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Abstract—The rapid expansion of Internet users results in an
immense influx of network traffic within extensive cloud data
centers. Accurate and instantaneous identification and forecasting
of network traffic aid system managers in efficiently distributing
resources, assessing network performance based on specific
service demands and scrutinizing the health of network status.
However, sources and distributions of traffic are different, which
makes accurate warnings of cyberattack traffic difficult. Recently,
emerging neural networks have demonstrated their efficacy in
forecasting time series data of network cyberattacks. The time
series has temporal and spatial features, which can be efficiently
captured with Informer and convolutional neural networks
(CNNs). To realize high-performance spatiotemporal detection of
cyberattacks, this work for the first time designs a hybrid and
spatiotemporal prediction framework, which integrates CNNs,
Informer, and a Softmax classifier to realize high-classification
accuracy of normal and abnormal cyberattacks. Real-life data are
adopted to evaluate the proposed method, which yields significant
improvement in classification accuracy over typical benchmark
classification models.

Index Terms—Anomaly time series detection, deep learning,
network cyberattacks, neural networks, spatiotemporal features.

I. INTRODUCTION

COMPUTER networks are widely used in human
daily lives and business [1]. In the process of

computer network interactions, cloud data centers share soft-
ware/hardware resources and use servers to exchange the
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TABLE I
NETWORK ATTACK TYPES

Fig. 1. Relations between anomaly and attack types.

network data, provide resources and information needed by
the target, and realize network service functions, yielding a
new network computing paradigm [2]. However, the growth of
the scale of computer networks derives a variety of malicious
attacks based on the network traffic. Table I shows some
types of typical network attacks. Fig. 1 shows the relations
between anomaly and attack types. For example, a Denial
of Service (DoS) attack takes up too many resources of
servers and hinders services for other legal users by sending
requests beyond the normal range of demand [3]. Anomalies
in the network traffic manifest as sudden surges within a
short timeframe, resulting in significant disruptions to network
service operations. Hence, it is necessary to proactively detect
and prevent the attacks that threaten the network traffic
services [4].
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This work endeavors to preempt network attacks by
promptly detecting incoming network traffic. It achieves this
by discerning and categorizing anomalies rooted in traffic
characteristics and anomaly types [7], [8]. In addition, the
future attack traffic can be predicted based on the trend of the
input historical traffic, and therefore, preventive measures can
be taken in advance. Identifying attack traffic patterns within
network servers’ time series is a classification problem of
univariate time series [9]. Traditionally, network traffic detec-
tion is mainly based on statistical methods. Discriminative
features are extracted by analyzing the original data, and they
are used by a classifier to distinguish normal and abnormal
traffic [10]. However, due to the dramatic increase in the
network scale, the network traffic often comes from multiple
different service points, each of which usually does not
have uniform characteristics and does not follow the same
mathematical distributions [11]. Therefore, anomaly detection
models based on distributed statistical learning often achieve
relatively poor performance. They fail to yield the optimal
learning models and capture hidden characteristics by manu-
ally designed models [12].

Deep learning provides automatic feature learning abili-
ties and achieves better results than traditional methods in
many fields [13]. Therefore, in recent years, several existing
studies have applied deep learning methods to realize the
traffic prediction, which captures hidden complex features
from a large amount of the original network traffic through
multiple iterations and accurately identifies the abnormal
data [14], [15]. Compared with traditional statistical methods
and machine learning algorithms, deep learning eliminates
the process of manually designing features of the data set
and does not require much expert knowledge. Thus, deep
learning is suitable for network traffic detection in cloud
data centers because it can well capture spatial and temporal
changes over time [16]. Then, it can identify the normal and
abnormal patterns in the network traffic data by utilizing the
spatiotemporal patterns, thereby capturing network attack traf-
fic changes. For example, deep learning techniques are adopted
to classify and predict sensor data collected in industrial
fields [17]. Different from existing studies, this work crafts
a hybrid classifier leveraging spatiotemporal features inherent
in network traffic data. It establishes deep learning models
by amalgamating convolutional neural networks (CNNs) with
Informer, achieving real-time detection and classification of
network traffic anomalies. It focuses on the network traffic data
with heterogeneous characteristics, mathematical distributions,
and atypical and aperiodic changes [18].

The main contributions of this work are summarized as
follows. First, this work preprocesses the network traffic data
with a sliding window technique. Second, it extracts spatial
features in each traffic window through a convolution layer and
a pooling one in a CNN [19]. Third, temporal characteristics
are captured in the output of the CNN layer by introducing
Informer. Fourth, a Softmax classifier is adopted to classify
the network traffic, thereby improving the detection ability to
identify normal and abnormal traffic [20]. By integrating the
above modules, this work proposes a hybrid and spatiotempo-
ral detection framework named SCIS, which comprehensively

combines a Sliding window mechanism, CNN, Informer, and
a Softmax classifier.

The remaining of this work is given as follows. Section II
gives the related studies. Section III illustrates the system
architecture. Section IV shows details of the proposed method.
Section V gives simulation experiments and results by using
real-life data sets collected from real-life large-scale industrial
clusters. Section VI concludes this work.

II. RELATED WORK

This section shows the related work from two major per-
spectives, including cyberattack traffic detection models with
temporal features and spatial ones, respectively.

A. Cyberattack Traffic Detection Models With Temporal
Features

Traditional machine learning approaches depend on feature
engineering to analyze cyberattack traffic detection. Abnormal
traffic detection methods with deep learning can autonomously
explore potential features in the data and find appropriate
parameters through deep neural networks driven by big
data [21]. Network traffic essentially comprises numerous
substantial fluctuations over time. Certain researchers advocate
for time series methodologies, such as long short-term memory
(LSTM) [22] networks and recurrent neural networks (RNNs),
which possess the capability to retain extensive the time
series data and extract temporal features from the network
traffic data [23]. Malhotra et al. [24] adopted sensor data
containing normal signals to train LSTM models to predict
future signals, and use real signals to calculate error distribu-
tions to achieve anomaly detection. This approach circumvents
issues like gradient explosion and vanishing gradients encoun-
tered in RNNs, thereby expediting model convergence.
Cheng et al. [25] adopted a sliding window algorithm to
preprocess the traffic data for LSTM networks, balance the
normal and abnormal data, and extract temporal features to
yield satisfying results. Sainath et al. [26] proposed a two-
stage LSTM model for structured information in network
traffic, which takes advantage of the bidirectional learn-
ing characteristics of bidirectional LSTM. It obtains surface
packet features and underly network flow ones, and inte-
grates them into each unit for output, thereby obtaining more
network traffic features and realizing accurate classification of
traffic.

Deep learning models based on modeling of temporal
features [27] mainly extract the temporal structure information
of network traffic through the long-sequence dependence
learning ability of the temporal network, which can learn
periodic change characteristics of network traffic data and
make periodic prediction [28], [29]. However, network attack
traffic usually has atypical and aperiodic characteristics,
reflected in values of single-point mutation. Time modeling
models based on periodic changes for predicting abnormal
data fail to handle them well. They cannot be used to
analyze the actual mass data, including positive and negative
samples [30].
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B. Cyberattack Traffic Detection Models With
Spatial Features

While RNNs enjoy widespread adoption, numerous studies
have demonstrated that for certain sequence modeling tasks,
the prediction accuracy of CNNs is comparable or, in some
cases, even superior to that of RNNs [31]. Wang et al. [32]
designed specific normal patterns of network traffic and
achieve the identification of attack traffic by converting
the time series into a 2-D image, and extracting its fea-
tures through convolution operations. Ren and Wu [33]
adopted a convolution algorithm to extract features from
high-dimensional electroencephalogram signals and apply a
deep concise network as a generative graphical model to
classify ideal values. The methods extract spatial features
by converting large-length temporal sequences and complex
content distribution into images. Based on the 1-D sequence
characteristics of network traffic, some researchers also adopt
an 1-D convolutional network (Conv1D) [34]. Compared
with 2-D graphics, the 1-D convolution can better learn and
reflect the original characteristics of traffic data. Based on
Conv1D, some researchers realize the traffic classification
by integrating feature learning and selection learning into
the network framework [35]. Specifically, after preprocessing
the traffic, the model can automatically learn the nonlinear
relationship, converge to the best point, and accurately and
quickly realize the abnormal classification of traffic [36]. The
method with spatial feature modeling extracts implicit spatial
models of network traffic through CNNs, which can effectively
capture spatial features of complex patterns in the sequence
data [3]. However, traditional CNNs are unable to discover
long-term dependencies. While extracting features from the
sequence with CNNs, the loss of temporal information happens
during operations of convolution and merging [37].

Due to the complexity of network traffic from differ-
ent sources, models mentioned above cannot extract both
temporal and spatial features of long-term network traffic.
Therefore, this work proposes a prediction framework based
on spatiotemporal features to improve the detection precision.
Different from the study in [38], this work adopts a more
advanced model of Informer instead of TCN to build the
detection framework, and designs a hybrid optimization algo-
rithm to optimize its key hyperparameters to improve the
classification accuracy.

III. SYSTEM ARCHITECTURE

The abnormal traffic detection model based on spatiotem-
poral characteristics is derived from CNN and Informer [39].
The overall system process is given in Fig. 2. The specific data
input and processing process can be summarized as follows.

1) To handle the problem of insufficient anomaly data pro-
portion, SCIS preprocesses the input through a sliding
window of fixed length to obtain the network traffic data
samples.

2) SCIS extracts spatial features in the traffic window
through a convolution layer and a pooling one in
CNN and yields the intermediate output, which is

Fig. 2. System architecture. The model adopts Informer as a lower layer to
learn temporal features. CNN and improved modules are used as an upper
layer to learn spatial features, improve the detection ability for abnormal
traffic, and enhance classification results of attack and normal traffic.

shown in Fig. 3 for subsequent temporal feature extrac-
tion. Following the convolution and pooling layers,
the intermediate output comprises a collection of data
vectors.

3) SCIS extracts temporal features from the intermediate
output through Informer. After that, the output of
Informer is flattened into a feature vector used as the
input to a Softmax classifier.

4) SCIS adopts a Softmax classifier to classify the data. The
feature vector mentioned above is classified as either 0
or 1 by Softmax. Here, 0 indicates the label of normal
samples, and 1 indicates that of abnormal samples.

5) The design of SCIS includes various model param-
eters, and its learning performance can be affected
by these parameters. Therefore, SCIS adopts a
hybrid optimization algorithm named genetic simulated
annealing-based particle swarm optimization (GSPSO)
to optimize its key hyperparameters to improve the clas-
sification accuracy. Here, this work takes an evaluation
indicator of classification accuracy as the optimization
target, and model hyperparameters to be optimized as
decision variables of the optimization problem. Then,
this work adopts GSPSO to solve it and the best
found solution yields the best combination of model
hyperparameters.

IV. MODEL FRAMEWORK

This section describes the details of the abnormal traffic
detection model. We first formulate our target problem and
introduce a method of data processing. Then, we introduce
the details of our model. Fig. 3 gives the framework for
detecting anomalies in the network traffic and Table II lists
main notations.
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Fig. 3. Detection structure of the proposed SCIS.

A. Problem Definition

The abnormal traffic detection model is trained with network
traffic data sets, including normal and abnormal labels [40].
The network traffic window sequence to be classified is the
input. Through the neural network, the network weight values
undergo updating, producing the corresponding label value
for each segment as the output. The supervised learning
process is repeated to obtain the best network parameters
iteratively and achieve high-accuracy classification of network
traffic sequences. The trained abnormal traffic detection model
is capable of categorizing unclassified traffic data based on
their sequential values. It can effectively assign labels to a
substantial volume of original data, subsequently identifying
and isolating abnormal traffic [41].

Let X = {x1, . . . , xt, . . . , xT} denote the time series data
of network traffic spanning a duration of T , and X̃ (X̃ =

{x̃1, . . . , x̃t, . . . , x̃T}) denotes the time series data of network
traffic spanning a duration of T processed by the detection
model. xi and x̃i mean the sequence values of network traffic
and the processed sequence traffic in time step i, respectively.
lT and l̃T denote the real label value and the classification
label one corresponding to the window sequence with a time
span of T , respectively [42]. This work classifies between
normal and abnormal traffic series spanning a duration of T .
The learning objective aims to establish the nonlinear mapping
from the input sequence to its corresponding label value by
minimizing the classification error function, loss(l̃T , lT). The
specific mathematical process is expressed as follows:

l̃T = �
(
X̃
)

(1)

where � refers to a learned classifier function.
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TABLE II
MAIN NOTATIONS

B. Data Processing

To address the data imbalance, the sliding window algorithm
is employed [43]. It partitions the original data samples by
utilizing a sliding window mechanism, i.e., in each step, a
certain number of data points comprise a sample. If there is
an outlier in the sample, the sample is labeled as abnormal;
otherwise, it is normal.

C. CNN

In CNN, spatial features of the data are derived through
a series of operations involving a convolution layer and a

subsequent pooling one [44]. The convolution layer encom-
passes 1-D convolutions and pooling layers to autonomously
extract spatial features from the network traffic sequence.
Multiple filter vectors are applied in these convolution opera-
tions, sequentially traversing the sequence to unveil distinctive
features. Following the convolution layer, an activation func-
tion is employed, enhancing its capacity to capture intricate
features present in the input.

q = (q1, q2, . . . , qp) denotes an input vector of traffic data.
p denotes the size of each window. qz(1≤z≤p) represents the
normalized traffic data. I denotes the dimension of the traffic
data input vector for this layer. i denotes the eigenvalue index
(1≤i≤I). J denotes the convolution kernel number in this
layer. j denotes the feature map index for each traffic window
(1≤j≤J). The operation of the convolution layer is given as
follows:

yl
ij = σ

(

bl−1
j +

M∑

m=1

Wl−1
m,j ql−1

i+m−1,j

)

(2)

where L denotes the layer number of convolution. yl
ij denotes

the output value derived from the convolution layer l (1≤l≤L).
yl

ij denotes the result of layer l−1 of dimension i in the feature

value j from the map by using the value ql−1
i+m−1,j calculated

from a layer of flow (the value of the input data q0
ij is used if

it is the first layer). ql−1
i+m−1,j denotes a traffic data vector of

feature map j in dimension i+m−1 of layer l−1. bl−1
j denotes

the bias of feature map j in layer l−1. Wl−1
m,j denotes the weight

coefficient of the jth feature mapping kernel in dimension m
of layer l−1. M denotes the filter size. σ denotes the function
of activation (such as tanh or ReLU). The pooling layer is
performed as follows:

pl = maxr∈Ryl−1
i×L+r,j (3)

where yl−1
i×L+r,j means the value of feature map j in dimension

i×L+r of layer l−1. R denotes the pool size and R is smaller
than the input size y. L denotes the step length to move the
pool area. pl denotes the maximum value of layer l− 1.

The maximum pool scans the feature map in steps, selects
the maximum value, and outputs it to the next layer. Following
maximum pooling, the dimension of a feature map is reduced
by half in width and height, while retaining the same num-
ber of channels. This achieves dimensionality reduction and
compresses the feature map, consequently decreasing the
network’s parameter number and the computational com-
plexity. Additionally, this process helps mitigate overfitting
issues [45].

D. Informer Model

Different from traditional RNNs, LSTM, gate recurrent unit
(GRU), and other models, Informer adopts an improved atten-
tion mechanism, which deals with long-term dependencies and
missing values in sequences as well. Key characteristics of
Informer are given as follows. It employs a multiscale-time
structure of encoder and decoder, enabling simultaneous con-
sideration of information across various time scales. Besides,
it uses an attention mechanism of adaptive length, which
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Fig. 4. Input representation of Informer. The input embeddings include three
individual components, i.e., scalar projection, local time stamp embeddings,
and global time stamp embeddings.

can automatically adjust the attention range according to the
sequence length, thereby handling long sequences well. Then,
a novel gated convolution unit is used to decrease the number
of parameters and computations while improving the general-
ization ability. It also handles missing values in sequences as
well by using a masking mechanism that automatically handles
missing values during the training.

In the problem of long sequence modeling, local and hier-
archical timing information, e.g., week, month, and year, and
sudden timestamp information, e.g., events or holidays can be
investigated. Traditional self-attention mechanisms may lead
to the mismatch of keys and queries between the encoder and
decoder, and ultimately influence the prediction performance.
However, the Informer can avoid this problem, and its input
representation is given in Fig. 4.

In the encoder module, the Informer extracts the most
important attention information by the distilling operation. It
first designs multiple stacks, each with input representations
of the above-mentioned tokens and timestamps. Then, the
input passes through a layer of Conv1d convolution to yield
a representation of size L × d and adds them to the input of
the attention block. Then, the representation passes through
multiple attention blocks, each with multiple ProbSparse self-
attention modules. After the output of each block, there is a
sequence of operations, including a Conv1d convolution layer,
a ReLU activation layer, and a maxpooling layer with a step
size of 2. The specific formula is given as

Qt
j+1 = MaxPool

(
ReLU

(
Conv1d

([
Qt

j

]

AB

)))
(4)

where [.]AB denotes an attention block, Conv1d(·) denotes a
1-D convolution layer on time dimension with the activation
function of ReLU, MaxPool(·) denotes a max pooling layer,
and Qt

j denotes the input of sequence t in layer j. Consequently,

it consolidates the outputs from multiple stacks and derives the
final output of the encoder. In the decoder module, Informer
adopts a decoder similar to the traditional one. To generate the
output of a long sequence, the following input is given as:

Qt
de = Concat

(
Qt
�, Qt

0

)
∈R(D�+Dy)×d∗ (5)

where Qt
de denotes the input of decoder of sequence t,

Concat(·) denotes a fully connected layer, Qt
� denotes the

starting token, Qt
0 denotes a placeholder for the target

sequence, D� denotes the dimension of Qt
de, Dy denotes

the dimension of Qt
0, and d∗ denotes the feature dimension

after input representation. The first component is the starting
token sequence, and the second component is the part that
needs to be predicted where the scalar is filled with 0. The
sequence undergoes a masked ProbSparse self-attention layer
and subsequently progresses through a fully connected layer
to yield the ultimate output.

E. GSPSO Algorithm

This work adopts an improved optimization algorithm
named GSPSO [46] to optimize the hyperparameters in SCIS.
Currently, there are various typical optimization methods to
solve the hyperparameter optimization problem, but those
algorithms all have their shortcomings. For example, genetic
algorithm (GA) has high diversity of individuals, and simu-
lated annealing (SA) has high-global search ability, but they
both have slow convergence. particle swarm optimization
(PSO) is known for its rapid convergence, yet it tends to
prematurely converge to local optima. Thus, we propose
GSPSO that combines their strengths. GSPSO incorporates the
rule of Metropolis acceptance in SA and genetic manipulations
in GA to enhance the performance of PSO. Compared with
traditional PSO, each particle in GSPSO possesses a distin-
guished superior particle that excels among the population. In
addition, this superior particle plays a guiding role in shaping
the collective search process of the entire population.

Let x́i represent the position of a superior particle designated
for each individual particle i, while x̂ signifies the globally
best position for the entire population. x́i is designed as a
combination of x̌i and x̂ with

x́i = c1θ1x̌i + c2θ2x̂
c1θ1 + c2θ2

(6)

where c1 and c2 represent two parameters revealing influences
of x̌i and x̂, and θ1 and θ2 mean two random constants
uniformly generated in (0, 1). Velocities of particles vi and
positions of particles xς+1

i are updated as

vi = ω·vi + c·μ·(x́i − xς
i

)
(7)

xς+1
i = xς

i + vi (8)

where μ denotes a vector comprising randomly generated
numbers uniformly distributed in the range of (0, 1). If
f (xς+1

i )≤f (xς
i ), xς+1

i is selected; otherwise, it is conditionally
selected if

e

(
f(xς

i )−f
(

xς+1
i

)

Tς

)

>ξ (9)
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Fig. 5. Detailed process of GSPSO.

where Tς signifies the temperature in iteration ς and ξ

represents a randomly generated number uniformly distributed
in the range of (0, 1).

The detailed process of GSPSO is given in Fig. 5 and the
pseudo codes of GSPSO are shown in Algorithm 1. Line 1
shows that the random initialization of both particle positions
and velocities occurs. Line 2 calculates the fitness (f ) of each
particle. Line 3 updates x̌i and x̂. Line 4 sets parameters of
SA, GA, and PSO. Here, N represents the number of particles
in each population, ζ represents the mutation probability, c1
and c2 denote cognitive and social parameters, c denotes
the acceleration parameter, T0 denotes the initial temperature,
	 denotes the cooling coefficient, ς̂ denotes the number of
iterations, ω̂ denotes the maximum value of inertia weight
and ω̌ denotes the minimum one. Line 6 means that when

Algorithm 1 GSPSO
1: Initialize velocities and positions of particles randomly
2: Update fitness values (f ) of particles
3: Update the locally best position (x̌i) of each particle i, and

the globally best position (x̂) of the population
4: Initialize ζ of GA, T0 and 	 of SA, and PSO’s parameters

including c1, c2, c, ω̂, ω̌, ς̂ , and N
5: ς ← 1
6: while ς≤ς̂ do
7: Apply GA’s crossover operation on x̌i and x̂ to produce

an offspring x̆i

8: Apply GA’s mutation operation on each bit of the
offspring x̆i with a certain probability ζ

9: Apply selection operation to pick out x̆i or x́i

10: Update vς
i in PSO with (7)

11: Update xς+1
i with (8)

12: Selectively update xς+1
i with (9)

13: Calculate f of particles
14: Update x̌i and x̂
15: Tς ← Tς−1	

16: ω← ω̂ − ς(ω̂−ω̌)

ς̂
17: ς ← ς + 1
18: end while
19: return x̂

TABLE III
PARAMETER SETTING OF GSPSO

ς≤ς̂ , the while loop terminates. Line 7 yields x̆i. Line 8
applies the mutation operation to x̆i with ζ . Line 9 shows
whether x̆i is picked out with the selection operation. Lines 10
and 11 change velocities and positions with (7) and (8),
respectively. Line 12 selectively updates positions with (9).
Line 13 calculates fitness values of particles. Line 14 changes
x̌i and x̂. Line 15 decreases Tς by 	 . Line 16 decreases ω

in each iteration ς sequentially from ω̂ to ω̌. Line 19 outputs
the best x̂ that have been found.

In this work, model hyperparameter values and evaluation
indicators are positions and fitness values, respectively. For
instance, we regard the mean absolute error (MAE) as a fitness
value and the kernel size as a position, and each kernel size has
its corresponding MAE. Thus, GSPSO can find the globally
best position with the corresponding best fitness value, which
is the best value of model hyperparameter. There are a
few variables involved in this optimization problem, and the
parameter setting of GSPSO is not particularly elaborate. We
set our algorithm parameters according to [46]. The primary
parameter settings are exhibited in Table III.

V. EXPERIMENTAL RESULTS

This work designs several simulations to illustrate the
performance of SCIS and compares it with its state-of-the-art
peers. This section describes our experiments and analyzes the
results.
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TABLE IV
EXAMPLE OF DATAFRAME AFTER DATA PREPROCESSING

TABLE V
MODEL PARAMETERS OF SCIS

A. Yahoo S5 Webscope Data Set

This work adopts the data collected from a US portal site
of Yahoo. We adopt the A1 class of anomaly benchmark data
set of Yahoo Webscope S5 to train and test the proposed
SCIS. The data is presented as a time series of traffic derived
from real-life network services with a 1 hr sampling interval.
Outliers are manually flagged and have relatively large changes
in traffic compared with other available data sets. The input
values for our SCIS model are in (0, 1), and we preprocess
and normalize them for anomaly detection with

x′ = x− xmin

xmax − xmin
(10)

where x denotes a value of the original traffic, xmin denotes
the minimum value, xmax denotes the maximum value, and x′
denotes its normalized one.

There are 94 866 traffic values in all 67 files for class A1,
where only 1669 of these values are abnormal. The ratio
of outliers in the data used is very small, i.e., only 1.7%.
Thus, to address the data imbalance issue, we employ a
sliding window mechanism with a step size of 60 to aggregate
the original data samples. This signifies that each sample
comprises 60 consecutive flow points. If an outlier exists
within the sample, it is labeled as abnormal; otherwise, it is
labeled as normal. Then, a window slides to the next flow point
to form the next sample. After processing, 88 726 samples
are obtained, of which 8473 are abnormal samples with an
abnormal proportion of 9.5%.

Table IV shows the first four rows of the datafame after
data preprocessing. The first 60 rows are listed as the traffic
values in a single sample, and the 61st row is listed as the
label value. Fig. 6 gives the normalized distribution of the
network traffic. The model parameters of SCIS are exhibited in
Table V.

Fig. 6. Web traffic after preprocessing. The horizontal axis is the time
stamp and the vertical one is the standardized value of traffic. The significant
differences between the outliers and other normal traffic points are shown in
this figure.

Fig. 7. Changes of accuracy and loss in each epoch.

TABLE VI
CONFUSION MATRIX

B. Model Training Results

The traffic detection model is used for training, and the
parameters of training are given as follows. The size of batch
is 512 and the number of epochs is 200. The preprocessed
A1 training set is utilized for training, maintaining a training-
to-test set ratio of 7:3. Fig. 7 shows the change process of
model accuracy and loss in the iterative training process of
200 epochs. It is observed that our SCIS model yields stable
and high–accuracy results after 100 epochs.

The CPU and memory utilization are extracted and aggre-
gated for different training intervals, e.g., 5 mins., 10 mins.,
. . . , 60 mins. Figs. 8 and 9 show the comparison of the
memory and CPU utilization of four selected methods,
respectively.

C. Analysis of Misclassification Data

The substantial data imbalance in anomalous traffic detec-
tion underscores the importance of precisely identifying a
limited number of abnormal instances. Table VI shows the
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Fig. 8. Memory utilization for four selected methods.

Fig. 9. CPU utilization for four selected methods.

Fig. 10. Percentage distribution of misclassifications for different positions
of anomaly values.

confusion matrix in one round of prediction and the classifi-
cation results of the testing data with the trained model.

Here, the symbol ♠ shows the number of classification
errors. The ground truth (GT) is abnormal but its prediction
result (PR) is normal. The symbol ♦ denotes the number of
sliding traffic windows correctly identifying anomalies, while
♠ is crucial for analyzing the characteristics of misclassifi-
cations. Precisely, traffic windows comprising 60 data points
are segmented into six parts, categorized according to the
locations of anomalies within each window. Fig. 10 illustrates
the percentage of misclassification results corresponding to

Fig. 11. Percentage of point anomalies, contextual ones, and collective ones
not detected by SCIS.

Fig. 12. Accuracy in each epoch.

each abnormal position concerning ♠. If an abnormal position
resides at either end of a traffic window, it tends to induce
misclassifications. Conversely, when the abnormal value is
situated at the center, a reduction in the number of misclassi-
fications is observed. We additionally depict the categories of
anomalies present in ♠. Fig. 11 illustrates the distribution of
percentages of point anomalies, contextual ones, and collective
ones undetected by SCIS. It is evident that detecting contextual
anomalies poses the greatest challenge, followed by point ones
and collective ones, respectively.

D. Comparison of Algorithms

Figs. 12 and 13 present the accuracy and loss of four models
in each epoch. SCIS yields the highest accuracy and the
lowest loss, and it is observed that the abnormal detection
indicators are improved. An error occurs when an abnormal
instance is identified as normal (false negative, FN), or when a
normal instance is identified as abnormal (false positive, FP).
Likewise, a true positive (TP) sample happens when a normal
instance is correctly classified, while a true negative (TN)

sample happens when an abnormal instance is accurately
identified. The performance of each algorithm is evaluated
with TP, TN , FP, and FN , respectively

P̌ = TP

TP + FP
(11)

Ř = TP

TP + FN
. (12)
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TABLE VII
COMPARISON OF TRAINING RESULTS OF FOUR MODELS FOR THE YAHOO DATA SET

TABLE VIII
COMPARISON OF EVALUATION INDICATORS OF FOUR MODELS FOR THE YAHOO DATA SET

Fig. 13. Loss function value in each epoch.

In (11), P̌ representing precision signifies the proportion
of relevant instances among all retrieved ones. In (12), Ř
representing recall denotes the percentage of relevant instances
retrieved among all relevant ones. Ř serves as a crucial metric
for anomaly detection as it represents the ratio of the detected
abnormalities to the total number of abnormal instances. Based
on P̌ and Ř, F̌ denoting F1 score is derived with (13). This
work quantitatively shows the results of evaluation metrics

F̌ = 2
P̌× Ř

P̌+ Ř
. (13)

Table VII shows the comparative results of the above
metrics. CNN is used as a baseline and all experiments are
performed in each combination of improved models. SCIS
has a composite structure and optimized hyperparameters, and
therefore, it achieves higher performance than other models
with respect to P̌, Ř, and F̌. To evaluate the performance
of SCIS, we select coefficient of determination (R2), MAE,
and root mean square error (RMSE) to compare it with three
typical models. Table VIII shows the comparison of evaluation
indicators of SCIS and the other three models for the Yahoo
data set. The selected indicators show the deviations between
predicted results and GT ones. It is observed that SCIS yields
higher larger accuracy of prediction than others with respect
to R2, RMSE, and MAE.

TABLE IX
EVALUATION INDICATORS WITH DIFFERENT VALUES OF KERNEL SIZE

TABLE X
EVALUATION INDICATORS WITH DIFFERENT VALUES OF D_FF

SCIS optimizes its several key parameters with the proposed
GSPSO. Table IX shows the results with MAE as the
optimization objective function and the kernel size in CNN as
an optimization variable. It is shown from the results that MAE
is the smallest when the kernel size is five. Table X shows the
results with MAE as the optimization objective function and
d_ff in Informer as an optimization variable. It is shown from
the results that MAE is the smallest when the d_ff is 256.

VI. CONCLUSION

The network attacks may cause serious damage to network
service operations, and therefore, it is necessary to proactively
detect and prevent them from threatening network traffic
services. This work proposes a hybrid and spatiotemporal
network traffic detection method by well combining a sliding
window, CNN, informer, and a Softmax classifier (SCIS).
It takes into account the impact of various sources and
traffic distribution patterns and effectively attains the merits of
traffic detection models based on temporal features and those
based on spatial features. Specifically, SCIS adopts the sliding
window to handle the issue of unbalanced data samples. CNN
is adopted to enhance its capability in capturing spatiotemporal
features by enlarging the receptive field and addressing con-
cerns related to gradient dispersion and explosion. In addition,
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the self-attention mechanism in Informer resolves an issue of
gradient vanishing and effectively captures longer time span
information. Additionally, an activation function is employed
to initialize the weight parameters. This serves to expedite
the convergence speed of SCIS and bolster the sparsity of
the extracted features. Finally, we adopt an improved meta-
heuristic optimization algorithm named GSPSO to fine-tune
some key hyperparameters to enhance the accuracy of clas-
sification. Simulation results with a real-life data set in the
Yahoo Webscope S5 prove that SCIS yields the best results in
comparison with state-of-the-art benchmark methods.

Our future work plans to deepen our research in the follow-
ing aspects. First, we plan to implement our proposed model
with other data sets to demonstrate its generalizability. Second,
we will improve the current model framework by incorporating
more advanced deep learning models. Third, we will consider
adding batch standardization and gradient clipping to optimize
model training and reduce overfitting. Fourth, currently, we
only focus on optimizing a limited number of hyperparameters,
and we will optimize more network hyperparameters in the
future.
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