
DSES: A Blockchain-powered Decentralized Service Eco-System

Zhenfeng Gao, Yushun
Fan*, Cheng Wu

Tsinghua National
Laboratory for Information

Science and Technology
Department of Automation

Tsinghua University
Beijing 100084, China

gzf13@mails.tsinghua.edu.cn
{fanyus, wuc}@tsinghua.edu.cn

Jia Zhang

Department of Electrical and
Computer Engineering

Carnegie Mellon University
Silicon Valley
Moffett Field

CA 94035, USA
jia.zhang@sv.cmu.edu

Chang Chen

Ziggurat Technology
Zhongguancun SOHO 1010

Beijing 100190, China
calvin@ziggurat.cn

Abstract—Existing service ecosystems typically rely on some
centralized service registries (e.g., ProgrammableWeb.com) as
“middle people” to record service behaviors thus to provide
service ranking and recommendation. Excessive centralization
increasingly becomes the bottleneck and hinders the further
growth of the service ecosystems. As the first attempt to apply
the fundamental technique underneath the emerging Bitcoin
network into the field of service oriented computing, this
paper proposes to build a service ecosystem as a decentralized
blockchain-oriented service network, called Decentralized Ser-
vice Eco-System (DSES). Whenever any activity occurs in the
system (e.g., APIs are used together in a published mashup), all
involved parties will individually store and maintain a copy of
the detailed record (provenance) at their local databases. Such
a distributed database-oriented solution will enable services
who do not fully trust each other to maintain a set of global
states. In this way, service discovery and recommendation
can be realized in a distributed manner that promises higher
scalability and maintainability. As a proof of concept, a proto-
typing system of DSES is constructed using the real-world data
from ProgrammableWeb.com, based on the INKchain, a newly
open-source consortium blockchain mechanism extending the
Hyperledger Fabric.

Keywords-service ecosystem; blockchain; smart contract;
Hyperledger Fabric; INKchain

I. INTRODUCTION

As Service-Oriented Architecture (SOA) and Cloud Com-

puting are widely adopted, the amount of published web ser-

vices on the Internet has been rapidly growing [1]. Service

providers are interconnecting their offerings in unforeseen

ways, giving rise to web service ecosystems [2]. By reusing

existing services (i.e., APIs), software developers are able

to quickly create service compositions (i.e., mashups) to

meet complex functional needs and offer additional business

values [3]. A Web service ecosystem thus becomes a logical

collection of Web services as well as their compositions. For

example, ProgrammableWeb.com, consisting of more than

∗Corresponding Author

18,000 services and 6,000 mashups as of December 2017,

represents by far the largest service ecosystem [4].

Most existing service ecosystems typically rely on some

centralized service registries (e.g., ProgrammableWeb.com)

as “middle people” to record service behaviors (i.e., service

interactions in past activities within the service ecosystems),

thus to provide service ranking and recommendation. Such

a centralized architecture comes with trust and scalability

issues. On the one hand, all records (i.e., information about

services, mashups and usage records) are stored at and

managed by a centralized server. Only if users trust the

centralized registry, they will participate in contributing

to it (e.g., provide sound information about services and

utilize services to create mashups). On the other hand,

people’s active participation contributes to the reliability

and trustworthiness of the service registry, based on which

service discovery, ranking and recommendation could be

realized. In reality, however, services provided by different

developers in the service ecosystem may not trust each other.

Furthermore, existing centralized registry lacks effective in-

centive mechanisms to encourage service providers and users

to participate actively. As a result, excessive centralization

increasingly becomes the bottleneck and hinders the further

growth of the service ecosystems nowadays.

In recent years, blockchain technologies are taking the

world by storm, largely thanks to the success of Bitcoin [5].

A blockchain, also called distributed ledger, is essentially an

append-only data structure maintained by a set of nodes that

do not fully trust each other. In its original design, Bitcoin’s

blockchain stores coins as the system states [6]. Since then,

the technology has grown beyond crypto-currencies to sup-

port user-defined states. Taking Ethereum [7] for example,

it enables any decentralized and replicated applications,

known as DApps, with the help of smart contracts. Recently,

increasingly more industry organizations have made efforts

to develop new blockchain platforms where participants

are authenticated. Such systems are called permissioned or

25

2018 IEEE 11th International Conference on Cloud Computing

2159-6190/18/$31.00 ©2018 IEEE
DOI 10.1109/CLOUD.2018.00011

Authorized licensed use limited to: SOUTHERN METHODIST UNIV. Downloaded on October 18,2024 at 16:02:48 UTC from IEEE Xplore. Restrictions apply.

consortium blockchains. Applications of different domains

are being designed and implemented [8]–[10] as well.

Particularly, Hyperledger Fabric [11] realizes the identity

management mechanism required under enterprise scenarios,

and has become a widely-used open-source permissioned

blockchain platform aimed at business uses [12].

To address the aforementioned issues of conventional

service ecosystems, in this paper, we migrate the idea

of blockchain into service ecosystem and introduce the

framework of a Decentralized Service Eco-System (DSES).

DSES builds a service ecosystem based on a decentralized,

service-oriented blockchain network. In order not to reinvent

the wheel, DSES leverages the INKchain∗ as the low-level

blockchain solution for two major reasons. First, identifica-

tion and authority controls are the unique features of per-

missioned blockchains, which are helpful to allow qualified

developers or users to participate in DSES thus promote the

quality and reliability of information stored in the system.

Second, the systematic characteristic of asset component

in INKchain makes it possible to issue customized token

“SToken” as the media of value transfer and realize the

incentive mechanisms in DSES. Be more specific, function

blocks are implemented as smart contracts (i.e., chaincodes)

on a supervisor level. Whenever any activity occurs in DSES,

all involved parties (services and mashups) will individually

create a detailed record through the designed interfaces in the

chaincode. Illegal operations will be denied and the agreed-

upon records will be permanently stored and maintained at

the local database of each involved node in the network.

Such a distributed-database-oriented solution will enable

services who do not fully trust each other to maintain a

set of global states. In this way, service discovery and

recommendation with higher scalability and maintainability

can be realized.

To the best of our knowledge, this paper is the first

attempt that designs and implements a decentralized service

platform. The contributions of this paper are summarized in

three-fold:

1) A new concept of “Decentralized Service Eco-System”

(DSES) is created, as the first attempt to utilize the

blockchain mechanism to address the problems encountered

by conventional centralized service ecosystems.

2) As a proof of concept, the overall framework of DSES

is implemented based on INKchain. We present how to build

a service ecosystem and utilize its smart contract instrument

to realize the basic functions in a service ecosystem and

provide incentive mechanisms to maintain the vitality of the

platform.

3) As a case study, a prototyping system of DSES

is constructed using the real-world data from Pro-

grammableWeb.com.

The remainder of this paper is organized as follows. Sec-

∗https://github.com/inklabsfoundation/inkchain

Developer

User

Services Invalid Services

Services of
Different Domains

Mashups

System
Administor

Service Ecosystem

Publish Services

Inquiry

Maintain

Create MashupsMashup

Service

Legend

Figure 1. Framework of Conventional Centralized Service Eco-System

tion II introduces background and illustrates our motivation

to build a decentralized service platform. The overall frame-

work and detailed design of smart contracts are provided

in Section III. In Section IV, the results of implementing

a DSES prototype is presented. Section V presents further

discussions on the feasible improvements and applications of

DSES. Section VI discusses related work and finally Section

VII concludes the paper.

II. BACKGROUND AND MOTIVATION

A. Service Eco-System

Service ecosystems are logical collections of Web services

(APIs) as well as their compositions [2]. Existing service

eco-systems are usually organized in a centralized manner,

as shown in Figure 1, with the legend at the top left corner.

In general, there are three kinds of roles that play a

significant part in service ecosystems: developer, user, and

system administrator. Developers (i.e., service providers)

register and publish their original services (i.e., APIs), which

are the basic components of the service ecosystem. Different

services may carry different functions and different appli-

cation scenarios, reflected by different colors in Figure 1.

With the evolvement of the service ecosystem, some services

may become invalid, and others gradually form different

application domains according to their functions. To meet

complex function needs and offer additional business values

in a faster development cycle, developers reuse existing

services to create mashups (i.e., service compositions). A

mashup may invoke one or more services to implement

specific functionalities. The second role of a service ecosys-

tem is User. Users usually propose inquiries to search for

services or mashups in the ecosystem and then directly

utilize them under different circumstances. Furthermore, in a

centralized service ecosystem, System Administrators play

26

Authorized licensed use limited to: SOUTHERN METHODIST UNIV. Downloaded on October 18,2024 at 16:02:48 UTC from IEEE Xplore. Restrictions apply.

an important role in maintaining the stability, security and

prosperity of the service ecosystem. Without their efforts,

the service ecosystem could be more vulnerable, and have

less people’s attention and participation.
More specifically, let us take ProgrammableWeb.com†

as an example. Since established in 2005,

ProgrammableWeb.com has aggregated more than 18,000

services and 6,000 mashups up to December 2017. It is

a centralized service ecosystem maintained by the official

team of the platform. ProgrammableWeb.com, as the official

journal and directory of the API Economy, aims at building

a news and information source as well as a community of

all kinds of API economy stakeholders. Its maintenance

team establishes the website to provide people a portal to

publish and search for various services and mashups.

B. Motivation to Decentralization
ProgrammableWeb.com has successfully established a

community of all kinds of API economy stakeholders.

Developers publish their new services or mashups on it, and

users could find out information related to these services or

mashups. Moreover, ProgrammableWeb.com updates news

about APIs frequently, and sets up “API University” to

provide valuable information and guidance for users and

developers. However, there exist disadvantages due to the

centralization of the system.
1) Trust Issues

Excessive centralization could result in trust problem. In

a centralized service registry, services provided by different

developers may not trust each other. A developer would

play an active part in the service ecosystem (i.e., provides

accurate and comprehensive information about services,

and utilizes services to create mashups frequently) only if

he/she trusts the authority of the centralized service registry.

Conventional centralized platforms could not achieve this

goal even with a lot of efforts and high cost. Without a

service ecosystem containing credible information about all

kinds of behaviors, it will hinder the development of service

management, discovery and recommendation that promises

higher scalability and maintainability.
2) Security Problems & Privacy Control

Centralized service platforms are usually susceptible to

attack, making the massive data of services easy to tamper

with. That is to say, in a centralized system, if the main

servers of the centralized service ecosystems are invaded,

the information of all the services and mashups may get fal-

sified, bringing considerable economic losses. Furthermore,

it is difficult to realize fine-grained authorization control on

a systematic level.
3) Lack of Incentive Mechanisms

In ProgrammableWeb.com, developers publish their ser-

vices and mashups voluntarily. There are no explicit incen-

tive mechanisms in the existing systems. As a result, some

†https://www.programmableweb.com/

Block i-1

Hash of Previous Block

Block Header

Merkle Hash Tree Root

Block i+1

Hash of Previous Block

Block Header

Merkle Hash Tree Root

Block i

Hash of Previous Block

Block Header

Merkle Hash Tree Root

Transaction i-1

Metadata

Transaction i

Metadata

Transaction i+1

Metadata

Figure 2. Typical Blockchain Structure

service providers (i.e., developers) might have no motivation

to develop new services or mashups actively.

4) High Cost of Maintenance
Centralized platforms usually need administrator roles,

as well as high infrastructure and human cost. Offering a

community-oriented service platform that many community

members will rely on implies spending billions of dollars in

innovation research every year [13].

C. Blockchain Technology

A typical blockchain system usually consists of multiple

nodes which do not fully trust each other [6]. Together, the

nodes maintain a set of shared, global states and perform

transactions modifying these states. Figure 2 shows the typ-

ical structure of a blockchain, where each block is linked to

its predecessor via a cryptographic pointer, all the way to the

first (i.e., genesis) block. Due to this structure, blockchain

is also called distributed ledger.

A specific transaction in blockchain is a sequence of

operations applied to global states. The core difference is

that blockchain is decentralized, and each node has its own

ledger while needing to reach a consensus in the whole

blockchain system. Blockchain systems have advantages in

decentralization, security, anonymity and untamperability.

Lacking central points of trust or failure, blockchain has

enabled a new class of decentralized applications [14].

Blockchain usually makes a trade-off between perfor-

mance and trust. Generally, blockchain systems can be

categorized as public, private or permissioned, described in

detail as follows.

1) Public Blockchain
Public blockchains are maintained across peer-to-peer

networks in a totally decentralized and anonymous manner

[5], [7]. Anyone can join the network freely. Bitcoin [5]

is the most well-known example of public blockchains. In

order to determine which block to append to the ledger text,

peers have to execute Proof-of-Work (PoW) consensus [15].

Ethereum [7] has grown beyond crypto-currencies to sup-

port user-defined states and Turing complete state machine

models. It enables any decentralized applications (DApps)

with the help of smart contracts. Public blockchains have

advantages of enabling the ledger to be curated completely

anonymously, and peers’ willingness to hold a copy of the

ledger and try to create new blocks.

27

Authorized licensed use limited to: SOUTHERN METHODIST UNIV. Downloaded on October 18,2024 at 16:02:48 UTC from IEEE Xplore. Restrictions apply.

2) Private Blockchain
In private blockchains, only specific organizations are

allowed to join the networks. They are widely used in

building blockchain-based underlying systems between sev-

eral specific organizations. For example, two banks might

negotiate to establish a private blockchain between them to

assist with the reconciliation.

3) Permissioned Blockchain
The definition of permissioned blockchains falls in be-

tween public blockchains and private ones. Only authorized

organizations can join in permissioned systems. Permis-

sioned blockchains require a set of trusted nodes tasked with

creating new blocks. Compared with public blockchains,

permissioned ones require less resources and are able to

reach smaller transaction latency and higher throughput.

Moreover, permissioned blockchains make it possible to

control the set of participants tasked with maintaining the

ledger. This feature increases its popularity among industrial

communities. Hyperledger Fabric is an open-source project

under the Hyperledger umbrella project‡, which targets

business applications [16], [17].

D. Blockchain Selection in DSES

INK consortium blockchain (INKchain), which aims at

providing a trusted consortium blockchain for regional use

cases, extends Fabric by providing asset accounts, as well

as supporting asset transfer and other enhancements. We

chose INKchain as the underlying blockchain solution for

two major reasons.

1) INKchain is inspired by Fabric, both of which are

permissioned blockchains supporting identification and au-

thority controls. With INKchain, it is possible to allow only

qualified developers or users to participate in DSES and

avoid hostile behaviors. As a result, DSES could focus

more on information maintenance instead of worrying about

malicious behaviors.

2) The systematic characteristic of asset component in

INKchain makes it possible to issue customized token “STo-
ken” in DSES as the media of value transfer. Furthermore,

with systematic interfaces provided by INKchain, incentive

mechanisms in DSES can be realized through chaincode.

III. DECENTRALIZED SERVICE ECO-SYSTEM (DSES)

A. Scheme Overview

Figure 3 depicts the overall framework of DSES. Sim-

ply speaking, after receiving certification from Certificate

Authority (CA), a developer/user can utilize its Software

Development Kit (SDK)/APP to make invocation to update

or query states through chaincodes. In actual application

scenarios, after reaching agreements on the business logic

between entities in the same blockchain network, it is

possible to code the business logic into chaincodes to

‡https://www.hyperledger.org

Peer

DSES Blockchain Network

Peer
Peer

Orderer

Orderer

…

Chaincode

service.go
Ledger

SDK
/APP

CA

Developer/
User

invocation

updated states

certification

Figure 3. Overall Framework of Decentralized Service Eco-System

make sure that everyone obeys it. Any illegal operations

(i.e., not defined in chaincodes or beyond the scope of

authority) will have no effect on the global states. Peers and

orderers form the Blockchain Network. Such a distributed

database-oriented solution will enable peers who do not

fully trust each other to maintain a set of global states.

All the peers hold the full history of all activities since the

service ecosystem was established, assuring the reliability

and authority of the information. DSES will thus provides

reliable and sound information for researches on service

management, discovery and recommendation that promises

high scalability and maintainability. Detailed explanations of

the components are discussed as follows:

Developer/User: In DSES, there are only two types of

participating roles (i.e., Developer and User). Developers or

users could make several kinds of invocations (e.g., publish

a new service, query service information, or create a new

mashup), and broadcast them into the DSES blockchain

network with the help of the SDK/APP component.

SDK/APP: The SDK/APP component implements busi-

ness logic of the service ecosystem through provided in-

terfaces in smart contracts. The app could run on any

blockchain node, or be deployed on a centralized service.

SDK/APP component is the application front-end part in

DSES. Developers or users interact with it, and operations

that will affect the states will generate a transaction through

interfaces defined in the chaincode. The operations from the

SDK/APP aspect are similar with those in centralized service

repositories, bringing no burden for Developers or Users.

CA: The CA component could provide legal identity

certifications to authorize developers or users to propose

invocations through the SDK/APP component.

DSES Blockchain Network: The right-hand side of Fig-

ure 3 illustrates the structure of DSES blockchain network,

which is the core component of DSES. DSES blockchain

network is a distributed management system of transac-

tion records in the scheme. All the developers and users

contribute blockchain operations. Blockchain network based

on INKchain distinguishes between two kinds of nodes:

Peers and Orderers [12]. Peer is a kind of non-validating

28

Authorized licensed use limited to: SOUTHERN METHODIST UNIV. Downloaded on October 18,2024 at 16:02:48 UTC from IEEE Xplore. Restrictions apply.

node that functions as a proxy to connect clients (issuing

transactions) to validating peers (Orders). It does not make

real executions of transactions but may execute simulations

and verify them. Chaincode links the blockchain network

with the outside, providing interfaces for invocation, and

intending to record data in a distributed Ledger. The data to

be recorded is called “state,” stored in a key-value form.

An Orderer is a node on the network responsible for

running consensus, validating transactions, and maintaining

the ledger. In a practical application, the orderers and peers

could be run by different organizations. No central server

managed by a trusted third party is required. Thus there is no

need for System Administrator role to provide maintenance.

B. Blockchain Perspective

From a blockchain perspective, we scrutinize a transac-

tion process. After being authorized, the user can send a

transaction proposal to a peer through SDK/APP. The peer

checks the proposal, simulates to conduct the transaction,

and endorses the results. Then the endorsed proposal will be

broadcast to orderers. The orderers validate the transactions

and create new legal blocks. At last, the peers update their

local ledgers according to the newly-received blocks. Any

operation beyond the interfaces declared in chaincode or the

authority setting is considered illegal, which will have no

effect on the global states.

C. Security Requirements

DSES blockchain network is a decentralized system. Due

to its industrial application scenario and derivation from

Fabric, DSES supports crash tolerance through an ordering

service based on Apache Kafka§ to reach a consensus.

INKchain substantially integrates current technological

advancement in the fields of distributed computing and secu-

rity. INKchain takes advantage of cryptographic primitives

such as Hash Function [18], Asymmetric Encryption [19]

and Digital Signature [20]. As mentioned earlier, transaction

proposals will be validated and endorsed during the transac-

tion process. All such instruments ensure the reliability and

security of the network.

D. Authority Control

Public blockchain platforms usually suffer from lack

of permission control, and the information is completely

exposed to the public. Permissioned blockchain is designed

for enterprise scenarios, equipped with methods to realize

authority control. Based on INKchain, DSES realizes it in

three aspects. Firstly, the CA component implements the

PKI service that can issue identify certification in advance,

and distributes it to corresponding entities. Secondly, the

INKchain could control different entities’ access level of

data and resources through fine-grained policy control. Last

but not least, with the help of INK Account, we design

§https://kafka.apache.org/

Figure 4. Design of Data Structure in Chaincode “service.go”

chaincode “service.go” to implement data access control

functionally.

E. Design of Chaincode

In Fabric and INKchain, “chaincode” is the implemen-

tation of smart contract, spearheaded by Ethereum [7].

Chaincodes intend to make response to the transactions sent

by SDK/APP, execute related codes and finally record data

in a distributed ledger. We have made a deep investigation on

the functionalities of service ecosystems, and designed a new

chaincode “service.go” to implement related business logic.

Moreover, we have added incentive mechanisms to stimulate

people to participate more actively in making contributions

to the service ecosystem. Details of the chaincode will be

presented in the following sections.

1) Data Structure
The data structure in service.go is designed as shown in

Figure 4 with the following core elements.

INK Account: INKchain has designed and implemented

an account system called “INK Account,” which can cater

to a large number of anonymous users to manage digital

assets and interact directly with the blockchain. As shown

in Figure 4, the field Address uniquely identifies a record of

INK Account. The Balance field records all kinds of tokens

in an account. Counter is used for validation.

User: In the design of data structure, we do not distinguish

Developers from Users mentioned in Figure 3. The field

Name is the keyword of User structure. A user also needs

to provide his/her brief introduction. Each user is the one-to-

one correspondence of an INK Account through the Address
field. The Contribution field is designed for recording the

degree of a user’s contribution to the service ecosystem.

Services: Structurally, we design the Service to record

information of services as well as mashups. There exists a

one-to-one correspondence between a service and a specific

user’s Name through the Developer field. We utilize a

boolean field IsMashup to distinguish whether the service is

a mashup or not. If it is a mashup, then the Composited field

29

Authorized licensed use limited to: SOUTHERN METHODIST UNIV. Downloaded on October 18,2024 at 16:02:48 UTC from IEEE Xplore. Restrictions apply.

Created

Available

Invalid

RegisterService

PublishService

EditService

EditService

InvalidateService

InvalidateService

Figure 5. Status Change Logic of A Service

would record the invoked services (i.e., APIs). Specifically,

we design a string field Status to record the current status

of a service. Generally, we define three kinds of status about

a service: (a) Created: a service is created but not published

yet; (b) Available: a created service has been published; and

(c) Invalid: an existing service has withered away.

2) Functional Implementation
Based on the definitions of data structures, we implement

the invoke functions as listed in Table. I. Related codes are

provided in our github repository¶.

Table I
IMPLEMENTED FUNCTIONS IN CHAINCODE

Function Description
RegisterUser register a new user
RemoveUser remove an existing user
QueryUser query info about a specific user
RegisterService register a new service (not mashup)
PublishService publish a newly created service
InvalidateService invalidate a specific service
CreateMashup create a new mashup, compositing services
QueryService query info about a specific service or mashup
EditService edit info of a specific service or mashup
QueryServiceByUser query services developed by one specific user
QueryServiceByRange query services by a range
RewardService reward a service’s developer by another user

Generally, the invoke functions are divided into three

categories: user-related functions, service-related functions,

and reward-related functions. Leveraging INK Account, we

are able to recognize an invoker’s identity with help of

chaincode stub interfaces such as Transfer, GetAccount and

GetSender. Moreover, based on them, DSES has realized

incentive mechanisms. To better explain, we will first explain

how we design the functions in the chaincode, through the

logic of services’ status change as well as the design of

CreateMashup function.

3) The Logic of Services’ Status Change
As mentioned before, a service in DSES has three differ-

ent status. Figure 5 illustrates how a service’s status changes

with different service-related functions.

4) Introduction of CreateMashup

¶https://github.com/gzf09/DSES

In this section, we present the detailed design of function

CreateMashup, which is an important invoke function to

make contribution to the development and prosperity of

the service ecosystem. With the help of interfaces like

GetSender, Transfer in INKchain, the overall process of

creating a new mashup in service.go is illustrated as follows.

Process 1: CreateMashup

Input: Mashup information and list of invoked services

Output: Transaction record on the ledger

Procedure:
01. Get the mashup’s creator’s address through GetSender
02. Create a mashup record according to Service structure, where:

03. a) Field IsMashup is set true

04. b) Field Composited records all the invoked services

05. For every invoked service

06. Pay to its developer for providing related functionalities

through Transfer(to, “SToken”, amount) 1

07. End
08. Store the newly-created service into the ledger

1 to is the address of the service’s developer, amount determines how
much token “SToken” is paid to the service’s developer.

5) Incentive Mechanisms
Incentive mechanisms are designed from three aspects.

a) Contribution Record
In the User data structure, we use Contribution field to

record the degree of a user’s contribution to the service

ecosystem. The value of contribution changes once the

user publishes a new service or creates a mashup. The

contribution of a user is calculated as follows:

contributioni = ln(ns + nm + 1) + λ · ni

nsi
(1)

where ln(ns+nm+1) represents the evaluation of quantity.

ns is the total number of available services the user has

developed, and nm is the total number of mashups. To ensure

contributioni > 0, we add one to the total number of avail-

able services and mashups. Meanwhile, λ · ni

nsi
represents

the evaluation of quality (i.e., whether a service is invoked

more frequently by other developers), where nsi is the total

number of invoked services developed by user i, and ni is

the total times that this user’s services have been invoked

by mashups. Here we introduce coefficient λ to adjust the

preference of users’ contribution in creating mashups. We

use the logarithm function for quantity evaluation and liner

for quality evaluation, because we pay more attention to

developers’ behavior of utilizing services to create mashups.

b) Token Transfer when Creating Mashups
Due to the specific feature of INKchain, we are able to

introduce a customized token “SToken” (abbreviation for

“Service Token”) to realize related incentive mechanisms.

As mentioned in step 6 of Process 1, when creating a

new mashup, the developer of the mashup has to transfer a

fixed amount of “SToken” to each invoked service’s original

30

Authorized licensed use limited to: SOUTHERN METHODIST UNIV. Downloaded on October 18,2024 at 16:02:48 UTC from IEEE Xplore. Restrictions apply.

developer. Developers thus are motivated to create more

general and more valuable services to the service ecosystem.

c) Reward from Users
The invoke function RewardService is also part of the

incentive system in DSES. A user can reward the developer

of a service or a mashup with any amount of SToken as

he/she likes. Through the interface Transfer, it is feasible

to realize this capability based on INKchain.

IV. PROTOTYPING SYSTEM, EXPERIMENTS, AND

DISCUSSIONS

In this section, we describe the implementation of our

prototype of DSES in a case study, along with performance

evaluation results. Original test scripts are provided in the

github repository.

A. Data Set

ProgrammableWeb.com has been accumulating a variety

of services and mashups since established in 2005. We

crawled the data from its inception to December 2017,

including over 18,000 services and 6,000 mashups.

B. Implementation

We used INKchain Version 0.11.0 as the basic blockchain

library and implemented our design of DSES. Our imple-

mentation environment, cryptographic algorithms and basic

network settings are listed in Table II.

Table II
IMPLEMENTATION ENVIRONMENT & NETWORK SETTINGS

PC 2.6 GHz Intel Core i5, 8 GB Memory
Language Go 1.9.2 linux/amd64
Containerization Docker 1.35
Digital Signature Alg. ECDSA (256bit key)
Hash Function SHA-256

of Peers 4
of Organizations 2 (2 Peers in each Organization)
of Orderers 1

As the first step to verify the feasibility and validity

of our design, we implemented a DSES prototype in an

experimental environment. All peers, orderers and client

programs are containerized in Docker containers. The peers

join a consensus protocol of the blockchain. Specifically, in

the prototype, we focused on the implementation of basic

business logics in a service ecosystem without a concrete

front-end.

The designed functionalities and incentive mechanisms

have passed the basic functional tests, with related test

scripts in test service init.sh.

C. Performance Analysis

1) Requirements of Invoke Throughput
Take Programmable.com for example. Since established in

2005, the average daily service-publishing rate is about 4.10.

The peak value of daily service-publishing is about 110,

0 2000 4000 6000 8000 10000 12000

of Transaction Data

160

180

200

220

240

260

280

300

320

340

360

Q
u
er

y
 T

ra
n
sa

ct
io

n
 T

im
e

(m
se

c)

Figure 6. Processing Time for Query Invocation with Different Numbers
of Transaction Data

and the peak value of daily mashup-publishing is around

40. They are far less than the capacity of Fabric [6]. Above

all, operations around a service ecosystem is usually not

of high-frequency. Forked from Fabric, INKchain has made

progress in enhancing the throughput by creating transfer set

based on the read-write set in Fabric. Even if considering

other invoke operations like creating new users or rewarding

outstanding services, in general, the current performance of

INKchain could meet the requirements of DSES.

2) Analysis of Query Performance
We conducted a number of experiments to test the influ-

ence of data size on query performance. We invoked regis-
terService function to store different numbers of transaction

data in the DSES blockchain network, and then made query

invocation and recorded the processing time. We made the

number of transaction data vary from 1,000 to 12,000, and

recorded the average processing time of five queries using

the queryService function. The results are summarized in

Figure 6. In summary, the network query performance of

DSES is feasible for practical use.

D. Further Improvements on DSES

More detailed design could be implemented to realize

more complicated functionalities. A more complicated com-

mercial production environment remains to be established to

proceed to conduct more intensive tests about functionalities,

performance and the effectiveness of incentive mechanisms.

Peers and orderers could be deployed in VM machines on

cloud platforms, managed with Kubernetes. Furthermore, the

idea could be applied in other industrial scenarios such as

tourism, building a decentralized tourism service ecosystem.

Service providers publish all kinds of tourist services such

as restaurants, hotels, tourist guides and so on. Users would

pay specific token in order to use the services.

V. RELATED WORK

A service ecosystem is a logical collection of web services

as well as their compositions [1]–[3]. Existing works mainly

31

Authorized licensed use limited to: SOUTHERN METHODIST UNIV. Downloaded on October 18,2024 at 16:02:48 UTC from IEEE Xplore. Restrictions apply.

focus on systemic management or studying related data to

make analyses and recommendation [21]. However, existing

service ecosystems typically rely on some centralized service

registries as “middle people” to record service behaviors,

which could result in problems such as trust issues, security,

authority control, and high cost of maintenance.

Bitcoin [5] is the first successful attempt to con-

struct a commercialized decentralized system. Since then,

blockchain technology has grown beyond crypto-currencies

to support real applications. Ethereum [7], the first one

realized smart contract, enables people to develop all kinds

of DApps. In industry scenarios, Hyperledger Fabric [11],

[16], [17] is the most popular solution among companies.

As an extension of Fabric, INKchain is a newly open-source

permissioned blockchain platform, enabling account systems

and customized token issuance. Permissioned blockchains

have advantages in authority control and higher performance

[16]. Thus they have been widely used to develop decen-

tralized applications [12], [22]. In this paper, as the first

attempt to design a decentralized service ecosystem, we have

built the overall framework DSES on top of INKchain. We

realized functionalities of conventional service ecosystems,

and designed incentive methods to maintain the sustainable

development of service ecosystems.

VI. CONCLUSIONS

In this paper, as the first attempt to bring decentral-

ization to service ecosystems, we have described our de-

sign and development of the Decentralized Service Eco-

System (DSES) based on a newly open-source consortium

blockchain called INKchain. We have presented a prototype

of DSES to demonstrate the feasibility and effectiveness of

our design. Related experiments on performance have also

been conducted based on a real-world data set.

In our future work, we will further design the details

of the DSES toward a real-world production environment.

In addition, more comprehensive experiments about the

performance of DSES in a production environment will be

conducted. Especially, we will study the cost incurred by

such a distributed storage manner as well as each party’s

willingness to adopt such a kind of distributed storage.

Moreover, we will tackle the data integration challenge when

combining distributed data for unified calculation in DSES.

ACKNOWLEDGMENT

This research has been partially supported by the National

Nature Science Foundation of China (No.61673230).

REFERENCES

[1] V. Andrikopoulos, S. Benbernou, and M. P. Papazoglou, “On
the Evolution of Services,” IEEE Transactions on Software
Engineering, vol. 38, no. 3, pp. 609–628, 2012.

[2] D. M. Barros A, “The Rise of Web Service Ecosystems,” It
Professional, vol. 8, no. 5, pp. 31–37, 2006.

[3] X. Liu, Y. Hui, W. Sun, and H. Liang, “Towards Service
Composition based on Mashup,” in Proceedings of IEEE
World Congress on Services (SERVICES). IEEE, 2007, pp.
332–339.

[4] T. W. Huang K, Fan Y, “An Empirical Study of Programmable
Web: A Network Analysis on a Service-Mashup System,”
in Proceedings of International Conference on Web Services
(ICWS). IEEE, 2012, pp. 552–559.

[5] S. Nakamoto, “Bitcoin: A peer-to-peer electronic cash sys-
tem,” Consulted, 2008.

[6] T. T. A. Dinh, R. Liu, M. Zhang, G. Chen, B. C. Ooi, and
J. Wang, “Untangling blockchain: A data processing view of
blockchain systems,” arXiv preprint arXiv:1708.05665, 2017.

[7] Ethereum, “Ethereum,” in https://www.ethereum.org/.
[8] Ripple, “Ripple,” in https://ripple.com.
[9] Melonport, “Blockchain Software for Asset Management,” in

http://melonport.com.
[10] J. Morgan and O. Wyman, “Unlocking Economic Advantage

with Blockchain,” 2016.
[11] Hyperledger, “Hyperledger Fabric,” in

https://www.hyperledger.org/projects/fabric.
[12] S. A., “Blockchain Based Distributed Control System for

Edge Computing,” in Proceedings of International Confer-
ence on Control Systems and Computer Science. IEEE, 2017,
pp. 667–671.

[13] AnantJhingran, “How and Why to Transform
Your Business into a Digital Ecosystem,” in
https://www.programmableweb.com/news/how-
and-why-to-transform-your-business-digital-
ecosystem/analysis/2018/01/11.

[14] e. a. Ali, Muneeb, “Blockstack: A Global Naming and Storage
System Secured by Blockchains,” in Proceedings of USENIX
Annual Technical Conference (USENIX ATC). USENIX,
2016, pp. 181–194.

[15] A. K. Garay, Juan A. and N. Leonardos, “The Bitcoin Back-
bone Protocol: Analysis and Applications,” in Proceedings of
the 34th Annual International Conference on the Theory and
Applications of Cryptographic Techniques (EUROCRYPT),
2015, pp. 281–310.

[16] M. Vukoli, “Rethinking Permissioned Blockchains,” in Pro-
ceedings of ACM Workshop on Blockchain, Cryptocurrencies
and Contracts (ACM), 2017, pp. 3–7.

[17] C. Cachin, “Architecture of the Hyper-
ledger Blockchain Fabric,” in https :
//www.zurich.ibm.com/dccl/papers/cachindccl.pdf ,
2016.

[18] X. Yi, “Hash function based on chaotic tent maps,” IEEE
Transactions on Circuits & Systems II Express Briefs, vol. 52,
no. 6, pp. 354–357, 2005.

[19] M. Bellare and P. Rogaway, “Optimal asymmetric encryp-
tion,” in Proceedings of The Workshop on the Theory and
Application of of Cryptographic Techniques Springer, Berlin,
Heidelberg, 1994, pp. 92–111.

[20] R. C. Merkle, “A Certified Digital Signature,” in Proceedings
of Advances in Cryptology - CRYPTO ’89, International
Cryptology Conference, Santa Barbara, California, USA,
1989, pp. 218–238.

[21] Z. Gao, Y. Fan, C. Wu, W. Tan, and J. Zhang, “Service Rec-
ommendation from the Evolution of Composition Patterns,”
in Proceedings of IEEE International Conference on Services
Computing, 2017, pp. 108–115.

[22] S. Kiyomoto, M. S. Rahman, and A. Basu, “On blockchain-
based anonymized dataset distribution platform,” in IEEE
International Conference on Software Engineering Research,
Management and Applications, 2017, pp. 85–92.

32

Authorized licensed use limited to: SOUTHERN METHODIST UNIV. Downloaded on October 18,2024 at 16:02:48 UTC from IEEE Xplore. Restrictions apply.

