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Abstract—As the adoption of Service-Oriented Computing con-
tinues to grow, the number of web services has increased signifi-
cantly, which makes service recommendation become an essential
tool to assist users in selecting suitable services. However, a single
service cannot satisfy the complex requirements of users, which has
led to the emergence of a new technique known as Mashup, which
combines services as reusable components to create value-added
service compositions. Along with mashup, mashup recommenda-
tion has also become an indispensable and important component of
service platforms. On service platforms, there are many heteroge-
neous entities and complex relationships between them. We divide
these interaction into three different views: Mashup-Invocation
view, Service-Consumption view, and Mashup-Composition view.
As user preferences and characteristics of services and mashups
are distributed across different views, their cooperation is cru-
cial for accurate mashup recommendation. Therefore, we propose
Cross-view Graph Alignment (CGA), a framework that captures
the collaborative associations dispersed across different views and
enhances the representation learning of users and mashups. This
the first study to jointly tackle structure- and representation-level
collaboration on the service platforms for better mashup recom-
mendation. Experiments on two real-world service datasets show
that CGA outperforms state-of-the-art methods and can better
improve the mashup recommendation.

Index Terms—Mashup recommendation, graph neural
networks, graph alignment.

I. INTRODUCTION

W ITH rapid development and wide adoption of service-
oriented architecture (SOA), a growing number of web

services with diverse functions have been developed on the
Internet [1]. To help users select the optimal services from the
vast array of candidates, service recommendation has emerged
as a crucial instrument, using various filtering techniques, such
as collaborative [2], content-based [3], or hybrid [4] filtering.
Despite the large number of diverse services available, situations
still arise where a single service cannot satisfy the users’ com-
plex requirements. The characteristics of web services have led
to a new application development technique, namely Mashup,
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Fig. 1. Three distinct views of interactions on a service platform. User pref-
erences are distributed across different views.

which combines services as reusable components to create
value-added service compositions, eliminating the need to build
everything from scratch [5]. For instance, Youshu, a popular
Chinese book review site, offers thousands of books for users
to review and create lists. A perfect reading list for a user may
involve a diverse range of books, such as mystery novels, science
fictions, biographies, etc. These books are scattered across the
platform, making it a cumbersome task for the user to create an
optimal reading list. Therefore, the platform provides many book
mashups as complete reading lists, combining suitable books
for the user to choose from. This not only saves a lot of time
and effort for the user but also helps the platform to present
some high-quality but less popular books to the customer in
the mashup, enhancing the value conversion of the platform.
As a result, both the users and platforms would prefer mashups
instead of single services. Therefore, both the academic and
industrial sectors have shown a growing interest in developing
effective mashup recommendation systems.

By examining previous research on service recommenda-
tions and mashup creation [3], [6], [7], we summarize the
various interaction relationships on the service platform into
three distinct views, which can be represented in the form of
graphs as illustrated in Fig. 1: (1) Mashup-Invocation view,
which illustrates user preferences through their interactions with
mashups and can be organized as a User-Mashup (U-M) graph;
(2) Service-Consumption view, which describes users’ consum-
ing behaviors at the granularity of services, i.e., user-service
interactions in the form of a User-Service (U-S) graph; and
(3) Mashup-Composition view, which delineates the detailed
service composition of the mashups by connecting the mashup
and its containing services as a Mashup-Service (M-S) graph.
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These three perspectives enable us to comprehend and depict the
complicated interactions within a service from different view-
points. Intuitively, if we are able to effectively incorporate the
information from these multiple views to model user preferences
and mashup characteristic, we can more accurately recommend
suitable mashups to the users. Nevertheless, prior studies have
not accounted for the discrepancies between different views in
the service platforms. For example, in Fig. 1, if we consider only
the interaction relationships in the Mashup-Invocation view, we
would recommend m1 to u2, as u2 has a more similar service
invocation history with u1. However, upon closer examination
of the Service-Consumption view and Mashup-Composition
view at a finer-grained service level, we may recommend m2

containing s3 and s5, as a more suitable option. Therefore, as
user preferences and characteristic of services and mashups are
distributed across different views, their cooperation is crucial
for accurate mashup recommendation.

Based on the aforementioned observations, we propose a
Cross-view Graph Alignment (CGA) framework for mashup
recommendation, which captures the collaborative associations
dispersed across different views and enhances the representation
learning of users and mashups. The underlying intuition is that
interactions in different forms (i.e., U-M, U-S, and M-S) on
the service platform all reflect the user’s inherent preferences
and the characteristics of the mashup, even if they are dispersed
across different views. If we can align and integrate user and
mashup information from different views, we can more com-
prehensively capture user preferences for mashups and make
favorable recommendations. However, to achieve this goal, we
need to address the following two significant challenges:
� Structure-level Collaboration: In the Mashup-composition

view, the inclusion relationships between mashups and
services are modeled in the form of a graph. We believe that
services with some similar characteristics are more likely to
be included in the same mashup, which should be reflected
in the topological structure of the M-S graph. Therefore,
we need to align the service representations learned from
other views on the platform with the inclusion relationships
reflected in the Mashup-composition View.

� Representation-level Collaboration: In the Mashup-
Invocation and Service-Consumption views, we can learn
mashup representations and service representations based
on the user preferences on different views. At a finer
granularity, a mashup is composed of individual services,
and thus, the representation of a mashup can also be ag-
gregated from the representations of its constituent services
using the M-S graph. However, the mashup representations
learned from these two views are not in the same hidden
space, which hinders our collaborative utilization of data
from different views.

Recent advancements in graph neural network-based recom-
mendation models, such as BGCN [8], have shown promise, yet
they are not without limitations. For instance, BGCN, which first
performs representation learning and preference prediction upon
the views individually, only considers the cooperative signal
at the level of predictions, not at the level of representations.

This approach fails to guarantee the mutual enhancement of the
two views. More recent methods like CrossCBR [9] attempt
to model the cooperative association between two different
views through cross-view contrastive learning. However, they
neglect the crucial role of topological structure in graph-based
recommendation models.

To address the structure-level collaboration, we propose a
meta-mashup learner to learn “meta-mashups”, which is used
to be aligned with the existing mashup compositions under the
constrain of our well-designed regularization loss. First, we use
a graph-based representation learning method (GNN encoder) to
learn service representation on the U-S graph. The resulting ser-
vice representations are then fed into a differentiable lightweight
multi-layer meta-mashup learner, which categorizes the services
into different “meta-mashups”. The differentiable learner can ef-
fectively capture the complex service correlations coupled with
our downstream mashup recommendation task in a learnable
manner. We utilize the Kullback-Leibler (KL) divergence as the
regularization loss to align the reconstructed meta-mashup and
the existing mashups. Taking one step further, predicting the
same number of meta-mashups as existing mashups requires
extensive resource costs, as the number of existing mashups is
very large, reaching tens of thousands in magnitude, limiting
the application to large-scale service platforms. To accelerate
the computing, we cluster existing mashups into groups, and
then classify services into these groups to implement our regu-
larization loss.

To address the representation-level collaboration, we propose
cross-view graph contrastive learning to align mashup represen-
tations from different views. The intuition behind this is that the
Mashup-Invocation and Service-Consumption views represent
two distinct but correlated perspectives on user-mashup prefer-
ences. Specifically, on the U-M graph, we use a graph-based
representation learning method (GNN encoder) to learn the
mashup collaborative representation in the Mashup-Invocation
view. Analogously, on the U-S graph, we employ another GNN
to generate the representations of services and aggregate the
representations of compositional services as the mashup com-
positional representation based on the M-S graph. Through con-
trastive learning, we aim to maximize the mutual information of
the mashup between the two views. This ensures that the model
consistently aligns the representations from both views, enabling
better graph-alignment of the mashup and capturing information
from both the service and user side. Finally, we unify the mashup
recommendation task and the cross-view graph alignment task
under a primary and auxiliary learning framework. By jointly
optimizing the two tasks and leveraging the interplay of all the
components, we achieve significant gains in the performance of
the mashup recommendation task.

This paper presents the following main contributions:
� We propose CGA, a framework that captures the collab-

orative associations dispersed across different views and
enhances the representation learning of users and mashups.
This is the first study to jointly tackle structure- and
representation-level collaboration on service platforms for
better mashup recommendation.
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� We propose a meta-mashup learner constrained by a de-
signed regularization loss for better aligning the service
characteristics with the existing mashup composition.

� We also leverage advances in contrastive learning to better
align user preferences on services and mashups.

� Our experiments on real-world service datasets show that
CGA outperforms state-of-the-art methods and can better
improve the mashup recommendation.

The remainder of this article is organized as follows.
Section II formally defines the problem. Section III introduces
our CGA model framework in detail. Section IV presents con-
ducted experiments with analyses. Section V discusses related
work. Finally, Section VI draws conclusions.

II. PROBLEM DEFINITION

The following section will provide a formal definition of the
problem related to mashup recommendation on service platform.
Additionally, we will introduce some important notations that
will help us to clarify our concepts [10].

Definition 1. (Service Ecosystem): In a service ecosystem,
U = {u1, u2, . . . , uM} and S = {s1, s2, . . . , sN} denote the
sets of users and services, respectively.

Traditional service platforms that recommend individual ser-
vices to users are no longer sufficient to meet the increasingly
complex needs of users. Therefore, on service platforms, many
developers use services as reusable components to create value-
added service compositions, without building everything from
scratch. We call these collections of services that work together
collaboratively as a whole “mashups”, which we formally define
as follows:

Definition 2. (Mashup): A mashup mt represents a bunch of
services {s1t , s2t , . . .}, sit ∈ S, which collaborate functionally to
achieve one or more objectives. The entire set of mashups can
be represented as M = {m1,m2, . . . ,mt}.

Based on the above definition, we can establish a Mashup-
Composition View on the service platform to describe the re-
lationship between mashups and services, which is presented
in the form of an Mashup-Service (M-S) graph. The specific
definition is as follows:

Definition 3. (Mashup Composition View): LetGMS = (M ∪
S, EMS) represent a M-S Graph, where EMS = {ems|rms =
1, u ∈ U, s ∈ S} is the edge set denoting the inclusion relation-
ships between mashups and services if there exists an edges
between them.

On service platforms, users have various forms of interactions,
i.e., services and mashups, and all of these interactions can reflect
users’ personal preferences. Therefore, according to the different
forms of user interactions, we define two additional views on the
platform as follows:

Definition 4. (Service Consumption View): Following most
existing works [11], [12], we represent Service-Consumption
view as a user-service bipartite graph GUS = {U ∪ S, EUS},
where the edge set EUS = {eus|rus = 1, u ∈ U, s ∈ S} repre-
sents the services consumed by the users.

Definition 5. (Mashup Invocation View): Similarly, the
history of user-invoked mashups can be constructed as a

Mashup-Invocation view, which can also be represented by a
user-mashup bipartite graph GUM = {U ∪M, EUM}, where the
edge setEUM = {eum|rum = 1, u ∈ U,m ∈ M} represents the
mashups invoked by the users.

The three views defined above are commonly present in
service platforms, and encompass distinct information about
user preferences and service characteristics, which heuristically
enables the cooperative effect between the these different views
and improve the mashup recommendation. We formally define
this problem as follows:

Problem Formulation: Given the existing relation graphs
{GMS ,GUS ,GUM}, our task is to capture the collaborative
associations dispersed across different views and learn the com-
prehensive representation of users and mashups. Then we predict
the unseen user-mashup interactions in GUM .

III. METHODOLOGY

In this section, we first outline the overall architecture of our
CGA framework and give detailed descriptions of its main com-
ponents, then analyze its learning process including the design
of different types of loss functions, followed by discussing the
computation complexity of CGA.

A. Model Architecture

Fig. 2 presents the overall framework of our CGA. The
framework is introduced from left to right. (1) The GNN encoder,
which learns the representation based on interactions of the
Mashup-Invocation view and Service-Composition view. It ob-
tains user’s invocation/consumption representations, mashup in-
vocation representation and service consumption representation.
(2) The graph aggregator incorporates the structure of the M-S
graph and learn the compositional representation of the mashup.
(3) The cross-view graph contrastive learning is performed to
align both user representations from U-M and U-S graphs, as
well as the invocation and compositional representations of the
mashup. (4) The meta-mashup learner captures the complex
relationships within the service consumption representation to
map similar services into meta-mashups. And the regularization
loss constrains the consistency between the meta-mashups and
existing mashups for structure-level collaboration.

B. Graph-Based Representation Learning

To start with the primary element of CGA, our goal is
to learn the representations of users, mashups and services
from two different views: Mashup-Invocation view and Service-
Consumption view. The raw U-M and U-S graph explicitly
represents the interaction information as its links, and a node’s
local structure (i.e., the topology of its multi-hop neighbors) is
shown to encode a user’s preference or an service or mashup’s
characteristic [11]. To capture the collaborative signal along-
side the local topology, we exploit the high-order connectivity
following the recent advance in LightGCN [12]. Here, we elab-
orate in detail on the graph-based learning processes of various
representations.
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Fig. 2. Model Framework. The overview of the model structure of CGA. The regularization loss aligns the learned meta-mashup with the existing mashup
composition for structure-level collaboration. The contrastive loss, indicated by the two Red bidirectional arrows in the diagram, is used for cross-view graph
contrastive learning for representation-level collaboration.

1) Learning on Mashup-Invocation View: In order to better
capture the user preferences and mashup characteristics exhib-
ited in mashup invocation, we first establish the U-M graph based
on the user-mashup interaction matrix, as defined in Definition 5.
Afterwards, we design a GNN encoder to learn the user and
mashup invocation representations by simulating information
propagation on the interaction between users and mashups.
More specifically, the information propagation process can be
formulated as follows:

e
(k)
u,MI =

∑

m∈Nu

1√Nm

√Nu

e
(k−1)
m,MI , (1)

e
(k)
m,MI =

∑

u∈Nm

1√Nu

√Nm

e
(k−1)
u,MI , (2)

where e
(k)
u,MI ∈ R

d and e
(k)
m,MI ∈ R

d represent the k-th layer’s
representation learned from the Mashup Invocation (MI) view,
which are also referred to as user invocation representation and
mashup invocation representation, respectively. Additionally,
e
(0)
u,MI and e

(0)
m,MI are randomly initialized at the beginning of

the training. Also, Nu and Nm are the neighbors of user u and
mashup m on the U-M graph GUM , respectively. And, d is the
embedding size.

To carry out the propagation process for all users and mashups
on GUM simultaneously, we transform (1) and (2) into a matrix
form:

E
(0)
MI = [E

(0)
u,MI ,E

(0)
m,MI ] (3)

= [e
(0)
u1,MI , . . . , e

(0)
uM ,MI , e

(0)
m1,MI , . . . , e

(0)
mt,MI ],

E
(k)
MI = LGUM

E
(k−1)
MI , k ∈ N

+, (4)

LGUM
= D

− 1
2

GUM
AGUM

D
− 1

2

GUM
(5)

whereE(k)
MI is the new embedding matrix after the k-th propaga-

tion, and LGUM
is the Laplacian matrix of the U-M graph GUM .

Formally,AGUM
is the adjacency matrix of the U-M graphGUM ,

andDGUM
is the diagonal degree matrix of the U-M graphGUM .

Each ofDGUM
’s diagonal elementsDGUM

[i, i] = |Ni| represent
the degree of the vertex ui or mi in the GUM . We can get that
element Lik = 1√

|Ni||Nk |
.

By utilizing the matrix form for propagation, we are able to not
only update all user and mashup representations within the U-B
graph simultaneously, but also facilitate the batch calculations.
Additionally, the use of the matrix format allows for seamless
integration of multiple propagation processes as a united mod-
ule, allowing for extraction of high-order invocation signals
in the Mashup-Invocation view. Different from the traditional
GCN propagation rule, we follow LightGCN to abandon the
use of feature transformation and nonlinear activation, which
has been shown to greatly reduce computational complexity
while improving the effectiveness of representation learning on
bipartite graphs.

After K iterations, each node encodes the information of the
farthest K-order node after information propagation in the K-th
layer. Therefore, we perform a weighted sum on all K layers’
embeddings to obtain a comprehensive representation of each
node, where the weight of each layer k is set as 1

k+1 . As a result,
the innovation representation of the user and mashup is formally
represented as follows:

E
(K)
MI = [e

(K)
u1,MI , . . . , e

(K)
uM ,MI , e

(K)
m1,MI , . . . , e

(K)
mt,MI ], (6)

e∗u,MI =

K∑

k=0

1

k + 1
e
(k)
u,MI , e

∗
m,MI =

K∑

k=0

1

k + 1
e
(k)
m,MI . (7)
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2) Learning on Service-Consumption View: From the per-
spective of Service-Consumption view, the interaction informa-
tion between users and services encodes users’ preferences and
service characteristics. In order to capture this information, we
also model the user-service interaction relationship as a User-
Service (U-S) bipartite graph. Similar to the learning process of
MI view, we also propose a simple but efficient GNN encoder
for consumption representation learning. The detailed formulas
are defined as follows:

e
(k)
u,SC =

∑

s∈N ′
u

1√N′
s

√N′
u

e
(k−1)
SC , (8)

e
(k)
s,SC =

∑

u∈N ′
s

1√N′
u

√N′
s

e
(k−1)
u,SC , (9)

where e
(k)
u,SC ∈ R

d and e
(k)
s,SC ∈ R

d represent the k-th layer’s
representation learned from the Service Consumption (SC) view,
which are also referred to as user consumption representation
and service consumption representation, respectively. Similarly,
e
(0)
u,SC and e

(0)
s,SC are also randomly initialized at the beginning

of the training. Also, N′
u and N′

s are the neighbors of user u and
service s on the U-S bipartite graph GUS , respectively.

Therefore, the matrix form of the service consumption can be
formalized as follows:

E
(0)
SC = [E

(0)
u,SC ,E

(0)
s,SC ] (10)

= [e
(0)
u1,SC , . . . , e

(0)
uM ,SC , e

(0)
s1,SC , . . . , e

(0)
sN ,SC ],

E
(k)
SC = LGUS

E
(k−1)
SC , k ∈ N

+, (11)

LGUS
= D

− 1
2

GUS
AGUS

D
− 1

2

GUS
, (12)

whereE(k)
SC is the updated embedding matrix after the k-th prop-

agation, and LGUS
is the Laplacian matrix of the U-S bipartite

graph GUS . Similarly, AGUS
is the adjacency matrix of the U-S

graph GUS , and DGUS
is the diagonal degree matrix of the U-S

bipartite graph GUS .
Afterwards, we also perform a weighted sum on all K layers’

embeddings to obtain a comprehensive representation of each
node on U-S graph, where the weight of each layer k is set as
1

k+1 . Therefore, the consumption representation of the user and
service is formally represented as follows:

E
(K)
SC = [e

(K)
u1,SC , . . . , e

(K)
uM ,SC , e

(K)
m1,SC , . . . , e

(K)
mt,SC ], (13)

e∗u,SC =
K∑

k=0

1

k + 1
e
(k)
u,SC , e

∗
s,SC =

K∑

k=0

1

k + 1
e
(k)
s,SC . (14)

3) Mashup Compositional Representation Learning: Based
on the consumption representation of services e∗u,SC and the
Mashup-Service (M-S) graph GMS that records the composition
information of the mashup, we can obtain the compositional rep-
resentation of the mashups on the SC view em,SC by performing
average pooling on the containing services’ consumption repre-
sentations. We formalize the process as follows:

e∗m,SC =
1

|N ′′
m|

∑

s∈N ′′
m

e∗s,SC . (15)

Here, N′′
m denotes the mashup m’s neighbors on the Mashup-

Service (M-S) graph, which also means the services contained
in the mashup m.

To summarize, we propose a simple but efficient graph
encoder to learn the invocation representation of users and
mashups, denoted as e∗u,MI and e∗m,MI respectively, on the
MI view. Similarly, we utilize a graph encoder with the same
structure to learn the consumption representations of users and
services, denoted as e∗u,SC and e∗s,SC respectively, on the SC
view. Then, based on the mashup compositional information
on the Mashup-Service (M-S) graph, we aggregate the service
consumption representations e∗s,SC to obtain the mashup repre-
sentation e∗m,SC on the SC view. In this way, we obtain the user’s
invocation representation e∗u,MI and consumption representa-
tion e∗u,SC , as well as the mashup’s invocation representation
e∗m,MI and compositional representation e∗m,SC .

C. Meta-Mashup Learning for Structure Regularization

We have a potential assumption that the characteristics of
services are reflected in their consumption histories, which are
encoded in their consumption representationse∗s,SC . In addition,
many previous studies [7], [13], [14] have found that services
within the same mashup often have some similar characteristics.
Based on the above two conclusions, we believe that, through
the consumption representation of services, we are able to re-
construct existing mashups to a certain extent. Therefore, we de-
signed a lightweight and learnable meta-mashup learner, which
learns to map all services to a certain number of meta-mashups
using the learned service consumption representation. Further-
more, we designed a novel regularization loss to constrain the
learned meta-mashup structure to be as similar as possible to the
existing mashup structure, which is the Mashup-Service bipar-
tite (M-S) graph, in order to achieve structure-level collaboration
across different views.

Formally, we compute the meta-mashup assignment of ser-
vices using a multi-layer perceptron (MLP) with softmax oper-
ation on the learned service consumption representation e∗s,SC ,
which outputs t binary predictions as a meta-mashup incidence
vector p̂s:

p̂s = Softmax(ReLU(E∗
si,SCW1 + b1)W2 + b2), (16)

where W1 ∈ R
d×d, W2 ∈ R

d×t, b1 ∈ R
d, and b2 ∈ R

t are
trainable weight matrices, in which t is the number of total
mashups to learn. And p̂s,m denotes them-th entry of vector p̂s,
which represents the probability of which the service is belong
to the meta-mashup m after the projection.

Recall that our goal is to align the meta-mashup structure
learned through consumption representation with the existing
mashup-service composition view. As illustrated in Fig. 3, we
consider the reconstructed meta-mashup as a probability dis-
tribution of services across different categories, and we also
convert the presence of services in the original mashup into a
probability distribution. In this way, we can transform the align-
ment of the two structures into the alignment of two probability
distributions. Based on this setting, it is natural to think that
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Fig. 3. Structure-level Collaboration by KL-divergence. Blue distribution is
predicted by the meta-mashup learner, while the red distribution is transformed
from the original M-S graph structure. Regularization loss is implemented by
the KL-divergence, which forces the blue distribution to align with the original
red distribution.

the similarity between two probability distributions can be mea-
sured by Kullback-Leibler divergence (KL-divergence) [15]. By
forcing the KL-divergence between them to decrease, we can
promote the alignment of the two structures.

Formally, we first transform the the existing mashup-service
composition view into the category distribution of corresponding
services.

ps,m =
rms∑t
k=1 rks

, (17)

where rms and rks denote whether there exists interaction be-
tween mashup sork and service s. Thus we have two distribution
ps = [ps,1,ps,2, . . . ,ps,t] and the reconstructed distribution
p̂s. The KL-divergence between ps and p̂s can be formulated
as:

KL(p̂s||ps) =
t∑

m=1

p̂s,m log
p̂s,m

ps,m
. (18)

1) Mashup Cluster for Compression: Computing the
meta-mashups to classify services into overall existing mashups
requires extensive resources and limits large-scale mashup rec-
ommendation in the industry. To reduce the cost, we propose to
cluster the existing mashups into multiple groups and construct
the same number of meta-mashups as the groups to achieve
alignment. Specifically, given the mashup set M, we adopts k-
means to cluster mashups intoC categories {M1,M2, . . . ,MC}
based on the corresponding invocation representation e∗m,MI .
Afterwards, the goal of the learned meta-mashups has become
classifying services into the group containing the mashups they
belong to. And the KL-divergence in (18) has become a measure
of the difference between the probability distribution of the
original service categories and the learned service categories.

D. Cross-View Graph Contrastive Learning

Recall that we obtain the user and mashup representations in
different views, denoted as e∗u,MI and e∗u,SC , as well as e∗m,MI

and e∗m,SC . We believe that each view captures a distinctive
aspect of the user’s preferences or the mashup characteristic,
and the two views need to work cooperatively to maximize
the overall modeling capacity. Thus, we employ a cross-view
contrastive loss to model the cross-view cooperative association.
Formally, we follow SimCLR [16] and adopt the contrastive
loss, InfoNCE [17], to maximize the agreement of the same
users/mashups representation from different views and mini-
mize that of different users/mashups:

LU
CL =

1

|U|
∑

ui∈U
− log

exp (s(e∗ui,MI , e
∗
ui,SC)/τ)∑

uj∈U exp (s(e∗ui,MI , e
∗
uj ,SC)/τ)

(19)

LM
CL=

1

|M|
∑

mi∈M
− log

exp (s(e∗mi,MI , e
∗
mi,MC)/τ)∑

mj∈M exp (s(e∗mi,MI , e
∗
mj ,MC)/τ)

(20)

where LU
CL and LM

CL represent the cross-view graph contrastive
losses for users and mashups, respectively. s(·) measures the
similarity between two vectors, which is set as cosine similarity
function. τ is the hyper-parameter, known as the temperature in
softmax.

E. Mashup Prediction

After obtaining the user and mashup representations from
different views in Section III-B, which are e∗u,MI and e∗u,SC ,
as well as e∗m,MI and e∗m,SC , we first utilize the classical inner
product to calculate the user-mashup match score in different
views. And for a more comprehensive prediction, we combine
the scores in different views with a weighted sum:

ŝum = α ∗ e∗Tu,MIe
∗
m,MI + (1− α) ∗ e∗Tu,SCe

∗
m,SC , (21)

where 0 < α < 1 controls the weight of the user-mashup match
score in the Mashup Invocation view.

1) Optimization: To optimize model parameters, we adopt
the pairwise Bayesian Personalized Ranking (BPR) loss [18],
which has been extensively used in most implicit recommenda-
tion processes. BPR operates on the assumption that mashups
that have been consumed should be given higher predicted
values than those that have not been observed, as they better
reflect a user’s preferences. For each positive user-mashup pair
< ui,mj >, we randomly sample multiple negative mashups
from the unobserved mashups of the user, which is denoted as
mk. The BPR pairwise ranking loss is defined as follows:

LBPR =
∑

(ui,mj ,mk)∈D
−lnσ(ŝuimj

− ŝuimk
), (22)

where σ(x) = 1
1+exp (−x) is the logistic sigmoid function and D

represents the set of pairwise training instances.
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Finally, we unify the mashup recommendation task and the
cross-view graph alignment in structure- and representation-
level in a joint learning framework:

L=LBPR+λ1

∑

s∈S
KL(p̂s||ps)+λ2(LU

CL+LM
CL)+λ3||Θ||22,

(23)
where λ1, λ2, and λ3 are the paramters to balance different tasks.
The last term of (23) is a regularization term, which is aL2 norm
to prevent overfitting.

2) Time Complexity Analysis: The time complexity of our
CGA is mainly composed of three parts, which we analyze
separately. 1) Graph-based representation learning: The time
complexity of graph convolution in each iteration on Mashup-
Invocation and Service-Consumption view is O(2|EUM|Kd)
and O(2|EUS|Kd), respectively, where d is the embedding size.
Thus the overall complexity for the whole training phase is
O(2|EUM + EUS|Kds |EUM|

B ), where |EUM| is the number of
edges in the user-mashup bipartite graph, which is also the
number of the training samples. Analogously, |EUS| is the num-
ber of edges in the user-service bipartite graph. B is the batch
size and s is the epoch number. 2) Meta-Mashup learning: It
involves a MLP projection module, which has a complexity of
O(|S|d2) for all services in each iteration. So the complexity will
be O(|S|d2s |EUM|

B ) for the whole training phase. 3) Cross-view
Graph Contrastive Learning: As defined in (19) and (20), we
treat all user nodes and mashup nodes as negative samples
when calculating the InfoNCE loss. For the user-side contrastive
loss (19), the numerator and denominator within a batch have
complexities of O(Bd) and O(B|U|d), respectively, where |U|
represents the number of users. The total complexity per epoch
for user side is O(B(|U|+ 1)d). Similarly, the total complexity
per epoch for mashup side is O(B(|M|+ 1)d). As a result, the
time complexity for the entire training phase is O(B(|M|+
|U|+ 2)d |EUM|

B s) = O((|M|+ |U|+ 2)d|EUM|s). One way to
reduce time complexity is to only consider users (or mashups)
within the same batch as negative samples [16], [19], resulting
in a total time complexity of O((2B + 2)d|EUM|s).

To summarize, we can find the bottleneck of the overall
time complexity lies in the Graph-based representation learning,
which is inevitable in most graph-based recommendation tasks.
Moreover, the time complexity of this part is greatly reduced,
thanks to the removal of feature transformation and non-linear
activation in each graph convolutional layer as illustrated in
Section III-B. In practice, we usually have K ≤ 3. Moreover,
clustering the mashups into groups effectively reduces the di-
mensionality of the problem. Instead of having to deal with each
individual mashup separately, you can deal with a smaller num-
ber of clusters, each representing a group of similar mashups.
This simplification can significantly reduce the computational
load and thereby the time complexity. In conclusion, our algo-
rithm is computationally feasible in practice and thus support
real-time query in real-world mashup recommendation system.

To help the readers better understand the parameters and the
corresponding symbols mentioned above, we summarize the
notations involved in the time complexity analysis in Table I.

TABLE I
NOTATIONS AND EXPLANATIONS IN TIME COMPLEXITY ANALYSIS

TABLE II
STATISTICS OF THE DATASETS

IV. EXPERIMENTS

A. Dataset Description

To verify the effectiveness of our proposed CGA, we evaluate
our proposed CGA on a well-known online service datasets,
namely Netease [20]. Netease Cloud Music is a prominent music
service platform that allows users to discover their preferred
songs or user-created playlists by searching with keywords or
exploring different genres. Each song is considered an indepen-
dent service, while user-generated playlists are viewed as unique
mashups. Following [20], we filter the dataset by keeping only
playlists with a minimum of 10 songs, songs that appeared in
at least 5 playlists, and users who consumed at least 10 songs
and 10 playlists. In addition to the NetEase dataset, we further
validated our proposed CGA method on another benchmark
dataset, Youshu [21]. This dataset, sourced from a Chinese book
review site, allowed users to create lists of books, similar to the
song lists in NetEase. We treated each book as a separate service
and each user-created book-list as a mashup. Similar to Netease,
we also filter the Youshu dataset by keeping only booklists with a
minimum of 10 books, books that appeared in at least 5 booklists,
and users who reviewed at least 10 books and 10 booklists.

The detailed statistics of the Netease dataset and Youshu
dataset are shown in Table II.

In our study, we chose two general recommendation datasets,
Youshu and Netease, to validate the effectiveness of our CGA
method. These datasets, when abstracted, share several similar-
ities with web services, making them suitable for our research.
First, like web service platforms, they have a vast number of
users, services, and mashups composed of services. Second,
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within their ecosystems, numerous elements have a massive and
heterogeneous connection, forming many different graph struc-
tures in multiple views. Third, these different graph structures
reflect the preferences of users and the characteristics of services,
making them ripe for comprehensive mining to aid in better
representation learning. These commonalities demonstrate that
our CGA method can be effectively applied on web service
platforms and generalized to other recommendation tasks that
meet these criteria.

B. Experimental Settings

1) Baselines: To evaluate the performance of mashup rec-
ommendation, we selected three classes of baseline methods
for comparison. These include: (1) Mashup Creation methods,
which aim to recommend related services to existing mashups
to form new mashups and enhance their functionality. For com-
parison with our methods, we adopted the mashup modeling
methods and calculated the matching score between users and
mashups for recommendation; (2) Service Recommendation
methods, which aim to recommend suitable single services to
users. To adapt these methods to our experiment, we treated
mashups as a special type of service, using only user-mashup
interactions without considering the included services within the
mashups; and (3) Mashup Recommendation methods, which are
consistent with our problem definition and aim to recommend
a bundle of services to users in the form of mashups to better
meet their needs. The baseline models are as follows and the
class index of each model is indicated beside its name.
� DySR [22] (1) An method for solving mashup creation

problem by jointly addressing evolving service social and
semantic gap issues.

� coACN [23] (1) A service recommendation framework for
composition creation, which designs a domain-level atten-
tion unit to integrate domain information and construct a
graph network to capture holistic information.

� T2L2 [24] (1) A method to eliminate representation hetero-
geneity between services and mashups by aligning them to
the same representation space.

� CSBR [7] (1) A method to learn the compositional se-
mantics of a mashup, which discover potential reusable
service packages and learn their compositional semantics
from existing mashups and save them into a repository.

� LightGCN [12] (2) A state-of-the-art GCN-based general
recommendation model that leverages the user-service
proximity to learn node representations and generate rec-
ommendations.

� NCF [25] (2) A deep learning based framework combining
matrix factorization (MF) with a multilayer perceptron
model to learn the embedding for recommendations.

� BundleNet [26] (3) A method that constructs a user-bundle-
item tripartite graph and employs multi-task learning to op-
timize the model, allowing it to effectively handle complex
interactions.

� BGCN [8] (3) A method for mashup recommendation
which decomposes the user-mashup-service relations into

TABLE III
OVERALL PERFORMANCE COMPARISON ON NETEASE

two separate views and uses GCN to learn representations
separately.

� CrossCBR [9] (3) A method formulates the cross-view
cooperative association in bundle recommendation, which
propose a simple yet model the cooperative association
between two views via cross-view contrastive learning.

2) Evaluation Metrics: To evaluate the effectiveness of
mashup recommendation for all algorithms, we employed two
commonly used metrics: Normalized Discounted Cumulative
Gain@K (NDCG@K) and Hit Ratio@K (HR@K). Both metrics
are better when higher. NDCG@K is position-aware and assigns
higher scores to hits at top ranks, while HR@K determines if
the test mashup is included in the recommendation list. For each
user, the metrics are defined as follows:

NDCG@K =
1

RN

N∑

i=1

2reli−1

log2(1 + i)
(24)

HR@K =

∑K
i=1 reli
|ytestu | (25)

whereK is the size of the mashup recommendation list, reli = 0
or 1 indicates whether the mashup at rank i is in the test set, and
RN is the maximum possible cumulative component through
ideal ranking. Also, |ytestu | is the number of mashups used by
user u in the test set.

C. Comparative Analysis on Overall Performance

We summarize the performance of different algorithms in
terms of HR@K and NDCG@K with recommendation sizeK =
20, 40 in Tables III and IV. The best performing methods are
bold, while the strongest baselines are underlined. From the the
empirical results, we find our CGA outperforms other methods
in all evaluation metrics on both datasets with varying difficulty
levels, and one-sample t-tests show that the improvements of
CGA over the strongest baseline are statistically significant
(p-value < 0.05). From the results, we drew three conclusions:
� Graph-based methods have better performance than other

methods. For example, DySR and coACN outperform
T2L2 and CSBR, and LightGCN performs better than
NCF. This indicates that the graph learning module is more
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TABLE IV
OVERALL PERFORMANCE COMPARISON ON YOUSHU

effective in modeling the user-mashup and user-service
collaborative signals.

� Considering the composition of services within a mashup
at a finer granularity, rather than simply considering the
interaction between the mashup as an entity and the user, is
more effective for mashup recommendation. For instance,
in Mashup Creation methods, the best performing methods
DySR and coCAN have better performance than the best
performing method LightGCN in service recommendation
methods. This proves that the compositional information
of mashups can help us better learn the representation of
mashups, in addition to user-mashup interaction informa-
tion. At the same time, users’ preferences for mashups
can be better captured through finer-grained service prefer-
ences. This also better supports the necessity of performing
cross-view graph alignment.

� Methods that take into account service-consumption in-
formation, such as BGCN and CrossCBR, perform better
than methods that only consider mashup-invocation infor-
mation, such as LightGCN and NCF. This proves that the
information from service consumption indeed brings addi-
tional information gain and enhances our model’s ability
to model user preferences.

� Multi-view cooperation is crucial for improving the effec-
tiveness of mashup recommendation. For example, Cross-
CBR and our CGA perform better than BGCN, which inde-
pendently performs presentation learning in different views
and fuses view-specific decisions at the final prediction
stage. We believe that this approach does not fully exploit
the potential of multi-view cooperation. Instead, multi-
view cooperation during the representation learning stage
forces the two views to interact and exchange information,
allowing us to learn a more comprehensive representation
that reflects user preferences and mashup characteristics.

� Our CGA consistently yields the best performance
on both the Netease dataset and the Youshu dataset,
which improves over the strongest baseline CrossCBR
by 5.26% with respect to NDCG@20 and 3.36% to
HR@40 on Netease, respectively. This proves that
when performing multi-view cooperation, especially
in graph-based recommendation methods, it is crucial

Fig. 4. Performance of CGA and its variants.

to comprehensively consider both structure-level and
representation-level collaboration for aligning graphs
distributed in multiple views. One possible reason is that
in the data structure like graphs, in addition to the features
of the nodes, the topological structure between the nodes is
also a very important component. Therefore, considering
structure-level collaboration is very important for the
effectiveness of cross-view graph alignment.

D. Study of the Multi-View Cooperation

In order to better explore the respective roles of structure-
and representation-level collaboration in graph alignment, we
designed several variants of CGA and conducted ablation ex-
periments. The design of the variants is as follows.

1) w/o GA A variant model of CGA without all the graph
alignment. In this case, the variant degenerates into Light-
GCN, so we directly adopted the results in Table III.

2) w/o SL A variant model of CGA without structure-level
collaboration.

3) w/o RL A variant model of CGA without representation-
level collaboration.

We show the results over NDCG@20 and HR@20 of CGA
and its variants in Fig. 4. From the results, we can see that
both structure-level and representation-level collaboration can
significantly improve the performance of graph-based mashup
recommendation. Among all these variants, our CGA achieved
the best performance, indicating that when we consider both
structure- and representation-level collaboration at the same
time, the model performs best, and removing either level of
collaboration will impair the model’s capability. What’s more,
when we compare the performance of the w/o SL and w/o
RL variants, we find that w/o SL performs better than w/o
RL, indicating that representation-level collaboration is more
effective for multi-view graph alignment in service ecosystems.
This conclusion also guides us that for the selection of weights
for

∑
s∈S KL(p̂s||ps) and (LU

CL + LM
CL) in the loss function

(23).
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Fig. 5. Performance of CGA w.r.t. different layer number.

E. Parameter Sensitive Studies

1) Effect of Layer Number K: In order to determine the
layer number K of the graph-based representation learning in
our CGA model and to ascertain if multiple stacked layers can
enhance its performance, we conducted experiments on Netease
datasets by varying the layer number K from 0 to 6. The results
are illustrated in Fig. 5, where CGA-k denotes the model with
k layers. We have the following observation:
� CGA-1 exhibits a marked enhancement in comparison to

its predecessor, CGA-0. It is important to note that when
the number of layers is set to 0, the model reverts to
NCF [25], and the results of our experiments align with
those presented in Table III. The observed improvement
can be attributed to the fact that, unlike CGA-0 which
solely encodes implicit collaborative signals, CGA-1 ex-
plicitly incorporates the connectivity of user-mashup and
user-service into its modeling.

� Another noteworthy finding is that our CGA achieved
optimal performance after just one layer of graph convo-
lution, and further deepening the model depth does not
bring additional improvement. This is different from many
existing graph models, such as LightGCN [12], which
achieved optimal performance after reaching three layers.
The main reason for this is that we introduced a graph
alignment mechanism in multiple different views in the ser-
vice ecosystem, which requires us to have a more accurate
modeling of the local topological structure of each node on
the graph in order to achieve better alignment. Graph neural
networks, essentially as a low-pass filter, suffer from the
problem of over-smoothing [27], which is more prominent
in our case of alignment focusing on local topological
information. Therefore, our method uses one layer of graph
convolution in the graph-based representation learning. By
effectively reducing the number of convolution layers and
surpassing multi-layer convolution by graph alignment, our
method also greatly reduces the computational burden and
is conducive to deployment when dealing with millions of
services and mashups in real-world industry scenarios.

2) Effect of Cluster Number C: We further delve into the
exploration of the parameter C, which signifies the number

Fig. 6. Performance of CGA w.r.t. different cluster number.

TABLE V
COMPUTATION COST ON DIFFERENT CLUSTER NUMBERS

of clusters in mashups and governs the degree of compression
applied to our meta-mashup learning quantity. We vary C from
10 to 100 while keeping other parameters fixed. We present the
experimental results of NDCG@20 and HR@20 on Netease in
Fig. 6. Fig. 6 reveals that the optimal cluster number for CGA
is between 40 and 60. Further increasing the number of clusters
results in a decline in recommendation performance, likely due
to the fact that too many clusters can cause semantically similar
mashups to be divided into different clusters, thereby making the
original distribution of a certain service more dispersed, which
is not conducive to our meta-mashup learner learning the correct
distribution. In addition, too few cluster numbers will also affect
the model’s ability, mainly because too few clusters will force
unrelated mashups to be classified together, resulting in semantic
confusion.

We also analyze the computation time of our algorithm under
different cluster numbers. As mentioned in Section III-C1, we
use a clustering algorithm to group the mashups into clusters
based on their invocation patterns. This strategy can help speed
up the recommendation process and reduce the overall response
time. To evaluate the impact of cluster number on the computa-
tion time, we conduct experiments on both Youshu and NetEase
datasets with different cluster numbers ranging from 10 to 500.
We measure the average computation time of our algorithm for
each cluster number, and report the results in Table V.

From Table V, we can see that the computation time increases
rapidly as the cluster number increases. This is because a larger
cluster number means a smaller cluster size, which leads to more
clusters and more alignment operations in structure regulariza-
tion. The increase of computation time is linearly correlated with
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the increase of cluster number. These results show that mashup
clustering can effectively reduce the computation time of our
algorithm, and thus improve the efficiency and scalability of our
recommendation system. However, there is a trade-off between
computation time and recommendation accuracy, as a smaller
cluster number may also result in a lower quality of alignment
and prediction according Fig. 6. Therefore, we need to choose an
appropriate cluster number according to the specific application
scenario and the available computational resources.

We also provide some general guidelines on how to choose
an appropriate cluster number for different datasets. In general,
we can perform a grid search in the range of [10, 200] to find the
best cluster number for a given dataset. However, the optimal
cluster number may also depend on the diversity of the service
categories in the dataset. For datasets with high service diversity,
such as online shopping platforms, a larger cluster number may
be more suitable, as it can capture the finer-grained preferences
of the users. For datasets with low service diversity, such as
book or music platforms, a smaller cluster number may be more
suitable, as it can avoid overfitting and reduce the computation
cost.

V. RELATED WORK

A. Service Recommendation

The academic and industrial communities have recently
shown significant interest in utilizing service recommendations
for fulfilling the needs of users. The approaches for service
recommendation can be categorized based on the type of infor-
mation utilized in the model. These categories include content-
based approaches that rely on content information, graph-based
approaches that make use of historical invocation information,
and hybrid approaches that combine both content and historical
invocation information.

Content-based approaches are commonly used to recommend
services by matching candidate services to the requirements.
This involves using techniques such as keywords [28], [29],
TF-IDF [13], and ontologies [30], [31] to measure the similarity
between descriptions of services and requirements. However,
these methods suffer from poor performance and cannot fully
understand semantic meaning. Some studies have attempted to
use topic models and latent semantics to improve recommenda-
tion performance [7], [32], but small data volumes and high noise
in data have limited their effectiveness. Recently, researchers
have turned to pre-trained language models and deep learning
models to solve the service recommendation problem. For ex-
ample, Bai et al. [33] designed a stacked denoising autoencoder
(SADE) to extract features for the recommendation. However,
these approaches have had limited success due to the difficulty
of adapting existing models to service recommendations and
negative transfer.

In contrast to content-based methodologies, graph-based ap-
proaches offer recommendations by examining data extracted
from past interactions involving services or users. Graph-based
techniques generally work together with collaborative filtering
(CF). For example, Zheng et al. [34] introduces a neighborhood

integrated matrix factorization approach for predicting the qual-
ity of service (QoS) of potential services. Qi et al. [35] employs
a hybrid random walk to calculate the similarities between users
or services, with a CF model used for service recommendation.
Xie et al. [36] and Liang et al. [37] build a heterogeneous
information network by incorporating various details of services
to determine the similarity between services, and then employ
user-based CF to rank potential services.

Given the complementarity of textual and graph data, several
hybrid service recommendation methods that combine both
content and historical invocation information have emerged
recently. Li et al. [38] augment a latent Dirichlet allocation
(LDA) model with invocation relations between requirements
and services to enable the topic model to capture the asso-
ciation between services and requirements. Jain et al. [39]
and Samanta et al. [40] utilize topic models and neighbor
interaction probabilities to compute similarity scores between
services and requirements, and then multiply these scores to rank
candidate services. Deep learning-based methods are gradually
becoming the predominant hybrid approaches. For instance,
Xiong et al. [41] integrate the invocation relations between
services and requirements, as well as their description similarity,
into a deep neural network (DNN). Chen et al. [42] propose a
preference-based neural collaborative filtering recommendation
model that uses a multi-layer perceptron to capture non-linear
user-service relationships and obtain abstract data representa-
tions from sparse vectors.

B. Mashup Recommendation

Rather than recommending services individually based on
their contents or historical interactions, which has been ex-
plored in previous works [2], [3], mashup recommendation
methods recommend a bundle of compatible services to satisfy
the functional requirements of the mashup as completely as
possible. Our proposed method follows this approach. Initial
works just ignore the affiliated services of the mashup and
just use an id to represent a mashup. Following works rec-
ognize the importance of affiliated services and develop var-
ious models to capture the additional user-service interaction
and mashup-service affiliated relations. For example, Maaradji
et al. [43] puts forth a frequent pair mining method for mashup
development. Wu et al. [44] introduce a neural framework based
on multi-model fusion and multi-task learning, which leverages
a semantic component to generate mashup representations and
introduces a feature interaction component to model the inter-
action between mashups and services. Ma et al. [45] leverage
the strong feature extraction capabilities of deep learning to
extract textual and interaction-based features between mashups
and services. Another line of research similar to mashup recom-
mendation is bundle recommendation [20], [46]. Liu et al. [47]
build a bridge between bundle recommendation and mashup
recommendation by modeling the mashup creation problem as
a service bundle recommendation task. With the emergence
of graph neural network-based recommendation models, Deng
et al. [26] propose BundleNet and Chang et al. [8] propose
BGCN. BundleNet mixups the three types of relations between
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users, bundles, and items, while BGCN decomposed user prefer-
ences into item view and bundle view, which effectively captured
the two types of preferences and resulted in better performance.
More recently, CrossCBR [9] proposes to model the cooperative
association between the two different views through cross-view
contrastive learning. Despite substantial progress made in the
aforementioned studies, they all only consider collaboration at
the representation-level across different views. We believe these
approaches is somewhat lacking, especially for graph-based
recommendation models. This is because, for graphs, the topo-
logical structure is an extremely crucial element. Therefore, our
cross-view graph alignment work proposed in this paper takes
into consideration not only the representation-level, but also the
structure-level collaboration.

C. Contrastive Learning

Contrastive Learning (CL) [48], [49] was initially introduced
for training convolutional neural networks (CNNs) to learn
image representations and has recently shown great success.
CL has also been applied to graph data, such as DGI [50]
and InfoGraph [51], which learn node representations based
on the mutual information between nodes and the entire graph.
Unsupervised learning models, such as that developed by Peng
et al. [52], have been trained by maximizing mutual information
of nodes between the input and output of a graph neural encoder.
Similarly, Hu et al. [53] extended this idea to learn GCN for
graph representation by building contrastive pairs between nodes
and subgraphs. Additionally, GCC [54] designed the pre-training
task as subgraph instance discrimination in and across networks
and leveraged CL to enhance graph neural networks. However,
there are limited works that utilize CL to enhance graph-based
recommendation. S3-Rec [55] employs the mutual information
maximization principle to learn the correlations among attribute,
item, subsequence, and sequence for sequential recommenda-
tion. A recent work, SGL [56], supplements the supervised
task of recommendation with an auxiliary graph CL task that
generates multiple views of a node and maximizes the agreement
between different views of the same node compared to that of
other nodes.

VI. CONCLUSION

With the development and adoption of service-oriented ar-
chitecture, a large number of web services have been published
on the Internet. The characteristics of these services make it
possible to combine services as reusable components to create
value-added service compositions, known as mashups. To avoid
information overload and help users select suitable mashups,
mashup recommendation has received increasing attention. Due
to the diversity of interaction relationships between various
types of entities on service platforms, Mashup-Invocation view,
Service-Consumption view, and Mashup-Composition view can
be constructed on service platforms. User preferences and char-
acteristics of services and mashups are distributed across differ-
ent views, so their cooperation is crucial for accurate mashup
recommendation. In this work, we propose Cross-view Graph
Alignment (CGA), a framework that captures the collaborative

associations dispersed across different views and enhances the
representation learning of users and mashups. This is the first
study to jointly tackle structure- and representation-level col-
laboration on service platforms for better mashup recommenda-
tion. Extensive experiments on two real-world service datasets
demonstrate that CGA outperforms state-of-the-art methods and
can better improve the mashup recommendation.
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