IEEE TRANSACTIONS ON SERVICES COMPUTING, VOL. 13, NO. 1, JANUARY/FEBRUARY 2020 73

DLTSR: A Deep Learning Framework for
Recommendations of Long-Tail Web Services

Bing Bai*”, Yushun Fan, Wei Tan

, Senior Member, IEEE, and Jia Zhang

, Senior Member, IEEE

Abstract—With the growing popularity of web services, more and more developers are composing multiple services into mashups.
Developers show an increasing interest in non-popular services (i.e., long-tail ones), however, there are very scarce studies trying to
address the long-tail web service recommendation problem. The major challenges for recommending long-tail services accurately
include severe sparsity of historical usage data and unsatisfactory quality of description content. In this paper, we propose to build a
deep learning framework to address these challenges and perform accurate long-tail recommendations. To tackle the problem of
unsatisfactory quality of description content, we use stacked denoising autoencoders (SDAE) to perform feature extraction.
Additionally, we impose the usage records in hot services as a regularization of the encoding output of SDAE, to provide feedback to
content extraction. To address the sparsity of historical usage data, we learn the patterns of developers’ preference instead of modeling
individual services. Our experimental results on a real-world dataset demonstrate that, with such joint autoencoder based feature
representation and content-usage learning framework, the proposed algorithm outperforms the state-of-the-art baselines significantly.

Index Terms—Deep learning, mashup creation, service recommendation, long-tail

1 INTRODUCTION

WITH the growing popularity of Service-oriented
computing (SOC) [1] and Internet of service (IoS) [2],

more and more developers are benefiting from reusing
web-based services (usually in the form of web APIs). Mak-
ing software as a service allows users/developers to inte-
grate software components from different providers, and
ultimately make a value-added software composition (e.g.,
mashup [3]). Nowadays, various mashups have been pub-
lished, and many services (such as Google Maps and Twitter)
have become well-known and frequently used. As common
demands have been met to a relatively large extent by these
frequently used services, we find that mashup developers
are beginning to investigate the potential of non-popular
“long-tail” services.

Fig. 1 shows some statistics about long-tail services (serv-
ices with < 5 usage records, i.e., showing up in < 5 mash-
ups) and hot ones (services with > 5 usage records) in a
representative web service ecosystem, i.e., Programmable-
Web.com which is the largest online repository for web
services [4], [5]. As we can see, about 70 percent of mashups
published after 2014 involve at least one long-tail service,
while in 2010, this number was only 40 percent. Moreover,
long-tail services make up about 50 percent of the total

e B.Baiand Y. Fan are with the Department of Automation, Tsinghua Uni-
versity, Beijing 100084, China.
E-mail: bb13@mails.tsinghua.edu.cn, fanyus@tsinghua.edu.cn.

e W. Tan is with the IBM Thomas]. Watson Research Center, Yorktown
Heights, New York, NY 10598. E-mail: wtan@us.ibm.com.

o |. Zhang is with the Department of Electrical and Computer Engineering,
Carnegie Mellon University, Moffett Field, CA 94035.
E-mail: jia.zhang@sv.cmu.edu.

Manuscript received 14 July 2016; revised 27 Feb. 2017; accepted 6 Mar. 2017.

Date of publication 13 Mar. 2017; date of current version 12 Feb. 2020.
Digital Object Identifier no. 10.1109/TSC.2017.2681666

service consumption by mashups after 2014, while in 2010,
this number was only about 20 percent. This shows the fact
that mashup developers are tending to consume more long-
tail services now than before. Such growing interest calls for
more effective long-tail web service recommendations.

From the perspective of individual web developers,
long-tail web service recommendations are also helpful.
For example, Facebook and LinkedIn are the popular serv-
ices of “Social” category, however, if developers want to
build mashups that can provide a “platform for readers
to share information about what eBooks they are read-
ing,” Readmill, which is a long-tail service, would be a
better choice. For developers with such demand, recom-
mending Readmill are with more value-add compared
with recommending well-known popular services such
as Facebook and LinkedIn [6].

Therefore, we argue that accurate long-tail service recom-
mendations can serve as a helpful complement to tradi-
tional service recommendations. However, traditional
methods, especially collaborative filtering based ones, often
fail to perform well on the long-tail side due to the sparsity
problem [7], and tend to be biased towards popular, well-
known services [8]. Moreover, there is very scarce work on
long-tail service recommendations. Existing service recom-
mendation techniques are majorly either QoS-based or func-
tionality-based. QoS-based algorithms aim at predicting
the unknown non-functional properties (such as reliability,
availability and response time) of a certain service, so they
hardly give any help for finding unknown but interesting
long-tail services [9], [10], [11], [12]. As for existing function-
ality-based algorithms, they do not focus on recommenda-
tions on the long-tail side [4], [5], [13], [14], [15].

The major challenges to perform high-performance long-
tail web service recommendations include:

1939-1374 © 2017 |IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: SOUTHERN METHODIST UNIV. Downloaded on December 17,2020 at 21:18:23 UTC from IEEE Xplore. Restrictions apply.

https://orcid.org/0000-0002-6953-1948
https://orcid.org/0000-0002-6953-1948
https://orcid.org/0000-0002-6953-1948
https://orcid.org/0000-0002-6953-1948
https://orcid.org/0000-0002-6953-1948
https://orcid.org/0000-0002-2617-7598
https://orcid.org/0000-0002-2617-7598
https://orcid.org/0000-0002-2617-7598
https://orcid.org/0000-0002-2617-7598
https://orcid.org/0000-0002-2617-7598
https://orcid.org/0000-0003-2148-0923
https://orcid.org/0000-0003-2148-0923
https://orcid.org/0000-0003-2148-0923
https://orcid.org/0000-0003-2148-0923
https://orcid.org/0000-0003-2148-0923
mailto:
mailto:
mailto:
mailto:

74 IEEE TRANSACTIONS ON SERVICES COMPUTING, VOL. 13, NO. 1, JANUARY/FEBRUARY 2020

@
3
=

100% [T nvolve Hot Service Only 100% -
Involve Lol rvice :
‘ | -2 60%

40%

ge of service

published in the period
3
B

Percentage of mashups

2010 2011 2012 2013
Period of time

2
=

2014 2015.01~
2015.06

2010 2011 2012 2013
Period of time

2014 2015.01~
2015.06

Fig. 1. Statistics about long-tail service and hot service consumption in
ProgrammableWeb. In recent years, a growing percentage of mashups
are published with long-tail web services involved, and the share of long-
tail service consumption also rises.

e Severe sparsity of historical usage data. The spar-
sity of historical usage data on the long-tail side
strongly limits the applicability of traditional latent
factor based collaborative filtering methods [7]. In
addition, previous works [13], [16], [17] show that
tightly coupling content extraction with the usage
data can allow usage data to provide feedback,
and guide the content extraction to achieve better
performance. However, considering the severe
sparsity of usage records in the long-tail side,
tightly coupling the long-tail ratings will be of lit-
tle help.

e Unsatisfactory quality of developer-provided service
descriptions, including textual descriptions, tags,
category information, protocols and so on. As the
usage data is extremely sparse, we have to rely more
on the description, however, different developers
can use different terminologies, and may put insuffi-
cient, ambiguous, or even incorrect descriptive
content.

To address the aforementioned challenges, we present a
deep learning framework called Deep learning for Long-
Tail web Service Recommendations (DLTSR). The overview
of the proposed approach is illustrated in Fig. 2.

Offline Training

To tackle the problem of unsatisfactory quality of
descriptions, we use Stacked Denoising AutoEncoders
(SDAE) [18] as the basic component in our framework, and
use masking noise [18] to simulate the uncertainty of word
(term) choosing by developers. Thanks to the deep denois-
ing neural network, the model can capture a better repre-
sentation of services and mashup queries. For further
performance improvement, we impose the hot service usage
data (which is relative rich) as a regularization on the
encoding output of SDAE, thus enable a feedback from
usage to content extraction. Therefore, our model can
understand which service is functionally relevant to the
mashup creation query better.

As the long-tail service usage records are too sparse to
build high-quality latent factor models for every individual
services [4], [13], we utilize long-tail service usage in a dif-
ferent manner, i.e., modeling the preference of mashup
developers. We factorize the rating matrix into a linear com-
bination of functional relevance and several pre-defined fac-
tors (i.e., side information, including update time and usage
counts of long-tail services in this paper). In this way, we
can prevent overfitting in such severe sparse condition, and
besides, the performance of recommending cold-start serv-
ices can also benefit. Although cold-start services do not
come up with historical usage records, their side informa-
tion still varies.

Through incorporating the above-mentioned ideas in a
deep neural network, we can achieve a significantly better
performance of long-tail web service recommendations. The
main contributions of this paper are as follows.

e We propose DLTSR, a deep learning framework to
address a gradually emergent challenge in web ser-
vice economy, i.e. the long-tail web service
recommendations.

e We use SDAE as a foundation. The transferred
knowledge from usage in the hot service side, and

Online Recommending

DLTSR

Providing
h - . Features
Representation Extraction with >

Denoising Criterion

Deep Learning for

Pattern Extraction for
Developers’ Preference
towards Long-tail Services

Integrate with
the Preference

Functional
| Relevance

A

? Get Functional
Relevance of the

Recommendation

Scores for Long-tail

I
|
I
}
|
I
Providing Providing Providing Providing | A Query and Long-
Feedback Content Dependence Features Services tail Services
. e Long-tail Service [|Pre-defined Factors | Bag-of-word
Hz'telsaetI\‘I:ecle :.ilzla‘?e DE(!:socr:ItI;:I(tm Usage about Long-tail I Ranked List of Vector
Y (extremely sparse) Services I Long-tail Services (Pre-processing)
— | 7 F
Description I I want to build a mashup
Release Time | Return that n ...
Description I the (Mashup Creation Query)
Description Release Time Results [
Release Time I
Description | >
Description Release Time |
Release Time —
Description |
Description Release Time I Legend
Release Time . I O Mashup I:l Hot ServiceQ Long-tail Service
Web Service Ecosystem
I

Fig. 2. The overview of the proposed approach. DLTSR takes various information into account to recommend long-tail web services for mashup crea-

tion queries.

Authorized licensed use limited to: SOUTHERN METHODIST UNIV. Downloaded on December 17,2020 at 21:18:23 UTC from IEEE Xplore. Restrictions apply.

BAI ETAL.: DLTSR: A DEEP LEARNING FRAMEWORK FOR RECOMMENDATIONS OF LONG-TAIL WEB SERVICES 75

OO
3ol

Olole
Ololo

X1 X1 Xe

e
10

O
ofle
O

X, Xp X,

X2

Fig. 3. The structure of an L-layer SDAE network. By using the corrupted
input X, to reconstruct the clean input X. through a bottleneck layer X, s,
the input can be encoded as robust features.

the modeling of the developers’ preference are incor-
porated tightly with the SDAE part to boost the per-
formance of long-tail service recommendations.

e Experiments on real-world dataset from Program-
mableWeb show that DLTSR gains an improve-
ment of 4.1 percent on Recall@5, 12.0 percent on
Recall@50, and 7.1 percent on Recall@250, com-
pared with the state-of-the-art baseline (modified)
TCDR' [13].

The rest of the paper is organized as follows. Section 2
introduces the background of this paper and defines the
problem, Section 3 gives an overview of our methodology,
then Section 4 shows how the optimal parameters are
learned from data and how to use the trained model to
make recommendations, Section 5 shows the experimental
results, Section 6 summarizes the related work, and Section 7
gives some conclusion remarks.

2 PROBLEM FORMULATION

In this section, the background about service ecosystem is
introduced, then the problem of long-tail service recommen-
dations for mashup creation is formulated.

Definition 1 (Long-tail services and hot services). Long-
tail services refer to services that are hardly used before. In this
paper, a service that has been used less than 5 times is consid-
ered a long-tail service. On the contrary, hot services refer to
the popular ones which have been used equal to or more than
5 times.

Definition 2 (Service ecosystem). In this paper, we use the
set SE = {M,X., MT,S, Y., ST,R} to model the service eco-
system. M is the set of I mashups, S = LTS |J HS is the set of
J services, and LTS contains all the long-tail services while
HS contains all the hot serivces. X, is a I-by-W matrix that
records the description content of mashups, where row i is the
bag-of-words (terms) vector X.;. for mashup i based on a
vocabulary of size W as in [16]. Y. and Y. j, follows the similar
definition on the service side. MT = {t]",t5",... t]'} records
the release time of mashups, and ST = {t;,t5,...,t5} records
the release time of services. R is the I-by-J binary rating matrix
where r;; =1 when service j is invoked by mashup i, and
rij = 0 when not.

1. When evaluating long-tail recommendations, we make a small
modification in vanilla TCDR to get a stronger baseline.

As illustrated above, SE is general enough to model both
services with WSDL descriptions and RESTful services [4].
With the definitions above, we can formally define the fol-
lowing problem:

Problem 1 (Long-tail web service recommendations for
mashup creation). Given the information about the service
ecosystem SE, for a new mashup query k € Q described by a
bag-of-word vector Z. .., the goal is to sort all the long-tail
services in the set LTS and return a ranked list, in which a
service with a higher rank is more likely to be adopted by
query k.

3 OVERVIEW OF METHODOLOGY

With the definitions above, we introduce the proposed
model DLTSR. A brief review of SDAE is presented, then
the deep learning architecture of DLTSR is introduced.

3.1 Stacked Denoising Autoencoders

We use Stacked Denoising Autoencoders as a component
to build our deep learning framework. SDAE is a feedfor-
ward deep neural network with local denoising criterion
for learning useful representations in an unsupervised
manner [18]. Fig. 3 shows the structure of an L-layer
SDAE network. X, is the clean input data and X, is the cor-
rupted version of X, by random noise, which serves as the
input of the neural network. By adding a bottleneck layer
in the middle, i.e., X5, and trying to reconstruct the clean
input X, with corrupted input X;, the input is encoded as
features which are robust to the noise. Besides, the noise
used in corruption can be varied to simulate different
scenes in practice. In this case, we use mask noise to
simulate the uncertainty of word (term) choosing by
developers.

3.2 DLTSR: Deep Learning Architecture for Long-
Tail Web Service Recommendations

With SDAE as a component, we build a specially
designed deep learning architecture to perform high
accuracy long-tail service recommendations. Fig. 4 shows
the architecture of our model (To prevent clutter, we
don’t distinguish the hot services and the long-tail ones
in this figure). X. is the matrix that records the clean
description content of mashups, while Y, is the matrix
that records the clean description content of all the serv-
ices. All these clean records are injected with random
noise to get the corrupted version, i.e., Xy and Y,. The
deep neural network tries to use the corrupted input to
reconstruct the clean ones, thus the model can get rid of
the uncertainty when developers choose words(terms),
and learn effective features (X;,, and Y;,). Moreover,
by incorporating the features of mashups and services,
and pre-defined factors which are helpful for the long-
tail recommendations, we can make a prediction of how
the long-tail services are likely to be involved by the
mashups.

2. When predicting the usages, we allow a small offset to the fea-
tures, i.e., u and v can be slightly different with X;, , and Yy /5, as some-
times the descriptions cannot reflect how the developers use the
services in practice.

Authorized licensed use limited to: SOUTHERN METHODIST UNIV. Downloaded on December 17,2020 at 21:18:23 UTC from IEEE Xplore. Restrictions apply.

76 IEEE TRANSACTIONS ON SERVICES COMPUTING, VOL. 13, NO. 1, JANUARY/FEBRUARY 2020

Q

reconstruction

Q

service content

corruption

2%

OO0-~&®O

Ye

Yia

[00-00

@ice
Mashup 1

1

O
O

<l

<= W

intergrating

S oW

x %<l

< IXIXI<ly
|Xixi<ixiw
<1< IXIXIis
Xl<1X

| I T N T |

usage records

mashup content
X

service content Y1
Ye
Yo
pre-defined factors
O (side information)
corruption O
= : \ OC offsetting | "

~

x
S

Xa

O
O

5

reconstruction

|

X2

mashup content

Xc

00O-00

Xi1

x

Fig. 4. The deep learning architecture for long-tail web service recommendations. To prevent clutter, we don’t distinguish the hot services and the

long-tail ones in this figure.

Corresponding to the architecture described above, we
can formally define the generative process of DLTSR as:

1) For each layer [of the SDAE network,
a) For each column n of the weight matrix W;, draw

Wl,*n ~ N(O,)\;IIKZ)‘

b) Draw the bias vector b ~ N (0, A, 'Ix,).
c¢) For each row i of X;, draw

Xiie ~ N (0(Xi-1,:.W1 + by), A).
d) For each row jof Y;, draw
Yijo ~ N(o(Yio1 Wi+ br), A).

2) For each mashup i,
a) Draw a clean input

X(f,i* ~ N(XL,i*a A:llIKL)

b) Draw a latent vector &; ~ N(0,);'Ir; ,) and set

the latent vector to be u; = X 2+ Ei-
3) For each service j,
a) Draw a clean input

Yaj* ~ N(YL.j*7)‘gllKL)-

b) Draw a latent vector §; ~ N (0, /\JIIKL/Z) and set
the latent vector to be v; = X 2.5+ T 85

4) For each mashup-service pair (4, j), draw a rating
ng ~ ./\/'(722']‘, C;jl),

where 7;; is the estimated rating for mashup-service
pair (i, j), we define that

a~u;v]~+yj, jeHS
quj = B - uiij + By d,‘,j) (1
+B; - hij + Byy JE€ LTS

d;; is the time period since service j was released (if
the service has never been used before mashup i) or
used last time (if the service has been used before),
so di =t —max({t;,t0|ry; = 1,40 < t7'}). hy
records how many times that service j has been used
before mashup i, so h;; = card({i'|ry; = 1,7 < t7'}).
And ¢;; is the confidence factor for r;; similar
with [16], [17], we define that

P cHg(rij)v .] € HS (2)
K crry(rij), j€ LTS’
and
a, ri;=1
o) ={ 4 P2 @

As illustrated in (1), we design a different mechanism
for the generation of long-tail ratings. By setting the esti-
mated rating as a weighted linear sum of functional rele-
vance (i.e., u!v;) and pre-defined factors (i.e., d;; and

Authorized licensed use limited to: SOUTHERN METHODIST UNIV. Downloaded on December 17,2020 at 21:18:23 UTC from IEEE Xplore. Restrictions apply.

BAI ETAL.: DLTSR: A DEEP LEARNING FRAMEWORK FOR RECOMMENDATIONS OF LONG-TAIL WEB SERVICES 77

Fig. 5. The probabilistic graphical model of DLTSR. For concision, the
SDAE parts are simplified in this graphical model and both hot services
and long-tail services are represented by a single rectangle.

hij), user preference over these factors can be learned. By
setting a small ¢zr in (2), we can avoid the overfitting
problem in the severe sparsity condition of long-tail ser-
vice side.

Using what pre-defined factors in (1) can be different in
different service ecosystems, and the set of pre-defined factors
can be easily enriched to achieve a better recommendation
accuracy. For our study in ProgrammableWeb service ecosys-
tem, we use d;; and h;; defined above. The intuition is: a ser-
vice is less likely worth a try if it has been published for a long
time without being used, and given other factors fixed, devel-
opers should be more prudent to use a service without any
usage record before.

The probabilistic graphical model of the generative pro-
cess is shown in Fig. 5. For concision, the SDAE portions
(which are in the dashed boxes) are simplified, W is used
to represent the parameters of the SDAE part, ie.,
{W;,b,,l=1,2,..., L}, and we use a single rectangle to rep-
resent both hot services and long-tail services.

4 PARAMETER LEARNING AND PREDICTION

In this section, how to obtain optimal parameters of DLTSR
is presented, and how to use the trained model to make rec-
ommendations is illustrated.

4.1 Parameter Learning for the Model

Based on the generative process above, maximizing the pos-
terior probability is equivalent to maximizing the joint log-
likelihood of u1.7, v1.7, Xe, Xo, X1.2, Ye, Yo, Yi.2, W1, bl:L/ o,
{y;,j € HS} and By, given Ay, Ay, As, A and {c;;}

A 2 A 2
D) W L S N R AP N
i J
A 2 A 9
- 2L Z [Jui — Xg/?,i*”? - EUZ llv; — Y%/Q,j»;”?
i 7

As :
- 72 Z lo(Xi—1,: Wi + br) — Xy |f5
T

As
=52 o (Yo W+ br) = Yo
L

Cij ~ >\u;
- Zgj (rij = 45)" = 7Z(||Wzllfw + [1bil]3)-
i.j

l

For computational efficiency, we let A\, go to infinity [16],
[19]. The likelihood becomes

M
s= =Y X = o WL
)\n +\112
- 32 [Yeje = fr(Yose, WOl
J
)\1; +\112
=5 2 s = feXose, W3)

Ay
=52 vy = feYo i, W
J

Cji ~ N2)\w 2 2
= iy) RS WE +),
i.J

l

where f.(-, W") computes the encoding results, i.e., the out-
put of the bottleneck layer. And f.(-,W") computes the
reconstructing results, i.e., the output of the last layer. The
definitions of 7;; and c¢;; are illustrated in (1) and (2)
respectively.

From a perspective of optimization, the first and second
terms in (4) are the reconstruction error, and), controls to
what extent the reconstruction error affects the optimal
model. The fifth term is the collaborative filtering error, and
controls to what extent the collaborative filtering error
affects the optimal model (the definition of ¢;; follows (2),
cy and cpr affect ¢;; for hot services and long-tail services
separately). The third and fourth terms tightly couple the
collaborative filtering part and SDAE part together, and A,
controls the freedom of each side. And the last term serves
as a L2-norm regularization for W* to prevent overfitting.

The training procedure of DLTSR is similar with [16].
First we pre-train the SDAE part layer-by-layer to initialize
network parameters, then we alternate the update of wu;.s,
vy, o, {y;j € HS}, B, and W', In other words, after
layer-wise pre-training, we repeat the following steps:

1) wug, vy, «, {yj7j € HS}, B4 are optimized while

holding W fixed;

2) WT is optimized using back-propagation learning

algorithm [20] while ui.;, v1.y, «, {yj,j € HS} and
B1.4 are fixed.

By repeating the steps above, we can find a (local) opti-
mum for . When W is being optimized, commonly used
techniques, like momentum term [21], stochastic gradient
descent (SGD), tied weights [18] and dropout learning [22]
can also be used to fasten the convergence and get a more
effective deep neural network.

4.2 Prediction

When a mashup query arrives, trained DLTSR can be
adopted to make recommendations. Let Z, ;. be the bag-of-
word(term) vector of query k € @, the predicted rating is as
follows:

. T
=2 W
+ ,BQdkj + /33hk-j + B4, € LTS.

Note that when making predictions, we use the clean input
Z{:.k*~

Authorized licensed use limited to: SOUTHERN METHODIST UNIV. Downloaded on December 17,2020 at 21:18:23 UTC from IEEE Xplore. Restrictions apply.

78 IEEE TRANSACTIONS ON SERVICES COMPUTING, VOL. 13, NO. 1, JANUARY/FEBRUARY 2020

TABLE 1
Information About the Dataset

Total # of services 12,384
Total # of hot services by June 2015 329
Total # of long-tail services by June 2015 12,055
Total # of mashups 6,228
Vocabulary Size 7,500
Average # of services in the mashups 2.09
Average # of word (term) tokens in the 22.42

descriptions of mashups and services

If there are any new services that are introduced into the
service repository just now, its offset §; will be 0 (e,
vj = fo(Ye i, WH)), so the model proposed in this paper can

settle service-side cold-start.

5 EXPERIMENTS

In this section, information about the dataset is presented
first, followed by evaluation metrics and baseline methods,
and evaluation results are introduced in the end.?

5.1 Experimental Dataset

As ProgrammableWeb is the largest online repository of
public web services and their mashups [4], [5] and in recent
years long-tail web services are playing a more and more
important role in ProgrammableWeb service ecosystem, we
chose the data from ProgrammableWeb.com as the experi-
mental dataset to validate our approach.

We crawled the data of ProgrammableWeb.com from
June 2005 to June 2015. The description content consisted
of textual descriptions, tags and category information.
During the evaluation, we used the descriptions of mash-
ups in the test set as queries, and the services involved as
ground truth for recommendations. After processing the
descriptions by stemming and stop words removing, the
top 7,500 discriminative words according to tf-idf values
were chosen to form the vocabulary [23], then we per-
formed min-max normalization independently for the
descriptions as in [16]. The details about the dataset are
illustrated in Table 1.

5.2 Evaluation Scheme

In large service repositories like ProgrammableWeb, there
are many long-tail services that can deliver similar function-
alities. Therefore, a non-rated long-tail service may be due
to that the developers are not aware of its existence, and not
necessarily means that the service is not useful. So, similar
with [16], [17], we used Recall@N to evaluate the accuracy
of each method.

In the experiments, the performance of our proposed
method and baselines was evaluated from July 2013 to June
2015. We used the same approach of generating training
and testing datasets as [5], [13], each test contained three
months, and the time granularity was set to one month.
After 8 rounds of experiments, the final metric was the
weighted average number of the Recall@N results with the
numbers of mashups in the testing sets as weights.

3. Code and data are available at www.simflow.net/Team /baibing/
DLTSR.rar

To evaluate the recommendation diversity of all the base-
lines and the proposed algorithm, similar with [7], we used
Diversity@N defined as follows:

| Ukeg Rin|

Diversity@QN = TS|

where () is the set of queries, LTS is the set of long-tail serv-
ices, and Ry, v is the set of top-N recommended services for
query k. | - | denotes the number of items in a set.

5.3 Baselines and Hyperparameter Settings
The baseline methods are listed as follows:

e WMF. Weighted Matrix Factorization (WMF) [24] is
a collaborative filtering model that introduces differ-
ent trust to ratings. By given a larger trust to one rat-
ings, the problem of sparsity can be mitigated. To
overcome the mashup-side cold-start problem [13]
in the problem of service recommendations for
mashup creation, the latent factors of mashups are
fixed as the topic proportions of the descriptions by
LDA. The form of weights is set as w;; = g(ri;). The
definition of g(r;;) is illustrated in (3). This method
cannot make cold-start service recommendations.

e PWSD. Probabilistic Web Service Discovery (PWSD)
method is proposed in [14]. It uses a probabilistic
model to characterize the latent topics [25] between
services and queries, and long-tail services are
ranked based on the topic relevance. This method
can make cold-start service recommendations.

e TSR. Time-aware Service Recommendations (TSR) is
proposed in [5]. TSR promotes the performance of
service recommendations by predicting service
activity in the near future. It can give a reference of
how well traditional service recommendation algo-
rithms work in the long-tail side. This method cannot
make cold-start service recommendations.

e AFUPR. This method [26] aggregates functionality,
use history and popularity of web APIs for mashup
recommendations. It first selects candidate APIs based
on topic distributions and usage, then re-ranks the
candidate APIs based on the popularity. This method
cannot make cold-start service recommendations.

e ERTM. The Enhanced Relational Topic Model [27]
incorporates the popularity of APIs to vanilla rela-
tional topic models [28] for web API recommenda-
tions. This method can make cold-start service
recommendations.

e (Modified) TCDR. Time-aware Collaborative Domain
Regression (TCDR) [13] is a service recommendation
model that couples LDA and WMF tightly to recom-
mend web services and can make cold-start service
recommendations. Additionally, time information is
also taken into consideration. To cope with the spar-
sity of long-tail service recommendations for a better
accuracy, we make a modification on the confidence
factors in [13] as

“Mleurrent ' ()

=

e

Cij = A7

¢ —ti) (0
T72_ij€ current Q(Tz])

Authorized licensed use limited to: SOUTHERN METHODIST UNIV. Downloaded on December 17,2020 at 21:18:23 UTC from IEEE Xplore. Restrictions apply.

www.simflow.net/Team/baibing/DLTSR.rar
www.simflow.net/Team/baibing/DLTSR.rar

BAI ETAL.: DLTSR: A DEEP LEARNING FRAMEWORK FOR RECOMMENDATIONS OF LONG-TAIL WEB SERVICES 79

60%

50%+

40%+

30%+

20%+

10%

Recall@N for Long-tail Services

0%

10 20 30 50 100 150 200 250
N
(a) Recall@ N comparison

60%- [EEPWSD
Il ERT™
I TCDR

[DLTSR

50%

40%

30%+

20%

10%

Recall@N for Cold-start Services

5 10

20 30 50 100 150 200 250
N
(b) Recall@N comparison for cold-start ones

Fig. 6. Performance comparison of the baselines and the proposed method. (a) Recall@ N results of all the long-tail services (including the cold-start
ones). (b) Recall@ N results of cold-start services only. WMF and TSR cannot make cold-start recommendations.

In the experiments, TCDR showed superior performance
to other baselines. Compared with the proposed DLTSR,
TCDR can also make use of content information, rating
information and temporal information, except that it is a
shallow latent-factor based model. So we chose TCDR as
the primary baseline.

The hyperparameters were set as follows. All the size of
latent factors (i.e., topic number) was set to 40 as in [5], [13].
When adopting LDA, we set @ = 1.25 and g = 0.01 accord-
ing to the empirical formula [29], dropped the first 8,000
Gibbs sweeps, and then used the average results of the next
2,000 Gibbs sweeps. Then we found the optimal hyperpara-
meters for WMF, TSR, AFUPR, ERTM and TCDR with grid
searching. For WMF, best performance was achieved with a
set to 100, and the ¢2 regularization parameter set to 0.001.
For TSR, best performance was achieved with K set to 250.
For AFUPR, we set the hidden dimension size of collabora-
tive filtering to 600. For ERTM, we set A to 0.4. For TCDR,
best performance was achieved with a =100, A\, =10,
Ay = 0.1, and A\, = 0.06. For DLTSR, we directly set a = 100,
An =1 and then performed grid searching on the other
hyperparameters, and found that best performance was
achieved with A\, = 10, A\, = le — 4 and ¢y = 0.1. PWSD do
not have hyperparameters out of LDA.

For other detail settings about the deep denoising neural
network, we used the masking noise with a noise level of
0.3, a dropout rate of 0.1 to achieve adaptive regularization,
a momentum term of 0.99 and tied weights. In terms of net-
work architecture, the number of hidden units K; was set to
200 as in [16] when [# L/2 and 0 < | < L. For example,
the architecture of the DLTSR model with a 4-layer SDAE
was 7500-200-40-200-7500".

5.4 Evaluation Results

The evaluation results are presented in this section. The per-
formance of our method and the baseline methods is pre-
sented, then the impact of some hyperparameters are
studied and case studies are illustrated.

5.4.1 Accuracy Comparison

Recommendation accuracy is the first important property of
a long-tail web service recommender system. Fig. 6 illus-
trates the Recall@N of different algorithms on different sizes
of recommendation list. Additionally, Recall@N results for

cold-start services only (i.e., the out-matrix prediction task
in [17]) are also reported.*

Fig. 6a demonstrates the accuracy of long-tail service rec-
ommendations, WMF only takes rating information into
consideration and overlooks the content of services, while
PWSD only takes content into consideration and overlooks
the ratings, thus the results of WMF and PWSD show a sig-
nificantly different trend. When N is smaller than 100,
WMF outperforms PWSD, for rating information contains
the relative popularity of long-tail services. However, when
N is larger than 100, the performance gap between PWSD
and WMF grows rapidly because WMF cannot recommend
cold-start services, which have no ratings. This shows that
traditional collaborative filtering methods only taking rating
information into consideration, are not suitable for long-tail
service recommendations. The trend of performance of TSR
and AFUPR is quite similar with WMF, for they cannot rec-
ommend cold-start services either. Among them, AFUPR
performs the best. On the other side, ERTM introduces pop-
ularity into the topic model, thus outperforms PWSD, which
only consider content information. TCDR outperforms
WMF and PWSD significantly all the time, since TCDR uses
content information, rating information, and temporal infor-
mation together to make long-tail recommendations. As for
DLTSR, it outperfomes all the baselines and gains an
improvement of around 4.1 percent on Recall@5, 12.0 per-
cent on Recall@50, and 7.1 percent on Recall@250 compared
with TCDR.

Fig. 6b demonstrates the accuracy of cold-start service rec-
ommendations, and WMEF, TSR, as well as AFUPR, cannot
recommend cold-start services. An interesting phenomenon
is that TCDR and ERTM get poor results in terms of
Recall@ N when N is small, indicating that both TCDR and
ERTM still tend to put ever-used long-tail services in the
front of recommendation lists. PWSD does not consider pop-
ularity factors, thus it’s not inclined to ever-used services,
and can provide a superior performance compared with
ERTM and TCDR when recommending cold-start services.
Thanks to the deep architecture and modeling of developers’
preference, DLTSR gets a better performance when making

4. When evaluating the performance for cold-start services, we used
the recommendation list that includes not only cold-start ones but also
ever-used long-tail ones.

Authorized licensed use limited to: SOUTHERN METHODIST UNIV. Downloaded on December 17,2020 at 21:18:23 UTC from IEEE Xplore. Restrictions apply.

80 IEEE TRANSACTIONS ON SERVICES COMPUTING, VOL. 13, NO. 1, JANUARY/FEBRUARY 2020

Diversity@N for Long-tail Services

5 10 20 30 50 100 150 200 250
N

Fig. 7. Diversity comparison of the baselines and the proposed method.
DLTSR can deliver the 2nd best performance in terms of recommenda-
tion diversity.

cold-start recommendations. Compared with the primary
baseline TCDR, DLTSR enjoys a larger improvement of
9.8 percent on Recall@5, 22.8 percent on Recall@50, and
12.6 percent on Recall@250 for cold-start recommendations.

5.4.2 Diversity Comparison

For a recommender system, overall recommendation diver-
sity is another key property that we are concerned about.
However, increasing the diversity of a recommender system
often leads to decreasing of accuracy [30]—in extreme cases,
if we recommend randomly, the diversity would be ideal
but there would be no accuracy at all.

Fig. 7 illustrates the recommendation diversity of base-
lines and the proposed method. As WMF, TSR and AFUPR
can only recommend ever-used long-tail services, their
results are very poor, and hardly become better when N is
enlarged. On the contrary, the other three methods can pro-
vide significantly better recommendation diversity. Among
the methods, PWSD gets the best results, followed by
DLTSR. TCDR tends to put ever-used long-tail services in
the front, thus the diversity performance is worse than
PWSD and DLTSR especially when N is small. A similar
phenomenon can be found for ERTM. The performance gap
of DLTSR and TCDR is 4.6 percent on Diversity@5, 16.7 per-
cent on Diversity@50 and 0.4 percent on Diversity@250.

In conclusion, DLTSR outperforms the primary baseline
TCDR in terms of both accuracy and diversity. And at a
small price of diversify, DLTSR can beat PWSD significantly
in terms of accuracy.

5.4.3 Impact of the Confidence Factor cy

cy is one of the key hyperparameters in our algorithm,
which refers to how much we trust the transferred knowl-
edge from hot service side. In terms of optimization, a larger
cy will force the algorithm to pay more attention to the loss
of collaborative filtering error in the hot service side, while
a smaller cy will make the algorithm pay more attention to
other terms (majorly the reconstruction error). In other
words, a too large cy may result in overlooking the content
information, while a too small ¢y may result in overlooking
the transferred information from the hot service side.

60 -cH=10
| c,=1
Blc =01
50% |l c, = 0.01
CH- R
I c, = 0.001
> 40%
®
T‘? 30%
[}
(4
20%
10%

10 20 30 50
N
Fig. 8. Recall@ N of DLTSR with different cy.

Fig. 8 shows the Recall@N of DLTSR with different cg.
As we can see, the performance degrades significantly as cy
grows, for overlooking the content information will easily
result in overfitting. However, if ¢y is too small, little trans-
ferred information from the hot service side is considered,
and consequently, the performance will also suffer. The per-
formance gap between different hyperparameters gets more
significant when N is large.

5.4.4 Impact of the Number of Layers L

Different from traditional shallow models, the deep archi-
tecture of deep learning brings great potential for learning
effective representations from complex raw data like images
and documents. However, without sufficient training data
and careful hyperparameter selection, performance will still
face the restriction of overfitting. Fig. 9 shows the perfor-
mance of DLTSR with L = 2,4, 6.

As we can see, when L = 2, the model is too shallow to
learn effective representations from the bag-of-word vec-
tors, so the performance is rather poor. However, when
L = 6, performance also drops a bit, indicating that overfit-
ting occurs and more training data or more effective regu-
larization is needed. In conclusion, a 4-layer network is
deep enough for this problem.

60%{ (M L =2
{1/L=4
so%- M L =6

40%

Recall@N
8
N
1

20%

10%

5 10 20 30 50 100 150
N
Fig. 9. Recall@ N of DLTSR with different L.

200 250

Authorized licensed use limited to: SOUTHERN METHODIST UNIV. Downloaded on December 17,2020 at 21:18:23 UTC from IEEE Xplore. Restrictions apply.

BAI ETAL.: DLTSR: A DEEP LEARNING FRAMEWORK FOR RECOMMENDATIONS OF LONG-TAIL WEB SERVICES 81

1 I noise level =0
60% - - noise level = 0.3
1 /I noise level = 0.6
50%- I noise level = 0.9
> 40%
@ J
§ 30%
] |
x
20%

10%

5 10 20 30 50 100 150
N
Fig. 10. Recall@ N of DLTSR with different noise level.

200 250

5.4.5 Impact of the Noise Level

As the basic component in our framework, Stacked Denois-
ing Autoencoders use a local denoising criterion for learn-
ing useful and robust representations [18]. We also study
the impact of the noise level in DLTSR. Fig. 10 shows the
results.

As we can see, injecting a proper level of noise can bring
a performance improvement. However, if the noise is too
strong, hardly can the SDAE reconstruct clean input from
such corrupted version.

5.4.6 Impact of the Long-Tail Threshold

In our study, we choose five as the threshold for long-tail
services. This threshold is chosen based on the following
results: given five as the threshold, (1) from the very begin-
ning of ProgrammableWeb.com to June 2015, the long-tail
services takes about 20 percent of the overall total service
consumption by mashups; (2) if we concentrate on the data
after 2014, we can found that long-tail services takes about
half of the total service consumption.

We also investigate what the performance would be like
if we change the threshold. Results are illustrated in Fig. 11.
We can find that the performance of PWSD hardly changes
with the threshold, for PWSD only considers content infor-
mation while ignores historical usage information. The
trend of DLTSR and other baselines are similar, i.e., increas-
ing the threshold will lead to better Recall@N results, for
the more usage data we have, the easier for recommenda-
tion algorithms to work well. Compared with the baselines
other than PWSD, DLTSR is less sensitive to the change of
long-tail threshold. Generally, a smaller threshold will
enlarge the performance gap. This shows the effectiveness
of our specially designed framework for long-tail recom-
mendations, when the services become more “long-tailed”,
DLTSR suffers less from performance loss.

5.4.7 Case Studies

To gain a better insight into DLTSR and the baseline meth-
ods, we take three cases and study the effectiveness. Exam-
ple mashup queries are Deal Tracker, EQypt Forecast and
MapMyRun. Detailed results can be found in Table 2.

TSR
AFUPR
ERTM
TCDR

DLTSR DLTSR

60
509
40

20

]

g

0
8
k]
2
5
[Z]
3
>
2
5
3
]
=
9
3
g
H
@

Recall@N for Long-tail Services

2

5 10 20 30 50 100 150 200 250

N

(b) Long-tail threshold =7

(a) Long-tail threshold = 3

Fig. 11. Performance comparison on different long-tail threshold.

Case 1. Deal Tracker is a mashup offering discount informa-
tion, and the query is of average length. It uses two cold-start
services, i.e., I Need a Bargain and Woot. As a result, methods
that can only recommend ever-used services, i.e., WMF TSR
and AFUPR, cannot give any recommendation. By comparing
the recommendation results of TCDR and PWSD, we find that
TCDR outperforms PWSD a bit, indicating that tightly cou-
pling content and usage [13] is effective. ERTM also outper-
forms PWSD in this case. As for DLTSR, since it can better
capture the representation from the description and under-
stand the preference of developers, the recommendation
result is significantly better than both TCDR and PWSD. For
example, the rank position of Woot is 22nd for DLTSR, signifi-
cantly better than the results of TCDR and PWSD, which is
124th and 137th respectively as shown in row 6 of Table 2.

To find out why TCDR, ERTM and PWSD perform sig-
nificantly worse when recommending Woot than DLTSR,
we dig into the data and find that the description of Woot is
“Woot is a daily deals site, offering curated collections of themed
deals called Woot Plus Events, and a daily deal called Today’s
Woot. The Woot API provides developers with automated access
to daily deals, events, videos, and more. Results are [SON for-
matted.” The words “themed”, “videos”, “collections” and
“events” mislead TCDR and PWSD to think that Woot is a
video-related API, while DLTSR can better understand the
key point of Woot thanks to the deep denoising architecture
and transferred regularization. This may partially explain
why DLTSR performs significantly better when recom-
mending cold-start services, for it can better understand the
descriptions of services.

Case 2. Eqypt Forecast is a mashup providing weather con-
ditions of Egyptian cities, and the query is relatively short. It
uses three hot services, i.e., Google Maps, Google Chart and
Panoramio, and two long-tail services, including World
Weather Online and OpenWeatherMap. According to the data
from ProgrammableWeb.com, World Weather Online has
already been used by 3 mashups before Egypt Forecast; as a
result, WMF, TSR, ERTM and TCDR do a great job in this
case, and put it to the 4th, 2nd, 5th and 2nd position in the
recommendation list. As for DLTSR, it put World Weather
Online to the 3rd position, which performs equally well. As
for the cold-start service OpenWeatherMap, results given by
methods except PWSD are quite similar with the results in
the case Deal Tracker, i.e., DLTSR outperforms TCDR signifi-
cantly, while WMF, TSR and AFUPR cannot give any rec-
ommendation as shown in row 11 of Table 2. The reason
why PWSD does quite a good job may be that there is a
common word “map” in both the query and the description
of OpenWeatherMap, indicating that PWSD is more sensitive
to the certain word in the query.

Authorized licensed use limited to: SOUTHERN METHODIST UNIV. Downloaded on December 17,2020 at 21:18:23 UTC from IEEE Xplore. Restrictions apply.

82 IEEE TRANSACTIONS ON SERVICES COMPUTING, VOL. 13, NO. 1, JANUARY/FEBRUARY 2020
TABLE 2
Example Mashup Queries and the Rank Positions of the Long-Tail Services Given by Each Method
Mashup Deal Tracker
Query Deal Tracker finds you the biggest discounts and best deals from around the Internet. Never pay full price again and
get to all the best deals before they sell out! Deal Tracker will help you save over 50% on many products!
Hot Services None
DLTSR TCDR ERTM AFUPR TSR PWSD WMF Remark
Long-tail I Need a Bargain 6 60 82 - - 91 - A cold-start service.
Services Woot 22 124 93 - - 137 - A cold-start service.
Mashup Egypt Forecast
Query Egypt Forecast provides weather conditions of over 70 Egyptian cities using Google Maps and different weather
APIs.
Hot Services Google Maps, Google Chart, and Panoramio

DLTSR TCDR ERTM AFUPR TSR PWSD WMF Remark

Long-tail Services ~ World Weather Online 3 2 5 3 2 146 4 Had been used 4 times.
OpenWeatherMap 8 32 47 - - 2 - A cold-start service.

Mashup MapMyRun

Query MapMyRun is an application that allows users to track their fitness activities using the built-in GPS of their mobile

phones. Users of this application can save and upload their workout data to their MapMyRun account, where they

can see the information in more details. Additionally, if the city is on the map of the application, runners will be
able to search for, and compare different running routes.

Hot Services

None

DLTSR TCDR ERTM AFUPR TSR PWSD WMF Remark

Long-tail
Services

Fitbit 4 1 13
MapMyFitness 9 11 26

2 3 236 1
9 10 11 29

Had been used 3 times.
Had been used once.

Case 3. MapMyRun allows users to track their fitness
activities using the GPS, and the query is relatively informa-
tive. It uses two long-tail services, i.e., Fitbit and MapMyFit-
ness, which both have been used before MapMyRun was
released. In this case, DLTSR, TCDR and TSR deliver similar
performance, while ERTM gives a slightly worse result. For
MapMyFitness, which has been used only once before Map-
MyRun was released, WMF performs worse compared with
the other baselines.

As illustrated in all three cases, DLTSR performances sig-
nificantly better than TCDR and PWSD when recommending
long-tail services with no rating before, i.e., cold-start services.
For the ever-used but still long-tail ones, it performs at least
equally well compared with TCDR, TSR and WMEF, since
DLTSR can capture better service representations from the
description content than LDA-based methods, and can incor-
porate the representations with developers’ preference.

5.5 Complexity Analysis and Implementation

For the parameter learning stage, we can get that the compu-
tational complexity of calculating the gradient of U is
O(IJK 2+ IWK 1), where I is the number of mashups, .J the
number of services, W the size of the vocabulary, and K, is
the dimensionality of the learned representation while K the
dimensionality of the output in the first layer. Similar results
can be drawn that the computational complexity of calculat-
ing the gradient of V is O(IJK, + JWKj). For the update of
all the weights and biases in SDAE part, the complexity is
O(IWK, + JWK]) since the computation is dominated by the
first layer. For the update of the rest parameters, the complex-
ity is O(IJK ;). Thus for a complete epoch, the total time
complexity is O(IJK o + IWK, + JWK}). For the prediction

stage, the computational complexity of calculating predicted
ratings and ranking them in the descend order is O(WK;+
JKL/Q + Jlog (J))

We conduct the experiments on a server with 2 Intel Xeon
E5-2650-V2 CPUs, 128 GB RAM and NVIDIA Tesla K20 GPU
using single precision. We use a MATLAB implementation
with GPU/C++ acceleration. For the dataset we test, each
epoch of model training takes about 20 seconds with a batch
size of 128, and about 16 seconds with a batch size of 512.
When training the model, we first run 400 epochs with a batch
size of 128 and then 200 epochs with a batch size of 512. All
the model training can be finished offline. The time cost of
making online predictions can be ignored.

In conclusion, the model proposed in this paper is scalable
enough for datasets like ProgrammableWeb.com, which is
the largest online repository of public web services and their
mashups [4], [5]. What's more, an even faster implementation
can be achieved by using specialized deep learning software
tools like Theano® and Tensorflow,® and we can also reduce
the time complexity by techniques like subsampling.

6 RELATED WORK

As our work touches on a couple of different areas, in this
section, we describe several representative related works
and differentiate them with our approach.

6.1 Web Service Recommendations

Existing personalized service recommendation approaches
can be divided into two categories, i.e., QoS-based services

5. http:/ /www.deeplearning.net/software/theano/
6. http:/ /www.tensorflow.org/

Authorized licensed use limited to: SOUTHERN METHODIST UNIV. Downloaded on December 17,2020 at 21:18:23 UTC from IEEE Xplore. Restrictions apply.

http://www.deeplearning.net/software/theano/
http://www.tensorflow.org/

BAI ETAL.: DLTSR: A DEEP LEARNING FRAMEWORK FOR RECOMMENDATIONS OF LONG-TAIL WEB SERVICES 83

recommendations and functionality-based services recom-
mendations. The method proposed in this paper belongs to
functionality-based approaches.

6.1.1 QoS-Based Web Service Recommendations

For this kind of algorithms, researchers assume that the
mashup developers are aware of functionally which catego-
ries of services should be involved, and focus on the non-
functional properties of services such as reliability, availabil-
ity and response time. Among the works, [11] introduced the
non-negative tensor factorization to perform temporal-
aware missing QoS prediction with the triadic relations of
user-service-time model. [12] fused the neighborhood-based
and model-based collaborative filtering approaches to
achieve a higher prediction accuracy. [9] proposed a QoS
prediction by considering temporal information and
employing the random walk algorithm to overcome the spar-
sity. [10] unified the modeling of multi-dimensional QoS
data via tensor and applied tensor decomposition to predict
missing QoS value.

However, limited by the objective, QoS-based service rec-
ommendation algorithms cannot help developers find an
unknown but interesting service.

6.1.2 Functionality-Based Web Service
Recommendations

For functionality-based service recommendation, research-
ers focus on finding the services that meet the functional
requirements the best. Mashup developers do not need to be
an expert of judging which service categories should be
involved. Some of the works recommended services accord-
ing to potential interests of developers [4], others recom-
mended services according to mashup queries [5], [13], [14],
[15]. [4] exploited the idea of collaborative topic regres-
sion [17] and recommend services to meet the potential inter-
ests. [14] proposed a method where LDA is used to model
latent topics from WSDL documents, and then recommend
services for mashup queries based on the topic relevance. [5]
promoted the performance of service recommendations by
predicting service activity in the near future. [13] tightly cou-
pled matrix factorization and LDA, and take information
evaporation into consideration. [15] emphasized the neces-
sity of recommending services by categories, and come up
with a service clustering method and recommend both ser-
vice clusters and individual services.

However, to the best of our knowledge, none of the exist-
ing web service recommendation approaches have stressed
the problem of long-tail web service recommendations, as
long-tail web service becomes a more and more important
issue for web service ecosystems.

6.2 Long-Tail Recommendations

Thanks to the Internet technologies, it has been a lot easier for
consumers to find and consume long-tail products and serv-
ices, and how to recommend long-tail items effectively and
efficiently becomes a popular topic for both academia and
industry. As long-tail recommendations shows significantly
different properties compared with popular item recommen-
dations, various approaches have been proposed based on
the different scenes. [7] proposed a graph-based algorithm for

the long-tail recommendations by using random walk simi-
larity and hitting time. [31] focused on combining usage and
content to recommend music in the long-tail. [32] came up
with a solution of clustering long-tail items and recommend
items based on the ratings in the clusters. [33] used LDA to
discover the trending categories and to describe a user’s inter-
est, and then recommend shops.

Existing long-tail recommendation approaches are usu-
ally based on what the users have consumed and then rec-
ommend related long-tail items, which cannot settle the
long-tail web service recommendations due to the mashup-
side cold start problem [13]. In this paper, we come up with
an approach by transferred knowledge and modeling the
preference of mashup developers. Experiments show that
our approach is effective.

6.3 Deep Learning for Natural Language Processing
For mashup developers, recommending services based on
the queries is a promising and effective solution. This
requires a better understanding of both the queries and
description documents of services in the form of nature lan-
guage. Deep learning shows a great potential for natural
language processing recently. [34] proposed a Dynamic
Convolutional Neural Network to model sentences of vary-
ing length. [35] used a Deep Boltzmann Machine to learning
better representations of documents than LDA. [36] pre-
sented how to get representations of words and phrases
with the Skip-gram model. [37] proposed to use Word Mov-
er’s Distance (WMD) to measure the distance between two
text documents, so provided a method to transfer word
embeddings to document similarity. [16] came up with a
hierarchical Bayesian model named with collaborative deep
learning (CDL), which tightly couples deep representation
learning for the content information and collaborative filter-
ing to make recommendations.

In this paper, we build a deep learning architecture to
incorporating various information to recommend long-tail
services for mashup queries. For the content modeling side,
we use SDAE as the basic component, and tightly couple
the SDAE parts with historical usage information like [16].

7 CONCLUSION AND FUTURE WORK

As long-tail services are playing an increasingly important
role in web API economy, how to recommend long-tail web
services effectively is becoming a key issue. However, very
scarce work has focused this problem, and traditional web
service recommendation methods perform poorly on the
long-tail side.

In this paper, we propose a deep learning framework
which is specifically designed for this problem. To tackle the
problem of unsatisfactory quality of description given by ser-
vice developers and mashup queries, we use the deep learn-
ing model SDAE as the basic component to learn robust and
effective representations. Moreover, the knowledge from
usages in the hot service side is transferred and imposed as a
regularization on the output of SDAE to guide the learning of
representations. To make the best use of the few long-tail his-
torical ratings, a special mechanism is designed to model
developers’ preference. Experiments demonstrate that our
method gains a significant improvement compared with the
state-of-the-art baseline methods.

Authorized licensed use limited to: SOUTHERN METHODIST UNIV. Downloaded on December 17,2020 at 21:18:23 UTC from IEEE Xplore. Restrictions apply.

84 IEEE TRANSACTIONS ON SERVICES COMPUTING, VOL. 13, NO. 1, JANUARY/FEBRUARY 2020

In the future, we plan to incorporate more information,
such as QoS, user profiles and social connection between
services into DLTSR to promote the accuracy of recommen-
dations. We also plan to investigate more sophisticated
deep learning models such as convolutional neural net-
works or recurrent neural networks, and activations such as
ReLU or PReLU to further boost the performance.

ACKNOWLEDGMENT

This research has been partially supported by the National
Natural Science Foundation of China (No.61673230).
Yushun Fan is the corresponding author.

REFERENCES

[1] Y. Wei and M. B. Blake, “Service-oriented computing and cloud
computing: Challenges and opportunities,” IEEE Internet Comput.,
vol. 14, no. 6, pp. 72-75, Nov./Dec. 2010.

[2] C. Schroth and T. Janner, “Web 2.0 and SOA: Converging con-
cepts enabling the internet of services,” IT Prof., vol. 9, no. 3,
pp- 36-41, 2007.

[3] J. Zhang, W. Tan, J. Alexander, I. Foster, and R. Madduri,
“Recommend-as-you-go: A novel approach supporting services-
oriented scientific workflow reuse,” in Proc. IEEE Int. Conf. Serv.
Comput., 2011, pp. 48-55.

[4] X. Liu and I. Fulia, “Incorporating user, topic, and service related
latent factors into web service recommendation,” in Proc. IEEE
Int. Conf. Web Serv., 2015, pp. 185-192.

[5] Y.Zhong, Y. Fan, K. Huang, W. Tan, and]J. Zhang, “Time-aware
service recommendation for mashup creation,” IEEE Trans. Serv.
Comput., vol. 8, no. 3, pp. 356-368, May/Jun. 2015.

[6] S. M. McNee, J. Ried], and]J. A. Konstan, “Being accurate is not
enough: How accuracy metrics have hurt recommender systems,”
in Proc. Extended Abstracts Human Factors Comput. Syst., 2006,
pp- 1097-1101.

[7] H.Yin, B. Cui, J. Li,]. Yao, and C. Chen, “Challenging the long tail
recommendation,” Proc. VLDB Endowment, vol. 5, no. 9, pp. 896—
907, 2012.

[8] X.Zhao, Z. Niu, and W. Chen, “Opinion-based collaborative filter-
ing to solve popularity bias in recommender systems,” in Interna-
tional Conference on Database and Expert Systems Applications.
Berlin, Germany: Springer, 2013, pp. 426-433.

[91 Y.Hu, Q.Peng, and X. Hu, “A time-aware and data sparsity toler-
ant approach for web service recommendation,” in Proc. IEEE Int.
Conf. Web Serv., 2014, pp. 33-40.

[10] Y.Ma,S. Wang, F. Yang, and R. N. Chang, “Predicting QoS values
via multi-dimensional QoS data for web service recommen-
dations,” in Proc. IEEE Int. Conf. Web Serv., 2015, pp. 249-256.

[11] W. Zhang, H. Sun, X. Liu, and X. Guo, “Temporal QoS-aware web
service recommendation via non-negative tensor factorization,” in
Proc. 23rd Int. Conf. World Wide Web, 2014, pp. 585-596.

[12] Z. Zheng, H. Ma, M. R. Lyu, and I. King, “Collaborative web ser-
vice QoS prediction via neighborhood integrated matrix
factorization,” IEEE Trans. Serv. Comput., vol. 6, no. 3, pp. 289-299,
Jul.—Sep. 2013.

[13] B.Bai, Y. Fan, K. Huang, W. Tan, B. Xia, and S. Chen, “Service rec-
ommendation for mashup creation based on time-aware collabo-
rative domain regression,” in Proc. IEEE Int. Conf. Web Serv., 2015,
pp- 209-216.

[14] C. Li, R. Zhang, J. Huai, X. Guo, and H. Sun, “A probabilistic
approach for web service discovery,” in Proc. IEEE Int. Conf. Serv.
Comput., 2013, pp. 49-56.

[15] B.Xia, Y. Fan, W. Tan, K. Huang, J. Zhang, and C. Wu, “Category-
aware API clustering and distributed recommendation for auto-
matic mashup creation,” IEEE Trans. Serv. Comput., vol. 8, no. 5,
pp- 674-687, Sep./Oct. 2015.

[16] H. Wang, N. Wang, and D.-Y. Yeung, “Collaborative deep learn-
ing for recommender systems,” in Proc. 21th ACM SIGKDD Int.
Conf. Knowl. Discovery Data Mining, 2015, pp. 1235-1244.

[17] C. Wang and D. M. Blei, “Collaborative topic modeling for recom-
mending scientific articles,” in Proc. 17th ACM SIGKDD Int. Conf.
Knowl. Discovery Data Mining, 2011, pp. 448-456.

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

[28]

[29]

[30]

[31]

[32]

[33]

[34]

[35]

[36]

[371

P. Vincent, H. Larochelle, I. Lajoie, Y. Bengio, and P.-A. Manzagol,
“Stacked denoising autoencoders: Learning useful representations
in a deep network with a local denoising criterion,” J. Mach. Learn-
ing Res., vol. 11, pp. 3371-3408, 2010.

Y. Bengio, L. Yao, G. Alain, and P. Vincent, “Generalized denois-
ing auto-encoders as generative models,” in Proc. Advances Neural
Inf. Process. Syst., 2013, pp. 899-907.

D. E. Rumelhart, G. E. Hinton, and R. J. Williams, “Learning rep-
resentations by back-propagating errors,” Cognitive Model., vol. 5,
no. 3, 1988, Art. no. 1.

N. Qian, “On the momentum term in gradient descent learning
algorithms,” Neural Netw., vol. 12, no. 1, pp. 145-151, 1999.

S. Wager, S. Wang, and P. S. Liang, “Dropout training as adaptive
regularization,” in Proc. Advances Neural Inf. Process. Syst., 2013,
pp. 351-359.

D. Blei and J. Lafferty, “Topic models,” Text mining: classification,
clustering, and applications,” pp. 71-93, 2009.

K.-Y. Chen, H--M. Wang, B. Chen, and H.-H. Chen, “Weighted
matrix factorization for spoken document retrieval,” in Proc. IEEE
Int. Conf. Acoust. Speech Signal Process., 2013, pp. 8530-8534.

D. M. Blei, A. Y. Ng, and M. L Jordan, “Latent dirichlet
allocation,” J. Mach. Learning Res., vol. 3, pp. 993-1022, 2003.
A.Jain, X. Liu, and Q. Yu, “Aggregating functionality, use history,
and popularity of APIs to recommend mashup creation,” in Inter-
national Conference on Service-Oriented Computing. Berlin, Germany:
Springer, 2015, pp. 188-202.

C. Li, R. Zhang, J. Huai, and H. Sun, “A novel approach for API
recommendation in mashup development,” in Proc. IEEE Int.
Conf. Web Serv., 2014, pp. 289-296.

J. Chang and D. M. Blei, “Hierarchical relational models for docu-
ment networks,” Ann. Appl. Statist., vol. 4, pp. 124-150, 2010.

T. L. Griffiths and M. Steyvers, “Finding scientific topics,” Proc.
Nat. Academy Sci. United State America, vol. 101, no. suppl 1,
pp- 5228-5235, 2004.

V. Ghanghas, C. Rana, and S. Dhingra, “Diversity in recom-
mender system,” Int. . Eng. Trends Technol., vol. 4, no. 6, pp. 2344—
2348,2013.

M. A. Domingues, et al.,, “Combining usage and content in an
online recommendation system for music in the long tail,” Int. J.
Multimedia Inf. Retrieval, vol. 2, no. 1, pp. 3-13, 2013.

Y.-J. Park and A. Tuzhilin, “The long tail of recommender systems
and how to leverage it,” in Proc. ACM Conf. Recommender Syst.,
2008, pp. 11-18.

D.]J. Hu, R. Hall, and J. Attenberg, “Style in the long tail: Discover-
ing unique interests with latent variable models in large scale
social E-commerce,” in Proc. 20th ACM SIGKDD Int. Conf. Knowl.
Discovery Data Mining, 2014, pp. 1640-1649.

N. Kalchbrenner, E. Grefenstette, and P. Blunsom, “A convolu-
tional neural network for modelling sentences,” in Proc. 52nd
Annu. Meeting Assoc. Comput. Linguistics, Baltimore, MD, USA,
vol. 1, Jun. 2014, pp. 655-665.

N. Srivastava, R. Salakhutdinov, and G. E. Hinton, “Modeling
documents with deep boltzmann machines,” in Proc. Twenty-
Ninth Conf. Uncertainty Artif. Intell., Bellevue, WA, USA,
Aug. 2013.

T. Mikolov, I. Sutskever, K. Chen, G. S. Corrado, and J. Dean,
“Distributed representations of words and phrases and their
compositionality,” in Proc. Advances Neural Inf. Process. Syst., 2013,
pp- 3111-3119.

M. J. Kusner, Y. Sun, N. I. Kolkin, and K. Q. Weinberger, “From
word embeddings to document distances,” in Proc. 32nd Int. Conf.
Mach. Learning, 2015, pp. 957-966.

Bing Bai received the BS degree in control the-
ory and application from Tsinghua University,
China, in 2013. He is currently working toward
the PhD degree at the Department of Automa-
tion, Tsinghua University. His research interests
include services computing, service recommen-
dation, and big data.

Authorized licensed use limited to: SOUTHERN METHODIST UNIV. Downloaded on December 17,2020 at 21:18:23 UTC from IEEE Xplore. Restrictions apply.

BAI ETAL.: DLTSR: A DEEP LEARNING FRAMEWORK FOR RECOMMENDATIONS OF LONG-TAIL WEB SERVICES 85

Yushun Fan received the PhD degree in control
theory and application from Tsinghua University,
China, in 1990. He is currently a professor with
the Department of Automation, director of the
System Integration Institute, and director of the
Networking Manufacturing Laboratory, Tsinghua
University. From September 1993 to 1995, he
was a visiting scientist, supported by Alexander
von Humboldt Stiftung, with the Fraunhofer Insti-
tute for Production System and Design Technol-
ogy (FHG/IPK), Germany. He has authored
10 books in enterprise modeling, work-flow technology, intelligent agent,
object-oriented complex system analysis, and computer integrated
manufacturing. He has published more than 300 research papers in jour-
nals and conferences. His research interests include enterprise model-
ing methods and optimization analysis, business process reengineering,
workflow management, system integration, object-oriented technologies
and flexible software systems, petri nets modeling and analysis, and
workshop management and control.

Wei Tan received the BS and PhD degrees from
the Department of Automation, Tsinghua Univer-
sity, China, in 2002 and 2008, respectively. He is
currently a research staff member with the IBM T.
J. Watson Research Center, New York. From
2008 to 2010, he was a researcher at the Compu-
tation Institute, University of Chicago and
Argonne National Laboratory. At that time, he
was the technical lead of the caBIG workflow sys-
tem. His research interests include NoSQL, big
data, cloud computing, service-oriented architec-
ture, business and scientific workflows, and petri nets. He has published
more than 50 journal and conference papers, and a monograph Busi-
ness and Scientific Workflows: A Web Service-Oriented Approach (272
pages, Wiley-IEEE Press). He received the Best Paper Award from the
IEEE International Conference on Services Computing (2011), the
Pacesetter Award from the Argonne National Laboratory (2010), and
caBIG Teamwork Award from the National Institute of Health (2008). He
is an associate editor of the IEEE Transactions on Automation, Science
and Engineering. He was in the program committees of many conferen-
ces and has co-chaired several workshops. He is a member of the ACM
and a senior member of the IEEE.

A

Jia Zhang received the BS and MS degrees in
computer science from Nanjing University, China
and the PhD degree in computer science from
the University of lllinois, Chicago. She is currently
an associate professor at the Department of
Electrical and Computer Engineering, Carnegie
Mellon University. Her recent research interests
center on service oriented computing, with a
focus on collaborative scientific workflows, Inter-
net of Things, cloud computing, and big data
management. She has co-authored one textbook
titled “Services Computing” and has published more than 130 refereed
journal papers, book chapters, and conference papers. She is currently
an associate editor of the /EEE Transactions on Services Computing
(TSC) and of the International Journal of Web Services Research
(JWSR), and editor-in-chief of the International Journal of Services Com-
puting (IJSC). She is a senior member of the IEEE.

Authorized licensed use limited to: SOUTHERN METHODIST UNIV. Downloaded on December 17,2020 at 21:18:23 UTC from IEEE Xplore. Restrictions apply.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Algerian
 /Arial-Black
 /Arial-BlackItalic
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BaskOldFace
 /Batang
 /Bauhaus93
 /BellMT
 /BellMTBold
 /BellMTItalic
 /BerlinSansFB-Bold
 /BerlinSansFBDemi-Bold
 /BerlinSansFB-Reg
 /BernardMT-Condensed
 /BodoniMTPosterCompressed
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /BritannicBold
 /Broadway
 /BrushScriptMT
 /CalifornianFB-Bold
 /CalifornianFB-Italic
 /CalifornianFB-Reg
 /Centaur
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /Chiller-Regular
 /ColonnaMT
 /ComicSansMS
 /ComicSansMS-Bold
 /CooperBlack
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FootlightMTLight
 /FreestyleScript-Regular
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /HarlowSolid
 /Harrington
 /HighTowerText-Italic
 /HighTowerText-Reg
 /Impact
 /InformalRoman-Regular
 /Jokerman-Regular
 /JuiceITC-Regular
 /KristenITC-Regular
 /KuenstlerScript-Black
 /KuenstlerScript-Medium
 /KuenstlerScript-TwoBold
 /KunstlerScript
 /LatinWide
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaBright
 /LucidaBright-Demi
 /LucidaBright-DemiItalic
 /LucidaBright-Italic
 /LucidaCalligraphy-Italic
 /LucidaConsole
 /LucidaFax
 /LucidaFax-Demi
 /LucidaFax-DemiItalic
 /LucidaFax-Italic
 /LucidaHandwriting-Italic
 /LucidaSansUnicode
 /Magneto-Bold
 /MaturaMTScriptCapitals
 /MediciScriptLTStd
 /MicrosoftSansSerif
 /Mistral
 /Modern-Regular
 /MonotypeCorsiva
 /MS-Mincho
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /NiagaraEngraved-Reg
 /NiagaraSolid-Reg
 /NuptialScript
 /OldEnglishTextMT
 /Onyx
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Parchment-Regular
 /Playbill
 /PMingLiU
 /PoorRichard-Regular
 /Ravie
 /ShowcardGothic-Reg
 /SimSun
 /SnapITC-Regular
 /Stencil
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TempusSansITC
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanMTStd
 /TimesNewRomanMTStd-Bold
 /TimesNewRomanMTStd-BoldCond
 /TimesNewRomanMTStd-BoldIt
 /TimesNewRomanMTStd-Cond
 /TimesNewRomanMTStd-CondIt
 /TimesNewRomanMTStd-Italic
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /VinerHandITC
 /Vivaldii
 /VladimirScript
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryStd-Demi
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Suggested" settings for PDF Specification 4.0)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

