engineering, Beihang University, Beijing,
China, and he is named in the world’s top 2% of
Scientists List. His research interests include cloud
computing, edge computing, data centers, big data,
machine learning, deep learning, and optimization
algorithms. He received the Chinese Government

Award for Outstanding Self-Financed Students Abroad, the 2021 Hashimoto
Prize from NJIT, and the Best Paper Award in the 17th ICNSC.

Mengyuan Wang received her Ph.D. degree in
Mechanical Engineering from University of Con-
necticut (UConn), USA in 2021. She worked as a
research specialist/scholar in the Center for Clean
Energy Engineering of UConn from 2021 to 2023,
and joined Beihang University as an associate pro-
fessor in December 2022. Her research interests
focus on the chemical kinetic studies of alternative
transportation fuels, including the experimental mea-
surements of combustion characteristics, as well as
the development, numerical simulation, and analysis

of chemical kinetic mechanisms. She was involved in as one of the core
members of five projects from Lawrence Livermore National Laboratory and
Department of Energy in U.S., and served as reviewers in American Chemical
Society (ACS) Publications and Proceedings of Combustion Institute.

Jia Zhang received the PhD degree in computer
science from the University of Illinois at Chicago.
She is currently the Cruse C. and Marjorie F. Cala-
han Centennial Chair in Engineering, Professor of
Department of Computer Science in the Lyle School
of Engineering at Southern Methodist University.
Her research interests emphasize the application of
machine learning and information retrieval methods
to tackle data science infrastructure problems, with
a recent focus on scientific workflows, provenance
mining, software discovery, knowledge graph, and

interdisciplinary applications of all of these interests in earth science. She is
a senior member of the IEEE.

Yebing Wang received the B.Eng. degree in
mechatronics engineering from Zhejiang University,
Hangzhou, China, in 1997, the M.Eng. degree in
control theory and control engineering from Ts-
inghua University, Beijing, China, in 2001, and
the Ph.D. degree in electrical engineering from the
University of Alberta, Edmonton, AB, Canada, in
2008. He has been with Mitsubishi Electric Research
Laboratories, Cambridge, MA, USA, since 2009,
where he is currently a Senior Principal Research
Scientist and Team Leader. From 2001 to 2003, he

was a Software Engineer, a Project Manager, and the Manager of the R&D
Department in automation industries, Beijing, China. His current research
interests include nonlinear control and estimation, optimal control, adaptive
and learning systems, and their applications, including mechatronic systems,
robotics, batteries, electric machines, and vehicles.

MengChu Zhou (S’88-M’90-SM’93-F’03) received
his B.S. degree in Control Engineering from Nan-
jing University of Science and Technology, Nanjing,
China in 1983, M.S. degree in Automatic Control
from Beijing Institute of Technology, Beijing, China
in 1986, and Ph. D. degree in Computer and Systems
Engineering from Rensselaer Polytechnic Institute,
Troy, NY in 1990. He joined the Department of
Electrical and Computer Engineering, New Jersey
Institute of Technology in 1990, and is now a Dis-
tinguished Professor. His interests are in intelligent

automation, robotics, Petri nets, Internet of Things, edge/cloud computing, and
big data analytics. He has over 1200 publications including 17 books, over
850 journal papers including over 650 IEEE Transactions papers, 31 patents
and 32 book-chapters. He is a recipient of Excellence in Research Prize and
Medal from NJIT, Humboldt Research Award for US Senior Scientists from
Alexander von Humboldt Foundation, and Franklin V. Taylor Memorial Award
and the Norbert Wiener Award from IEEE Systems, Man, and Cybernetics
Society, and Edison Patent Award from the Research & Development Council
of New Jersey. He is a life member of Chinese Association for Science and
Technology-USA and served as its President in 1999. He is Fellow of IEEE,
International Federation of Automatic Control (IFAC), American Association
for the Advancement of Science (AAAS), Chinese Association of Automation
(CAA) and National Academy of Inventors (NAI).

This article has been accepted for publication in IEEE Internet of Things Journal. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/JIOT.2024.3457488

© 2024 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: SOUTHERN METHODIST UNIV. Downloaded on October 18,2024 at 04:02:24 UTC from IEEE Xplore. Restrictions apply.

