
16672 IEEE INTERNET OF THINGS JOURNAL, VOL. 11, NO. 9, 1 MAY 2024

Cost-Minimized Computation Offloading and User
Association in Hybrid Cloud and Edge Computing

Jing Bi , Senior Member, IEEE, Ziqi Wang, Student Member, IEEE, Haitao Yuan , Senior Member, IEEE,
Jia Zhang , Senior Member, IEEE, and MengChu Zhou , Fellow, IEEE

Abstract—Smart mobile devices (SMDs) are integral for run-
ning advanced applications that demand significant computing
resources and quick response time, e.g., immersive gaming and
advanced image editing. However, SMDs often face constraints
in computational capacity and battery duration, restricting their
ability to process these tasks instantaneously. Cloud computing
can circumvent these limitations by computation offloading,
but cloud data centers (CDCs) are often deployed at long
distances from users, which results in longer computational
latency. To address the latency issue, the incorporation of small
base stations (SBSs) in the vicinity of the user provides services
with high bandwidth and low latency. The primary challenge
lies in balancing the economics of the system consisting of
different SMDs, SBSs, and a CDC, i.e., minimizing cost while
still meeting the latency requirements of applications. In this
work, a cost-minimized computation offloading framework is
formulated and solved by a two-stage optimization algorithm
named Lévy flight and simulated annealing-based grey wolf
optimizer (LSAG). The optimal edge selection strategy is defined
in the first stage for dealing with the case of several available
SBSs. The second stage coordinates task scheduling and optimizes
the allocation of resources among SMDs, SBSs, and CDC. LSAG
integrates the extended search property of Lévy flight and the
individual selection strategy of simulated annealing in the grey
wolf optimizer, which reduces the risk of falling into local optima
and finds the global optimum. Experimental results of executing
real-life tasks show that LSAG outperforms its state-of-the-art
peers in terms of cost and speed of convergence.

Index Terms—Cloud computing, computation offloading, edge
computing, grey wolf optimizer (GWO), swarm intelligence
algorithms.

Manuscript received 31 July 2023; revised 12 December 2023; accepted 12
January 2024. Date of publication 16 January 2024; date of current version
25 April 2024. This work was supported in part by the National Natural
Science Foundation of China under Grant 62173013 and Grant 62073005; in
part by the Beijing Natural Science Foundation under Grant 4232049; and in
part by the Fundamental Research Funds for the Central Universities under
Grant YWF-23-03-QB-015. This article was presented in part at the 2023
IEEE Conference on Systems, Man, and Cybernetics, Honolulu, HI, USA.
(Corresponding author: Haitao Yuan.)

Jing Bi and Ziqi Wang are with the School of Software Engineering, Faculty
of Information Technology, Beijing University of Technology, Beijing 100124,
China (e-mail: bijing@bjut.edu.cn; ziqi_wang@emails.bjut.edu.cn).

Haitao Yuan is with the School of Automation Science and Electrical
Engineering, Beihang University, Beijing 100191, China (e-mail:
yuan@buaa.edu.cn).

Jia Zhang is with the Department of Computer Science, Lyle School of
Engineering, Southern Methodist University, Dallas, TX 75205 USA (e-mail:
jiazhang@smu.edu).

MengChu Zhou is with the Department of Electrical and Computer
Engineering, New Jersey Institute of Technology, Newark, NJ 07102 USA
(e-mail: zhou@njit.edu).

Digital Object Identifier 10.1109/JIOT.2024.3354348

I. INTRODUCTION

OVER recent years, the widespread use of smart mobile
devices (SMDs) and advancements in wireless com-

munication has brought a large number of applications that
significantly enrich our daily routines, e.g., mobile gaming
and online conferencing [1]. However, these applications often
demand extensive computing resources, e.g., CPU time and
memory, and consume significant amount of battery power.
Given the limited computational capabilities and battery
endurance of SMDs, running such demanding applications
on the devices themselves poses a substantial challenge.
Furthermore, the high energy demand also leads to rapid
battery drain, ultimately reducing the lifespan of SMDs.
Cloud computing offers an expansive supply of computational
resources, enabling SMDs to offload intensive tasks for remote
processing that alleviates these issues. It enables SMDs to
offload their computation-intensive tasks to cloud data centers
(CDCs) through wireless connections. However, the remote
placement of CDCs introduces latency issues because the data
must travel considerable distances to and from servers in
CDCs, which is particularly problematic for applications that
require immediate response.

In response to these concerns, edge computing emerges as a
solution to counteract the latency concern by leveraging small
base stations (SBSs) positioned closer to the users [2]. SBSs
have more computational resources than SMDs and provide
local processing for offloaded tasks, thus delivering services
with high bandwidth and minimal latency. However, it is worth
noting that the computational resources at SBSs are not as
abundant as those in CDCs. Thus, low-latency fiber links
connect SBSs to CDCs. When SBSs encounter overloads or
tasks beyond their processing capacities, they can still delegate
those tasks to CDCs. It also needs to ensure that the processing
results can be returned promptly to SMDs. This collaboration
establishes a cloud-assisted mobile-edge computing (CMEC)
architecture especially suited for mobile applications that
require large amounts of computational resources and have
stringent latency requirements.

However, there are still three issues that demand our
resolution. The first one is the latency issue in communica-
tions. Specifically, the extra processes of task offloaded from
SMDs to SBSs, and from SBSs to the CDCs unavoidably
cause additional communication latency [3]. However, some
applications are delay-sensitive and require results to be
returned within a specified time limit defined by the users [4].
In that case, the total system latency must be within the

2327-4662 c© 2024 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: SOUTHERN METHODIST UNIV. Downloaded on October 18,2024 at 04:54:31 UTC from IEEE Xplore. Restrictions apply.

https://orcid.org/0000-0002-4610-0141
https://orcid.org/0000-0001-8475-419X
https://orcid.org/0000-0003-2148-0923
https://orcid.org/0000-0002-5408-8752

BI et al.: COST-MINIMIZED COMPUTATION OFFLOADING AND USER ASSOCIATION 16673

acceptable range for the applications. The second one is the
resource allocation issue. With a large number of SMDs
offloading tasks to different SBSs that may further offload
tasks to the CDCs, it becomes an issue of how to efficiently
allocate resources in each SMD and SBS [5]. Finally, the
total cost of a CMEC system comprises costs involving
SMDs, SBSs, and the CDC and it is directly related to the
system’s energy consumption. In addition, lower system cost
indicates a more sustainable and environmentally friendly
system [6]. In dealing with the above problems, some of the
studies [7], [8], [9] consider minimizing the system delay, and
others [10], [11], [12] consider minimizing the system energy
consumption. However, it is difficult for existing computation
offloading strategies to balance resource allocation and energy
consumption while satisfying SMDs’ latency requirements in
the CMEC architecture.

This work designs a partial computation offloading tech-
nique, which aims to realize cost minimization in such a
complex and heterogeneous environment while meeting the
delay requirements of mobile applications. As the first step,
without losing generality, we propose a fundamental unit
architecture comprising multiple SMDs, SBSs, and a CDC.
This work adopts triple queueing models to analyze its overall
cost and performance. To be specific, M/M/1, M/M/c, and
M/M/∞ are adopted to model and monitor SMDs, SBSs
and the CDC, respectively. Moreover, this work adopts an
M/M/1 queueing model in the transmission channel. Based on
this architecture, a constrained optimization problem of cost
minimization for the CMEC system is formulated. Moreover,
a novel two-stage algorithm, named Lévy flight and simulated
annealing-based grey wolf optimizer (LSAG) is designed
for solving the above problems. LSAG incorporates Lévy
flight and a Metropolis acceptance criterion of simulated
annealing (SA) into a grey wolf optimizer (GWO). It is worth
noting that LSAG takes the resource allocation parameters
to be optimized as decision variables, and the computational
capacity and delay requirements of the CMEC system as
constraints. LSAG aims to optimize the system cost, which is a
single-objective optimization problem. Experiments using real-
world application tasks from Google’s CDCs reveal that LSAG
realizes cost-efficient computation offloading in the CMEC
architecture.

This work intends to make new contributions to CMEC
given as follows.

1) This work constructs a fundamental unit architecture
for studying the CMEC system, including SMDs, SBSs,
and CDC, which are characterized by heterogeneous
triple queueing models to analyze its overall cost and
performance.

2) A multiconstraint cost optimization problem is con-
structed according to the CMEC system, supported by
a novel two-stage optimization algorithm called LSAG.

3) Experiments and the comparison with several typical
algorithms with realistic trace data demonstrate that the
proposed LSAG significantly achieves lower cost and
faster convergence speed compared with its state-of-the-
art peers.

In addition, main differences between the current work and
our previous one [13] are listed as follows.

1) Different from [13], this work further considers different
queueing models of SMDs, SBSs, and the CDCs to
analyze the overall cost and performance of the CMEC
system.

2) Different from [13], this work explores queueing models
of transmission channels between SMDs and SBSs,
which makes the CMEC system closer to the actual
system scenario.

3) Different from [13], this work further investigates the
impact of user association in the first stage of LSAG on
the cost of the CMEC system and gives the experimental
results.

The remainder of this work is given as follows. Section II
gives the related work. Section III formulates a cost
minimization problem. Section IV gives the details of the
implementation of LSAG. Section V discusses the simulation
results. Section VI concludes this work.

II. RELATED WORK

This section discusses the related work from two aspects,
i.e., resource allocation and energy efficiency in mobile-edge
computing (MEC).

A. Resource Allocation in MEC

In a system with multiple SMDs, SBSs, and the CDC,
the computational offloading spreads the execution of tasks
across them. As a result, a rational allocation of computational
resources between edge and the CDC is required for users
because of their limited computational resources. A proper
resource allocation strategy can satisfy the requirements of
each SMD while conserving server resources. Moreover, since
different services in SMDs require different requirements of
Quality of Service (QoS), each service may utilize different
resource allocation strategies to satisfy its own QoS need.
Several studies have focused on resource allocation in CDC
or edge systems recently.

Xiao et al. [14] pointed out that MEC has difficulty in
properly scheduling policies that ensure fairness of loads
among MEC servers while maintaining a high level of
resource utilization. To address it, they design an MEC service
migration method based on coalition game and location-
aware mechanisms for SMDs. It divides MEC servers into
coalitions according to their Euclidean distances. Furthermore,
it discovers hotspots in each coalition region and migrates
tasks to proper edge servers to realize high resource uti-
lization. However, this work ignores the energy consumption
during service migration and it may cause significant energy
consumption in this system. Ma et al. [15] showed that
workloads of SBSs are usually unbalanced, which causes
high response time and resource costs. Therefore, a dynamic
task scheduling strategy is proposed to optimize the average
edge response time while satisfying the limits of resources.
However, this strategy does not consider the capabilities of

Authorized licensed use limited to: SOUTHERN METHODIST UNIV. Downloaded on October 18,2024 at 04:54:31 UTC from IEEE Xplore. Restrictions apply.

16674 IEEE INTERNET OF THINGS JOURNAL, VOL. 11, NO. 9, 1 MAY 2024

SMDs. Wang et al. [16] considered the imperfect channel-
state information in MEC and proposed a two-stage algorithm
to decide the resource allocation strategy. Specifically, the
first stage reduces the original problem into a simplified one
and provides offloading priorities for all devices. The second
stage obtains an offloading decision. However, although the
algorithm has low complexity, some practical problems do
not have specific structures for the first stage. Li et al. [17]
considered numerous idle resources in vehicles in an urban
area, and therefore, vehicles are used as edge servers to
construct an MEC system. Moreover, they formulated this
model as a multistage Stackelberg game for dealing with the
resource allocation problem. Nevertheless, the workloads of
different vehicles are unbalanced and cause unbalanced issues.
Chen et al. [18] divided an MEC problem into two separate
optimization problems and the resource allocation strategy
considers both problems. The first one aims to optimize the
local execution cost and the second one aims to optimize the
offloading execution cost. They also considered the instability
of the connections between SMDs and the cloud because of
their mobility. In that case, the proposed offloading strategy
is embedded with failure recovery mechanisms. However, the
method has high time complexity, which leads to difficulties in
solving practical problems. Since different types of tasks have
different resource requirements, Yun et al. [19] considered that
different services in SMDs require different QoS levels and
some services may be urgent. In that case, they put different
types of tasks in SMDs into different service queues according
to their types, and each queue is managed dynamically to
effectively reduce the queuing delay of urgent tasks. Moreover,
the total workload of all queues is monitored for dealing with
insufficient resources in SBSs. However, some low-priority
queues may be blocked for a long time because of other high-
priority queues taking up resources and this method does not
consider the usage of cloud computing.

Different from the aforementioned studies, this work con-
structs a CMEC system to determine the allocation of
bandwidth resources in transmission networks and hardware
resources (computing and storage) in SBSs and the cloud. We
consider the generality and low complexity of the proposed
method, which allows it to better solve more practical
problems.

B. Energy Efficiency in MEC

Energy consumption and cost are important in a multilayer
heterogeneous MEC system because they affect the sustain-
ability of the system. Less energy consumption can slow down
the aging of the hardware and increase the economic efficiency
of the system. There are many studies on energy consumption
in an MEC system.

Merluzzi et al. [20] proposed an energy-efficient strategy for
reducing the total energy consumption in an MEC-aided 5G
network system. They propose a sleep operation for SBSs that
shift edge servers from always-on to always-available manner
for reducing the energy consumption. However, this strategy
does not consider the resource allocation in this system.
Shi et al. [21] proposed a nonlinear energy model for SMDs

that considers both resource requirements and energy con-
sumption. Moreover, they turn this problem into a nonlinear
program and propose a Dinkelbach-based iterative algorithm
to solve it. Nevertheless, this method does not consider the
battery levels of edge users. In addition, some studies consider
multiobjective optimization and one of the objectives is to
minimize energy consumption, Song et al. [22] investigated
the problem of route planning and resource allocation in
an unmanned aerial vehicle (UAV)-aided MEC architecture.
UAVs are considered edge base stations in this architecture,
and its trajectory optimization aims to make the UAV receive
more users’ offloaded tasks and minimize the system energy
consumption while reducing the overall computational delay of
the system. They propose an evolutionary-based reinforcement
learning approach that aims to find a balance between the
three objectives. Huang et al. [23] and Guo et al. [24]
solved a multiobjective disassembly and resource-constrained
optimization problem. The objectives of the problem include
minimizing energy consumption, minimizing disassembly
time, and maximizing profitability. They proposed a lexico-
graphic multiobjective scatter search (LMSS) to solve the
problem. Specifically, each individual means an objective
solution, and the population is used to find the global optimum
of the problem. In addition, LMSS employs linear weight
scatter search to improve the search efficiency and accuracy
of the algorithm. Finally, Guim et al. [25] considered the
autonomous lifecycle management for an MEC system. They
proposed a strategy that allows the efficient usage of resources
while guaranteeing QoS of various services. Moreover, the
energy consumption of the entire system is monitored in a
real-time manner to achieve energy minimization. However, it
has high complexity, making it challenging to solve real-world
problems.

In summary, different from these aforementioned studies,
we design an enhanced computation offloading approach for
minimizing the cost of the CMEC system. We consider the
energy consumption of SMDs, SBSs, and the CDC. Moreover,
we focus on delay-sensitive applications in such systems and
consider resource allocation among them. Finally, a novel
two-stage optimization algorithm is proposed to minimize the
system cost while satisfying time constraints.

III. PROBLEM FORMULATION

This section formulates a cost minimization problem based
on the CMEC systems. Fig. 1 shows the architecture of
the partial computation offloading and main notations are
summarized in Table I. It comprises N SMDs, J SBSs, and a
CDC. Each SMD is associated with one SBS, and each SBS
is linked to the CDC by fiber optics. This work considers
tasks that can be partitioned into several small tasks and each
of them can be processed independently and in parallel. For
instance, antivirus scanning software can be decomposed into
several discrete tasks, and each of them can be processed in
an SMD, SBS, or the CDC.

To analyze and monitor a CMEC system in partial com-
putation offloading scenarios, queuing models are adopted
to evaluate the performance of each component [26]. Each

Authorized licensed use limited to: SOUTHERN METHODIST UNIV. Downloaded on October 18,2024 at 04:54:31 UTC from IEEE Xplore. Restrictions apply.

BI et al.: COST-MINIMIZED COMPUTATION OFFLOADING AND USER ASSOCIATION 16675

Fig. 1. Partial computation offloading architecture of CMEC systems.

SMD supports a specific type of applications and yields tasks
continuously. Thus, an M/M/1 queue is adopted to simulate an
SMD. Taking into account their different roles in the partial
computation offloading scenarios, each SBS is analyzed as
an M/M/c queue model, and the CDC is analyzed as an
M/M/∞ queue model. In addition, this work also considers
the queue model of shared channels between SMDs and SBSs.
Following [27], an M/M/1 queue is adopted in the uplink
and downlink of shared channels. Fig. 2 illustrates queueing
models of shared channels in this CMEC system.

For the given SMD i (1 ≤ i ≤ N), if there is a connection
to SBS j (1 ≤ j ≤ J), μij = 1; otherwise, μij = 0. Pk

i , Pk
j ,

and Pk represent the fractions of task k that are processed in
SMD i, SBS j, and the CDC, respectively. They satisfy that

Pk
i +Pk

j +Pk = 1. (1)

In the next sections, we first give the modeling of SMDs,
SBSs, and the CDC, and formulate a latency model and a cost
one for the unit architecture. Finally, a multiconstraint cost
optimization problem is formulated for the CMEC system.

A. Modeling of SMDs

This section constructs the working model of SMDs and
constraints based on their runtime performance. In this work,
we assume that tasks from each SMD i arrive in a Poisson
manner [28]. Tk

i is the time to run task k in SMD i, i.e.,

Tk
i = Ik

i Pk
i α

k
i

f k
i

(2)

where Ik
i represents the volume of input data for task k

acquired by SMD i, αk
i denotes the quantity of CPU cycles

for processing each bit of task k in SMD i, and f k
i denotes the

computational speed for executing task k in SMD i.
For each SMD i, the CPU speed utilized for performing

all tasks must not surpass its maximum allowable CPU

TABLE I
MAIN PARAMETERS

Fig. 2. Queueing models of shared channels in the CMEC system.

speed (Fi), i.e.,

K∑

k=1

f k
i ≤ Fi. (3)

Pk
i denotes the power consumption involved in performing

a specific part of task k in SMD i, i.e.,

Pk
i = Si(f

k
i)3 (4)

where Si is a fixed value established by the architecture of
SMD i’s chip.

E1
i is the total amount of energy used to complete all K

tasks in SMD i, and it is obtained as

E1
i =

K∑

k=1

SiI
k
i Pk

i α
k
i (f

k
i)2. (5)

Authorized licensed use limited to: SOUTHERN METHODIST UNIV. Downloaded on October 18,2024 at 04:54:31 UTC from IEEE Xplore. Restrictions apply.

16676 IEEE INTERNET OF THINGS JOURNAL, VOL. 11, NO. 9, 1 MAY 2024

SMDs may offload tasks over the wireless channels to SBSs
for processing. Pt

i represents the power consumption during
data transmission between SMD i and its associated SBS.
In addition, it must not surpass its peak transmission power
(P̂t

i), i.e.,

0 ≤ Pt
i ≤ P̂t

i. (6)

Accordingly, the energy consumption for transmitting data
from SMD i to its associated SBS is denoted as E2

i , i.e.,

E2
i = Pt

iT
t
i (7)

where Tt
i denotes the transmission time between SMD i to its

associated SBS.
The amount of data returned by its SBS is considerably

smaller than the size of its original transmitted data [29].
Consequently, the energy consumption required for SMDs to
receive these results can be ignored. Accordingly, the energy
consumption of SMD i is denoted as Ei and it includes
two parts: local execution energy (E1

i) and data transmission
energy (E2

i), i.e.,

Ei = E1
i + E2

i . (8)

B. Modeling of SBSs and the CDC

This section constructs the working model of SBSs and
the CDC as well as constraints based on their runtime
performance. The distance between SMD i and SBS j is
represented as dij. Based on [30], the path loss between them
is (dij)

−v, where v is a parameter of the path loss. λij denotes
the channel bandwidth employed by SMD i in channels of
SBS j, and the bandwidth of SBS j assigned to all SMDs is
one, i.e.,

N∑

i=1

μijλij = 1. (9)

B̂j and B̌j refer to uplink and downlink bandwidth of SBS j,
respectively. R̂ij and Řij denote the upstream and downstream
transmission rates from SMD i to SBS j. According to
Shannon’s theorem [31], we have

R̂ij = λijB̂jlog2

(
1+Pt

i(dij)
−v|f1|2

ω0

)
(10)

Řij = λijB̌jlog2

(
1+Pt

j(dij)
−v|f2|2

ω0

)
(11)

where Pt
j means the power of transmitting data from SBS j to

each SMD, and f1 and f2 represent the wireless channel fading
parameters, which reflect the variations in signal strength that
occur as radio waves propagate through the environment. ω0
is the noise power of white Gaussian noise.

f k
ij represents the running speed at which task k from SMD i

is executed by SBS j and the computational speed of running
all tasks in SBS j must not surpass its upper bound limit
(F̂j), i.e.,

N∑

i=1

K∑

k=1

μijf
k
ij ≤ F̂j. (12)

The number of CPU cycles used to execute tasks in SBS j
cannot exceed its predetermined limit (Ĉj

S), i.e.,

N∑

i=1

K∑

k=1

(
μijI

k
i Pk

j α
k
i

)
≤ Ĉj

S. (13)

Moreover, memory required by tasks executed in SBS j must
not surpass its upper bound limit (M̂j

S), i.e.,

N∑

i=1

K∑

k=1

(
μijI

k
i Pk

j χ
k
i

)
≤ M̂j

S (14)

where χk
i denotes the memory requirement for carrying out a

single bit of task k in SMD i.
Moreover, the number of CPU cycles and memories con-

sumed by tasks executing in the CDC must not surpass their
predetermined limits, i.e.,

N∑

i=1

K∑

k=1

(
Ik
i Pkαk

i

)
≤ ĈCDC (15)

N∑

i=1

K∑

k=1

(
Ik
i Pkχk

i

)
≤ M̂CDC (16)

where ĈCDC and M̂CDC represent the upper bound limits of
CPU cycles and memories in CDC, respectively.

C. Latency Modeling

Many factors in the CMEC system cause latency, e.g.,
computation time at the SMDs, SBSs, and the CDC, and
the transmission latency among them because of the wireless
channel communication. The final task completion time needs
to satisfy users’ requirements. Accordingly, the latency model
is constructed in this section.

The duration required for SMDs to receive results from
the SBS can be neglected in this work according to [32]. Tk

ij
represents the time required for SMD i to complete task k in
both SBS j and the CDC, i.e.,

Tk
ij = T̃k

ij+T
k
ij (17)

where T̃k
ij is the overall time required for task k in SMD i

to upload, download, and process when using SBS j, and T
k
ij

is the overall time required for task k in SMD i to upload,
download, and process when using the CDC. T̃k

ij is obtained as

T̃k
ij =

�1

(
Pk

j +Pk
)

Ik
i

R̂ij
+Pk

j Ik
i Pk

i

f k
ij

+
�2

(
Pk

j +Pk
)

Ik
i

Řij
. (18)

The first term in (18) represents the duration needed for
task k to be uploaded from SMD i to SBS j while the second
term denotes the processing time for task k to be completed by
SMD i in SBS j. Besides, the third term represents the duration
needed for task k to be downloaded from SBS j to SMD
i. Additionally, �1 and �2 denote the uplink and downlink
data transmission overhead between each SMD and each SBS,
respectively.

Authorized licensed use limited to: SOUTHERN METHODIST UNIV. Downloaded on October 18,2024 at 04:54:31 UTC from IEEE Xplore. Restrictions apply.

BI et al.: COST-MINIMIZED COMPUTATION OFFLOADING AND USER ASSOCIATION 16677

SBSs and the CDC are connected through high-speed fibers,
and tasks in SMDs are offloaded to SBSs and they can be
further offloaded to the CDC. Hence

T
k
ij = �3PkIk

i

rt
+PkIk

i α
k
i

fC
+�4PkIk

i

rt
. (19)

The first term in (19) represents the duration needed for task
k to be uploaded from SBS j to the CDC, while the second
term represents the processing time for task k to be completed
by SMD i in the CDC. Finally, the third term represents the
duration needed for task k to be downloaded from the CDC
to SBS j. rt is defined as the transmission rate of backhaul
between SBSs and the CDC. Additionally, �3 and �4 denote
the uplink and downlink data transmission overhead between
each SBS and the CDC, respectively. In addition, fC represents
the computation speed of the CDC.

It should be mentioned that the computation conducted
in SMDs and that at SBSs and the CDC works in parallel.
Accordingly, the total time (Ti) required to execute all K tasks
in the system is the maximum value of Tk

i and
∑J

j=1 μijTk
ij, i.e.,

Ti =
K∑

k=1

max

⎛

⎝Tk
i ,

J∑

j=1

μijT
k
ij

⎞

⎠. (20)

Finally, the computation time must not surpass the prede-
termined time required by SMD i (T̂i), i.e.,

Ti ≤ T̂i. (21)

D. Total Cost Model

The total cost of the CMEC system includes the cost of all
SMDs, SBSs, and the CDC. Moreover, the final optimization
goal is to minimize the system cost. In that case, the energy
consumption model and the cost model of the CMEC system
are formulated in this section.

Eij represents the energy consumed by executing SMD i’s
offloaded tasks in SBS j, i.e.,

Eij =
K∑

k=1

SjI
k
i Pk

j α
k
i (f

k
ij)

2 (22)

where Sj is a fixed value established by the chip architecture
of SBS j.

Ei0 represents the energy consumed in executing SMD i’s
offloaded tasks in the CDC, i.e.,

Ei0 =
K∑

k=1

(
PS�3PkIk

i

rt
+PC�4PkIk

i

rt
+Ik

i Pkαk
i ec

)
(23)

where PS and PC represent the power of transmitting data
from the uplink and downlink channels between an SBS and
the CDC, respectively. ec denotes the energy consumption per
CPU cycle in the CDC.

Moreover, the energy consumption in both SBSs and the
CDC must not surpass their predetermined limits, i.e.,

N∑

i=1

μijEij ≤ Êj (24)

TABLE II
DECISION VARIABLES

where Êj denotes the maximum available energy of SBS j

N∑

i=1

Ei0 ≤ Êc (25)

where Êc denotes the maximum available energy of the CDC.
The total cost of the CMEC system (F) includes three

distinct parts, i.e., the cost of local computing (F1), the cost
of edge computing (F2), and the cost of CDC (F3). In this
case

F = F1+F2+F3 (26)

F1 = rM

N∑

i=1

Ei (27)

F2 = rS

N∑

i=1

J∑

j=1

Eij (28)

F3 = rC

N∑

i=1

Ei0 (29)

where rM , rS, and rC denote costs per unit of energy ($/kWh)
in SMDs, SBSs, and the CDC, respectively.

E. Optimization Problem

In conclusion, Table II shows the decision variables of the
system and our goal is to optimize F , i.e.,

Min
χ

F

where χ represents a set of decision variables and it is subject
to (1), (3), (6), (9), (12)–(16), (21), (24), and (25).

IV. LÉVY FLIGHTS AND SIMULATED ANNEALING-BASED

GREY WOLF OPTIMIZER

This section explains the implementation details of LSAG.
The objective function and its constraints are designed based
on the offloading scenario discussed in Section III. We aim
to find the optimal values of decision variables to yield our
offloading strategy. The proposed offloading strategy aims to
optimize the cost of the system while meeting time require-
ments of tasks.

Since F is nonlinear with respect to χ , it is a nonlinear con-
strained optimization problem. In this case, a penalty function
approach is used to tackle the constraints. Specifically, it turns
constraints into penalties and transforms the multiconstraint

Authorized licensed use limited to: SOUTHERN METHODIST UNIV. Downloaded on October 18,2024 at 04:54:31 UTC from IEEE Xplore. Restrictions apply.

16678 IEEE INTERNET OF THINGS JOURNAL, VOL. 11, NO. 9, 1 MAY 2024

problem into an unconstrained optimization problem. In this
approach, each constraint is converted to a penalty with a
nonnegative value. For instance, when the total penalty is
zero, it indicates that all constraints are satisfied without any
violation

Min
χ

{
φ̃ = ∞

N�+φ

}
. (30)

In (30), φ̃ is an augmented objective function and
∞
N denotes

a big positive number. � denotes the sum of all penalties of
all constraints, which is obtained as

� =
N�=∑

p=1

(max{0,−gp(x)}) 0
γ 1+

N=∑

q=1

∣∣hq(x)
∣∣

0
γ 2 . (31)

In (31), N= and N �= are numbers of equality and inequality

constraints.
0
γ 1 and

0
γ 2 denote two positive numbers. An

inequality constraint p (1≤p≤N �=) is then turned into gp(x)≥0.

The penalty of p is (max{0,−gp(x)}) 0
γ 1 if it is not satisfied,

and it is zero otherwise. Similarly, an equality constraint q
(1≤q≤N=) is turned into hq(x) = 0. The penalty of q is

|hq(x)| 0
γ 2 if it is not satisfied, and 0 otherwise.

Some typical methods can solve unconstrained problems,
e.g., nonlinear least squares and Levenberg–Marquardt meth-
ods. However, they require that optimization problems have
certain mathematical structures. For instance, they demand the
first or second-order derivatives [33]. To avoid such afore-
mentioned disadvantages, many studies adopt evolutionary
algorithms and swarm intelligence algorithms because they
can easily be implemented to solve unconstrained problems
and the results obtained are of high robustness. However,
each optimization algorithm may bear some disadvantages.
For example, although the convergence of GWO is fast,
it is prone to fall into local optima when solving high-
dimensional problems [34]. The genetic algorithm (GA) has
great exploration ability but fails to balance its exploitation
ability with poor search accuracy.

To avoid such drawbacks, this work proposes a novel two-
stage optimization algorithm called LSAG. It comprises two
stages. The first stage is used to decide edge selection (μij)

and the second one is used to decide other decision variables,
including Pk

i , Pk
j , Pk, f k

i , Pt
i, λij, and f k

ij .
The principle of low-requirement and low-capacity-first

(LLF) is applied in the first stage of LSAG to establish the
linkage between each SBS and each SMD. In other words,
LLF is proposed to decide the connection between an SBS
and an SMD. If an SMD (Xi) is only within the coverage of
one SBS (Sj), μij = 1, e.g., SMD 1 is served by SBS 1 in
Fig. 1 and thus μ11 = 1. Otherwise, when LLF is employed,
SMDs that require fewer resources are paired with SBSs
that have fewer resource capacities. This leads to a situation
where SBSs in a larger resource pool remain underutilized.
In that case, SMDs with higher resource requirements are
inclined to receive services directly from these underutilized
and resource-abundant SBSs rather than depending on the
CDC. The reduced reliance on CDC processing can lead to
lower latency and cost. However, the resource requirement of

an SMD is represented as a 2-D vector, encompassing CPU
and memories, where each axis is a resource type. To compare
different resource types uniformly, the needs across all types
are normalized with the maximum norm. The overall resource
requirements are then determined with the Euclidean norm.

In the second stage, LSAG optimizes the rest of decision
variables. It adopts Latin hypercube sampling (LHS) to initialize
the population for well covering the search space. Moreover,
the attenuation factor a is pivotal in balancing exploration and
exploitation during the optimization. The process is exploration
when a>1. Each grey wolf hunts with a probability of (1/a),
and searches with a probability of 1−(1/a). However, a fixed
proportion of exploration and exploitation is difficult to adapt
to the actual situation. Therefore, an adaptive attenuation factor
that is controlled by γ is proposed in this work. It is assumed
that t1 is the current iteration count and t̂1 is the maximum one.
Therefore, when (t1/t̂1)<γ , a is updated with (32); otherwise,
a is updated with (33)

a = −0.1 × t1
t̂1

+0.5 (32)

a = 2 −
(

−0.1 × t1
t̂1

+0.5

)
. (33)

Furthermore, to enhance the exploration capacity in com-
plex scenarios, LSAG adopts the Lévy flight strategy, which
supports broader searches in the decision space due to its
heavy tail distribution [35]. There is a relatively high probabil-
ity of taking long strides in the process of random walking. In
this way, grey wolves can step out of local optima and take a
big step in the search space during an optimization process for
improving the global exploration ability. The distance between
the third best wolf (δ) and the other wolves is Dδ , which is
determined by the distance between the two best wolves and
other wolves (Dα and Dβ)

σu =
�(1+ζ)sin

(
πζ
2

)

�
1+ζ

2 ζ × 2
ζ−1

2

1
ζ

(34)

σv = 1 (35)

where ζ is a parameter for stabilization of Lévy flight, u ∼
N(0, σu

2), and v ∼ N(0, σv
2). Then, Dδ is updated as

Dδ=
1

2

[
u

|v|−ζ

(
Xi

d − αd
)

+ u

|v|−ζ

(
Xi

d − βd
)]

(36)

where αd and βd denote the values of dimension d of the first
two best wolves including α and β. Then, the new population
X′ is updated as

X′
i
d = 1

2

[
αd−A1 × Dα+βd−A2 × Dβ

]
+Dδ (37)

where A1 and A2 denote coefficient vectors.
LSAG employs the Metropolis acceptance criterion from SA

to choose candidates for the next iteration. It can accept moves
of the population that could worsen the objective function [36].
Therefore, it can increase the population diversity, and individ-
uals have a higher probability of targeting the global minimum
more effectively. The acceptance probability is obtained as

p = e− �
T (38)

Authorized licensed use limited to: SOUTHERN METHODIST UNIV. Downloaded on October 18,2024 at 04:54:31 UTC from IEEE Xplore. Restrictions apply.

BI et al.: COST-MINIMIZED COMPUTATION OFFLOADING AND USER ASSOCIATION 16679

Algorithm 1 LSAG
Input: Maximum number of iterations (t̂1), exploration proportion
(γ), number of individuals (M), dimension number (D), and initial
temperature (T)
Output: Final population

1: Initialize the population (X)
2: for each SMD i do
3: if SMD i can be only served by SBS Sj then
4: μij = 1
5: end if
6: end for
7: Allocate SMD i to SBS j with the LLF
8: Choose the best individual α, and the suboptimal individual β
9: for t1=1:t̂1 do

10: for i=1:M do
11: if t1

t̂1
<γ then

12: Calculate a with (32)
13: else
14: Calculate a with (33)
15: end if
16: end for
17: for i=1:M do
18: for d=1:D do
19: Update A1 and A2 with the equation of 2 × a × r1−a
20: Update C1 and C2 with the equation of 2 × r2−a
21: Dα = |C1 × αd − Xi

d|
22: Dβ = |C2 × βd − Xi

d|
23: Calculate σu with (34)
24: Calculate Dδ with (36)
25: Update X′

i with (37)
26: Calculate p with (38)
27: end for
28: if f(Xi

′) < f(Xi) then
29: Xi = Xi

′
30: else
31: if p>r1 then
32: Xi = Xi

′
33: else
34: Xi = Xi
35: end if
36: end if
37: end for
38: end for
39: return X

where p is the acceptability and T is the initial temperature. �

is the difference of objective function values before and after
each iteration.

LSAG is realized in Algorithm 1 and its flowchart is shown
in Fig. 3, where f(·) is the fitness function that calculates the
total cost of the system. In addition, we discuss the time com-
plexity of LSAG. The primary source of computation overhead
is the for loop, which halts when the number of iterations
reaches t̂1. Moreover, the time complexity per iteration is
O(DN). Consequently, LSAG has the overall time complexity
of O(t̂1DN). It is worth noting that LSAG is executed in
SBSs. The reasons are given as follows. First, SBSs have more
computational resources than SMDs. Therefore, they have
enough computational resources and performance to execute
LSAG. Second, SBSs communicate with SMDs directly. In
this case, SMDs report their current states like residual energy
to SBSs and SBSs can collect performance metrics of SMDs.

Fig. 3. Flowchart of LSAG.

Moreover, LSAG can be better leveraged by implementing it
in high-performance SBSs.

V. PERFORMANCE EVALUATION

This work evaluates LSAG with realistic tasks from Google
data centers for one day. To simulate the input data of each
SMD, tasks from Google data centers are collected every five
minutes. Moreover, each time slot also has a duration of five
minutes. LSAG is implemented in MATLAB R2021b, running
on a computer with 16-GB RAM and an Intel i7-10700F CPU
with 2.90 GHz.

A. Parameter Setting

According to [37], parameters of SMDs, SBSs, and the CDC
are set in Tables III and IV. Moreover, parameters of LSAG
are set as: γ = 0.5 for balancing exploration and exploitation,
ζ = 1.5 according to [38], and T = 1000 according to [39].

B. Experimental Results

We compare LSAG with its three typical benchmark
peers, including GA [40], genetic learning particle swarm
optimization (GLPSO) [41], and GWO [42]. Moreover, M =

Authorized licensed use limited to: SOUTHERN METHODIST UNIV. Downloaded on October 18,2024 at 04:54:31 UTC from IEEE Xplore. Restrictions apply.

16680 IEEE INTERNET OF THINGS JOURNAL, VOL. 11, NO. 9, 1 MAY 2024

TABLE III
PARAMETER SETTING—PART I

TABLE IV
PARAMETER SETTING—PART II

50 and t̂1 = 1000 for all compared algorithms. Their advan-
tages are summarized as follows.

1) GA combines genetic operations, e.g., crossover, selec-
tion, and mutation. In that case, its individual diversity
is high. As a result, it has good global search ability and
can search all solutions. Thus, the comparison between
GA and LSAG proves search efficiency of LSAG.

2) GLPSO combines merits of GA and particle swarm
optimization (PSO), and therefore, GLPSO inherits the
search accuracy of PSO and excellent search efficiency
of GA. Thus, comparing GLPSO with LSAG and
GLPSO proves the exploration speed and search accu-
racy of LSAG.

3) GWO is the base optimizer of LSAG. Moreover, it
has strong convergence performance. Therefore, the
comparison between LSAG and GWO proves LSAG’s
convergence performance.

Figs. 4 and 5 show the cost and associated penalties for
LSAG, GA, GWO, and GLPSO in the CMEC system with ten
SMDs after 1000 iterations, it is shown that LSAG outperforms
the other algorithms by minimizing the cost ($0.048) after its
iteration. Moreover, GWO obtains its best solution after 920
iterations, which is much larger than LSAG. Although the high
diversity of the population in GA helps it to find a solution
quickly. However, it traps into local optima and has the highest
cost after 1000 iterations. Furthermore, it is shown in Fig. 5
that the penalty of GLPSO is 0.0015 after 1000 iterations. In
addition, the penalty of GA also fails to achieve zero, which is
0.02 in Fig. 5 after 900 iterations. The result proves that GA
and GLPSO cannot generate high-quality solutions meeting
all the constraints. The penalties associated with both LSAG
and GWO end up reaching zero values after the iterations. It
confirms the validity of they yielded solutions. Nevertheless,
GWO derives a feasible solution after 200 iterations, yet
takes longer time than LSAG. It is worth noting that LSAG
starts with a lower penalty and reaches the zero penalty after
only 100 iterations, which outperforms other algorithms. As
a result, it is hard for benchmark algorithms to well balance
search efficiency and accuracy in the formulated problem.
Specifically, GLPSO and GA cannot find desired solutions
meeting all the constraints after their required iterations. GWO
finds valid solutions but it has low search efficiency. Therefore,
LSAG has better search efficiency and accuracy than state-of-
art algorithms, and it can better solve the offloading problem.

Fig. 6 shows the cost and penalty of LSAG for varying
numbers of SMDs. It demonstrates that the penalty of LSAG

Fig. 4. Iteration curve of the cost given ten SMDs.

Fig. 5. Iteration curve of the penalty given ten SMDs.

Fig. 6. Total cost and penalty with different N.

is always zero, which justifies that LSAG finds solutions that
meet all constraints. The total cost of the four algorithms
for different numbers of SMDs is presented in Fig. 7, it is
illustrated that LSAG attains the lowest cost when N ranges
from 0 to 40. Moreover, it is shown that the cost of GWO
and GA increases faster after 25 SMDs, which proves that
GWO and GA cannot well explore the search space when the

Authorized licensed use limited to: SOUTHERN METHODIST UNIV. Downloaded on October 18,2024 at 04:54:31 UTC from IEEE Xplore. Restrictions apply.

BI et al.: COST-MINIMIZED COMPUTATION OFFLOADING AND USER ASSOCIATION 16681

Fig. 7. Total cost versus different N.

Fig. 8. Total cost versus different d.

Fig. 9. Cost with and without LLF.

number of SMDs is large. Thus, LSAG achieves higher global
exploration ability and yields the best result.

The total cost of four algorithms against various distances
between SMDs and SBSs is shown in Fig. 8. The scenario
assumes a fixed number of ten SMDs. It is shown that the
final cost of all algorithms increases with distance because the
increasing distance between SMDs and SBSs results in larger
transmission energy. Moreover, LSAG achieves the minimum
cost across all distances for all algorithms. Fig. 9 shows the cost
with the LLF strategy and without it for varying numbers of
SMDs and SBSs. It illustrates that LLF can reduce the system
cost and more SBSs reduce the total cost because LSAG can
better allocate sufficient resources among SBSs and reduce
the cost of the CDC. Moreover, Fig. 10 illustrates the cost
of LSAG for different T̂i and N. It is illustrated that LSAG
can be satisfactorily solved the problem under different delay
constraints.

Furthermore, Fig. 11(a)–(d) illustrates the cost of SMDs,
SBSs, the CDC, and the total one of LSAG with respect
to the number of SMDs. We also include three other strate-
gies, including random offloading, local computing, and full

Fig. 10. Cost with different T̂i and N in LSAG.

offloading [43]. Fig. 11(a) shows that LSAG outperforms
random and local computing in terms of SMDs’ total cost
for different numbers of SMDs. Its cost is higher than
full offloading, resulting in larger transmission delays. The
offloading strategy aims to minimize energy consumption
while meeting the time requirements of tasks. Thus, the latency
of full offloading is not acceptable. Moreover, Fig. 11(b)
illustrates that the cost of SBS with LSAG is $0.16 for the
case with 40 SMDs. It is lower than random offloading and
full offloading. Local computing executes all tasks in SMDs
and does not involve SBSs and the CDC. However, it requires
large computation time and it does not meet the latency
requirements of tasks.

Fig. 11(c) shows that the proposed strategy outperforms the
random and full offloading with respect to the cost of the
CDC. It is higher than that with local computing that does not
involve the CDC. Furthermore, Fig. 11(d) shows the total cost
with the proposed offloading strategy for the number of SMDs.
It can be noted that LSAG has the lowest cost among almost
all strategies. In addition, the iteration curves provided with
ten SMDs are shown in Fig. 11(e), and the penalty for each
strategy with various numbers of SMDs is shown in Fig. 11(f).
It can be observed that all the strategies except LSAG have
nonzero penalty values after their total iterations. To sum up,
LSAG achieves the best results and meets all the constraints.

VI. CONCLUSION

Nowadays, SMDs substantially influence our daily lives.
However, their confined battery power and computational
capabilities make it challenging to complete all tasks within
the limited time required by users. MEC is introduced to
solve the problem. However, the challenge remains for existing
computation offloading strategies to achieve a balance between
resource allocation and energy consumption while meeting the
latency requirements of SMDs. This work designs a CMEC
framework for partial computation offloading. Moreover, a
constrained optimization problem targeting cost minimization
is established and addressed by a two-stage optimization
algorithm, named LSAG. The first stage of LSAG determines the
optimal edge selection policy when multiple SBSs are available
to an SMD, while the second stage aims to optimize resource
allocation in the system, thereby minimizing the system’s total
cost. LSAG integrates the merits of Lévy flight and SA into a
GWO to enhance the global search capabilities and the ability to
escape from local optima. Experiments based on real-world data

Authorized licensed use limited to: SOUTHERN METHODIST UNIV. Downloaded on October 18,2024 at 04:54:31 UTC from IEEE Xplore. Restrictions apply.

16682 IEEE INTERNET OF THINGS JOURNAL, VOL. 11, NO. 9, 1 MAY 2024

(a) (b)

(d) (e)

(c)

(f)

Fig. 11. Results of different strategies. (a) Cost of SMDs versus different N. (b) Cost of SBSs versus different N. (c) Cost of the CDC versus different N.
(d) Total cost versus different N. (e) Penalty of ten SMDs. (f) Penalty of each strategy.

demonstrate that LSAG outperforms the compared algorithms
by achieving lower system costs in fewer iterations.

In the future, we intend to enhance the LSAG framework
to accommodate scenarios involving the mobility of SMDs
and SBSs, subsequently conducting a thorough performance
analysis in these dynamic settings. In addition, we will also
consider applying LSAG to solve multiobjective optimization
problems with more objectives, e.g., user experience.

REFERENCES

[1] R. Cong, Z. Zhao, G. Min, C. Feng, and Y. Jiang, “EdgeGO: A mobile
resource-sharing framework for 6G edge computing in massive IoT
systems,” IEEE Internet Things J., vol. 9, no. 16, pp. 14521–14529,
Aug. 2022.

[2] C. Chen, J. Zhang, X. Chu, and J. Zhang, “On the optimal base-station
height in mmWave small-cell networks considering cylindrical blockage
effects,” IEEE Trans. Veh. Technol., vol. 70, no. 9, pp. 9588–9592, Sep.
2021.

[3] S. Wang, Y. Guo, N. Zhang, P. Yang, A. Zhou, and X. Shen,
“Delay-aware microservice coordination in mobile edge computing: A
reinforcement learning approach,” IEEE Trans. Mobile Comput., vol. 20,
no. 3, pp. 939–951, Mar. 2021.

[4] H. Seo, H. Oh, J. K. Choi, and S. Park, “Differential pricing-based task
offloading for delay-sensitive IoT applications in mobile edge computing
system,” IEEE Internet Things J., vol. 9, no. 19, pp. 19116–19131,
Oct. 2022.

[5] A. Belgacem, K. Beghdad-Bey, and H. Nacer, “Dynamic resource allo-
cation method based on symbiotic organism search algorithm in cloud
computing,” IEEE Trans. Cloud Comput., vol. 10, no. 3, pp. 1714–1725,
Jul.–Sep. 2022.

[6] J. Wang, P. Pinson, S. Chatzivasileiadis, M. Panteli, G. Strbac, and
V. Terzija, “On machine learning-based techniques for future sustainable
and resilient energy systems,” IEEE Trans. Sustain. Energy, vol. 14,
no. 2, pp. 1230–1243, Apr. 2023.

[7] S. A. Mohamed, S. Sorour, and H. S. Hassanein, “Group delay-aware
scalable mobile edge computing using service replication,” IEEE Trans.
Veh. Technol., vol. 71, no. 11, pp. 11911–11920, Nov. 2022.

[8] M. Chen, X. Gong, and Y. Cao, “Delay-optimal distributed edge
computation offloading with correlated computation and communi-
cation workloads,” IEEE Trans. Mobile Comput., vol. 22, no. 10,
pp. 5846–5857, Oct. 2023.

[9] J. Shi, Y. Zhou, Z. Li, Z. Zhao, Z. Chu, and P. Xiao, “Delay minimization
for NOMA-mmW scheme-based MEC offloading,” IEEE Internet Things
J., vol. 10, no. 3, pp. 2285–2296, Feb. 2023.

[10] L. Ai, B. Tan, J. Zhang, R. Wang, and J. Wu, “Dynamic offloading
strategy for delay-sensitive task in mobile-edge computing networks,”
IEEE Internet Things J., vol. 10, no. 1, pp. 526–538, Jan. 2023.

[11] X. Pu et al., “Incentive mechanism and resource allocation for collabo-
rative task offloading in energy-efficient mobile edge computing,” IEEE
Trans. Veh. Technol., vol. 72, no. 10, pp. 13775–13780, Oct. 2023.

[12] M. Bolourian and H. Shah-Mansouri, “Energy-efficient task offloading
for three-tier wireless-powered mobile-edge computing,” IEEE Internet
Things J., vol. 10, no. 12, pp. 10400–10412, Jun. 2023.

[13] J. Bi, Z. Wang, H. Yuan, and J. Zhang, “Cost-minimized partial compu-
tation offloading in cloud-assisted mobile edge computing systems,” in
Proc. IEEE Int. Conf. Syst., Man, Cybern., 2023, pp. 1–6.

[14] X. Xiao et al., “Novel workload-aware approach to mobile user reallo-
cation in crowded mobile edge computing environment,” IEEE Trans.
Intell. Transp. Syst., vol. 23, no. 7, pp. 8846–8856, Jul. 2022.

[15] X. Ma, A. Zhou, S. Zhang, Q. Li, A. X. Liu, and S. Wang, “Dynamic
task scheduling in cloud-assisted mobile edge computing,” IEEE Trans.
Mobile Comput., vol. 22, no. 4, pp. 2116–2130, Apr. 2023.

[16] J. Wang, D. Feng, S. Zhang, A. Liu, and X.-G. Xia, “Joint computation
offloading and resource allocation for MEC-enabled IoT systems with
imperfect CSI,” IEEE Internet Things J., vol. 8, no. 5, pp. 3462–3475,
Mar. 2021.

[17] Y. Li, B. Yang, H. Wu, Q. Han, C. Chen, and X. Guan, “Joint offloading
decision and resource allocation for vehicular fog-edge computing
networks: A contract-stackelberg approach,” IEEE Internet Things J.,
vol. 9, no. 17, pp. 15969–15982, Sep. 2022.

[18] M. Chen, S. Guo, K. Liu, X. Liao, and B. Xiao, “Robust computation
offloading and resource scheduling in cloudlet-based mobile cloud com-
puting,” IEEE Trans. Mobile Comput., vol. 20, no. 5, pp. 2025–2040,
May 2021.

[19] J. Yun, Y. Goh, W. Yoo, and J. Chung, “5G Multi-RAT URLLC and
eMBB dynamic task offloading with MEC resource allocation using
distributed deep reinforcement learning,” IEEE Internet Things J., vol. 9,
no. 20, pp. 20733–20749, Oct. 2022.

[20] M. Merluzzi, N. D. Pietro, P. Di Lorenzo, E. C. Strinati, and
S. Barbarossa, “Discontinuous computation offloading for energy-
efficient mobile edge computing,” IEEE Trans. Green Commun. Netw.,
vol. 6, no. 2, pp. 1242–1257, Jun. 2022.

[21] L. Shi, Y. Ye, X. Chu, and G. Lu, “Computation energy efficiency
maximization for a NOMA-Based WPT-MEC network,” IEEE Internet
Things J., vol. 8, no. 13, pp. 10731–10744, Jul. 2021.

[22] F. Song et al., “Evolutionary multi-objective reinforcement learning
based trajectory control and task offloading in UAV-assisted mobile
edge computing,” IEEE Trans. Mobile Comput., vol. 22, no. 12,
pp. 7387–7405, Dec. 2023.

[23] B. Huang, M. Zhou, G. Zhang, A. C. Ammari, A. Alabdulwahab, and
A. G. Fayoumi, “Lexicographic multiobjective integer programming for
optimal and structurally minimal petri net supervisors of automated
manufacturing systems,” IEEE Trans. Syst., Man, Cybern., Syst., vol. 45,
no. 11, pp. 1459–1470, Nov. 2015.

[24] X. Guo, M. Zhou, S. Liu, and L. Qi, “Lexicographic multiobjective
scatter search for the optimization of sequence-dependent selective
disassembly subject to multiresource constraints,” IEEE Trans. Cybern.,
vol. 50, no. 7, pp. 3307–3317, Jul. 2020.

[25] F. Guim et al., “Autonomous lifecycle management for resource-efficient
workload orchestration for green edge computing,” IEEE Trans. Green
Commun. Netw., vol. 6, no. 1, pp. 571–582, Mar. 2022.

[26] L. Liu, Z. Chang, X. Guo, S. Mao, and T. Ristaniemi, “Multiobjective
optimization for computation offloading in fog computing,” IEEE
Internet Things J., vol. 5, no. 1, pp. 283–294, Feb. 2018.

Authorized licensed use limited to: SOUTHERN METHODIST UNIV. Downloaded on October 18,2024 at 04:54:31 UTC from IEEE Xplore. Restrictions apply.

BI et al.: COST-MINIMIZED COMPUTATION OFFLOADING AND USER ASSOCIATION 16683

[27] K. Guo, M. Yang, Y. Zhang, and J. Cao, “Joint computation offloading
and bandwidth assignment in cloud-assisted edge computing,” IEEE
Trans. Cloud Comput., vol. 10, no. 1, pp. 451–460, Jan.–Mar. 2022.

[28] V. V. Chetlur and H. S. Dhillon, “On the load distribution of vehicular
users modeled by a Poisson line cox process,” IEEE Wireless Commun.
Lett., vol. 9, no. 12, pp. 2121–2125, Dec. 2020.

[29] Q. Luo, C. Li, T. H. Luan, and W. Shi, “Minimizing the delay and cost
of computation offloading for vehicular edge computing,” IEEE Trans.
Services Comput., vol. 15, no. 5, pp. 2897–2909, Sep./Oct. 2022.

[30] Y. Sahni, J. Cao, L. Yang, and Y. Ji, “Multi-hop multi-task partial
computation offloading in collaborative edge computing,” IEEE Trans.
Parallel Distrib. Syst., vol. 32, no. 5, pp. 1133–1145, May 2021.

[31] M. A. van Wyk, L. Ping, and G. Chen, “Multivaluedness in networks:
Shannon’s noisy-channel coding theorem,” IEEE Trans. Circuits Syst.
II, Exp. Briefs, vol. 68, no. 10, pp. 3234–3235, Oct. 2021.

[32] X. Xia et al., “OL-MEDC: An online approach for cost-effective
data caching in mobile edge computing systems,” IEEE Trans. Mobile
Comput., vol. 22, no. 3, pp. 1646–1658, Mar. 2023.

[33] A. Chakrabarty, D. K. Jha, G. T. Buzzard, Y. Wang, and
K. G. Vamvoudakis, “Safe approximate dynamic programming via
kernelized lipschitz estimation,” IEEE Trans. Neural Netw. Learn. Syst.,
vol. 32, no. 1, pp. 405–419, Jan. 2021.

[34] J. Bi, Z. Wang, H. Yuan, J. Zhang, and M. Zhou, “Self-adaptive teaching-
learning-based optimizer with improved RBF and sparse autoencoder for
high-dimensional Problems,” Inf. Sci., vol. 630, pp. 463–481, Jun. 2023.

[35] F. Jiang, L. Dong, K. Wang, K. Yang, and C. Pan, “Distributed resource
scheduling for large-scale MEC systems: A multiagent ensemble deep
reinforcement learning with imitation acceleration,” IEEE Internet
Things J., vol. 9, no. 9, pp. 6597–6610, May 2022.

[36] X. Zhou, S. Li, and Y. Feng, “Quantum circuit transformation based on
simulated annealing and heuristic search,” IEEE Trans. Comput.-Aided
Design Integr. Circuits Syst., vol. 39, no. 12, pp. 4683–4694, Dec. 2020.

[37] J. Bi, H. Yuan, K. Zhang, and M. Zhou, “Energy-minimized partial
computation offloading for delay-sensitive applications in heterogeneous
edge networks,” IEEE Trans. Emerg. Topics Comput., vol. 10, no. 4,
pp. 1941–1954, Oct. 2022.

[38] H. Liu, C. Li, S. He, W. Shi, Y. Chen, and W. Shi, “Simulated annealing
particle swarm optimization for a dual-input broadband GaN doherty like
load-modulated balance amplifier design,” IEEE Trans. Circuits Syst. II,
Exp. Briefs, vol. 69, no. 9, pp. 3734–3738, Sep. 2022.

[39] Y. Zhou, W. Xu, Z.-H. Fu, and M. Zhou, “Multi-neighborhood
simulated annealing-based iterated local search for colored traveling
salesman problems,” IEEE Trans. Intell. Transp. Syst., vol. 23, no. 9,
pp. 16072–16082, Sep. 2022.

[40] M. Xu, G. Feng, Y. Ren, and X. Zhang, “On cloud storage optimization
of blockchain with a clustering-based genetic algorithm,” IEEE Internet
Things J., vol. 7, no. 9, pp. 8547–8558, Sep. 2020.

[41] Y. Gong, J. Li, Y. Zhou, Y. Li, H. Chung, Y. Shi, and J. Zhang, “Genetic
learning particle swarm optimization,” IEEE Trans. Cybern., vol. 46,
no. 10, pp. 2277–2290, Oct. 2016.

[42] S. Mirjalili, S. M. Mirjalili, and A. Lewis, “Grey wolf optimizer,” Adv.
Eng. Softw., vol. 69, no. 10, pp. 46–61, Mar. 2014.

[43] J. Choi, “Random-access-based multiuser computation offloading for
devices in IoT applications,” IEEE Internet Things J., vol. 9, no. 21,
pp. 22034–22043, Nov. 2022.

Jing Bi (Senior Member, IEEE) received the
B.S. and Ph.D. degrees in computer science from
Northeastern University, Shenyang, China, in 2003
and 2011, respectively.

From 2013 to 2015, she was a Postdoctoral
Researcher with the Department of Automation,
Tsinghua University, Beijing, China. From 2011
to 2013, she was a Research Scientist with the
Beijing Research Institute of Electronic Engineering
Technology, Beijing. From 2009 to 2010, she was
a Research Assistant and participated in research

on cloud computing with IBM Research, Beijing. From 2018 to 2019, she
was a Visiting Research Scholar with the Department of Electrical and
Computer Engineering, New Jersey Institute of Technology, Newark, NJ,
USA. She is currently a Professor with the Faculty of Information Technology,
School of Software Engineering, Beijing University of Technology, Beijing.
She has over 150 publications in international journals and conference
proceedings. Her research interests include distributed computing, cloud
and edge computing, large-scale data analytics, machine learning, industrial
Internet, and performance optimization.

Dr. Bi was the recipient of the IBM Fellowship Award, the Best Paper
Award in the 17th IEEE International Conference on Networking, Sensing,
and Control, and the First-Prize Progress Award of Chinese Institute of
Simulation Science and Technology. She is currently an Associate Editor of
IEEE TRANSACTIONS ON SYSTEMS MAN AND CYBERNETICS: SYSTEMS.

Ziqi Wang (Student Member, IEEE) received the
B.E. degree in Internet of Things from Beijing
University of Technology, Beijing, China, in 2022,
where he is currently pursuing the master’s degree
with the Faculty of Information Technology, School
of Software Engineering.

His research interests include cloud computing,
task scheduling, intelligent optimization algorithms,
and machine learning.

Haitao Yuan (Senior Member, IEEE) received the
Ph.D. degree in computer engineering from New
Jersey Institute of Technology (NJIT), Newark, NJ,
USA, in 2020.

He is currently an Associate Professor with
the School of Automation Science and Electrical
Engineering, Beihang University, Beijing, China.
His research interests include cloud computing, edge
computing, data centers, big data, machine learning,
deep learning, and optimization algorithms.

Dr. Yuan received the Chinese Government Award
for Outstanding Self-Financed Students Abroad, the 2021 Hashimoto Prize
from NJIT, and the Best Paper Award in the 17th ICNSC. He serves as an
Associate Editor for Expert Systems with Applications.

Jia Zhang (Senior Member, IEEE) received
the Ph.D. degree in computer science from the
University of Illinois at Chicago, Chicago, IL, USA.

She is currently the Cruse C. and Marjorie
F. Calahan Centennial Chair in Engineering and a
Professor with the Department of Computer Science,
Lyle School of Engineering, Southern Methodist
University, Dallas, TX, USA. Her research interests
emphasize the application of machine learning and
information retrieval methods to tackle data science
infrastructure problems, with a recent focus on sci-

entific workflows, provenance mining, software discovery, knowledge graph,
and interdisciplinary applications of all of these interests in Earth science.

MengChu Zhou (Fellow, IEEE) received the Ph.D.
degree from Rensselaer Polytechnic Institute, Troy,
NY, USA, in 1990.

In 1990, he joined New Jersey Institute of
Technology, Newark, NJ, USA, where he is currently
a Distinguished Professor. He has over 900 publi-
cations, including 12 books, 600+ journal papers
(450+ in IEEE transactions), 28 patents, and 29
book chapters. His interests are in Petri nets, automa-
tion, Internet of Things, and big data.

Dr. Zhou is a Fellow of IFAC, AAAS, CAA, and
NAI.

Authorized licensed use limited to: SOUTHERN METHODIST UNIV. Downloaded on October 18,2024 at 04:54:31 UTC from IEEE Xplore. Restrictions apply.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /ComicSansMS
 /ComicSansMS-Bold
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FranklinGothic-Medium
 /FranklinGothic-MediumItalic
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /Helvetica
 /Helvetica-Bold
 /HelveticaBolditalic-BoldOblique
 /Helvetica-BoldOblique
 /Helvetica-Condensed-Bold
 /Helvetica-LightOblique
 /HelveticaNeue-Bold
 /HelveticaNeue-BoldItalic
 /HelveticaNeue-Condensed
 /HelveticaNeue-CondensedObl
 /HelveticaNeue-Italic
 /HelveticaNeueLightcon-LightCond
 /HelveticaNeue-MediumCond
 /HelveticaNeue-MediumCondObl
 /HelveticaNeue-Roman
 /HelveticaNeue-ThinCond
 /Helvetica-Oblique
 /HelvetisADF-Bold
 /HelvetisADF-BoldItalic
 /HelvetisADFCd-Bold
 /HelvetisADFCd-BoldItalic
 /HelvetisADFCd-Italic
 /HelvetisADFCd-Regular
 /HelvetisADFEx-Bold
 /HelvetisADFEx-BoldItalic
 /HelvetisADFEx-Italic
 /HelvetisADFEx-Regular
 /HelvetisADF-Italic
 /HelvetisADF-Regular
 /Impact
 /Kartika
 /Latha
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaConsole
 /LucidaSans
 /LucidaSans-Demi
 /LucidaSans-DemiItalic
 /LucidaSans-Italic
 /LucidaSansUnicode
 /Mangal-Regular
 /MicrosoftSansSerif
 /MonotypeCorsiva
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /MVBoli
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Raavi
 /Shruti
 /Sylfaen
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /Times-Bold
 /Times-BoldItalic
 /Times-Italic
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /Vrinda
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryITCbyBT-MediumItal
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 200
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Average
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 200
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Average
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 400
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Recommended" settings for PDF Specification 4.01)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

