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Abstract—The balance between customer-perceived applica-
tion performance and cloud provider’s profit is a key to achieve
win-win in cloud economy. Current researches on cloud resource
allocation do not sufficiently address the issue of minimizing
energy cost and maximizing revenue for various applications in
virtualized cloud data center (VCDC). This paper presents a new
approach to realize the optimization of VCDC’s profit based
on the service-level agreements between cloud providers and
customers. A precise model of the external and internal request
arrival rates is proposed for virtual machines of different service
classes. An analytic probabilistic model is then developed for non-
equilibrium VCDC states. Next, a smart controller is proposed for
fine-grained resource provisioning and sharing among multiple
applications. A novel hybrid meta-heuristic algorithm based
on simulated annealing and particle swarm optimization is
developed to solve the formulated profit maximization problem.
The proposed algorithm can guarantee that differentiated service
qualities can be provided with higher overall performance and
lower energy cost. Finally, the effectiveness of the proposed
approach is validated with trace-driven simulation.

Keywords-Data center; dynamic resource provisioning; heuris-
tic algorithm; optimization

I. INTRODUCTION

With the wide deployment of cloud computing services,

virtualized cloud data centers (VCDCs) become more and

more important. Many kinds of intensive applications, such as

CPU and I/O intensive ones, concurrently run in VCDC and re-

quire various infrastructure resources [1]. Traditional resource

allocation for a single intensive application is inefficient, since

it can lead to much waste of resources. For example, CPU-

intensive applications may occupy CPU resources for a long

time, but cause a waste of disk I/O resources in a physical

machine (PM) or virtual machine (VM). Moreover, due to

the increasing energy cost of VCDCs [2], it is inappropriate

to increase the number of servers in VCDCs at its current

pace. It is thus challenging for VCDC administrators to meet

a service level agreement (SLA) due to the dynamic multi-

resource sharing among various intensive applications.

Several dynamic resource provisioning methods have been

proposed to effectively allocate resources for intensive applica-

tions. Unfortunately, most existing methods fail to realize the

objectives to minimize provider’s energy cost and to maximize

revenue in complex cloud environments. They mainly focus on

a single type of resources even in multi-resource environments

where customers have heterogeneous resource requirements

[3]. However, requests may have varying demands for CPU,

memory, and I/O resources. In addition, the virtualization

technology consolidates multiple online application services

into fewer physical resources. These resource provisioning

strategies offer dynamic VM provisioning, workload consol-

idation and efficient operation of VMs and PMs. They are

very helpful for VCDC to achieve high utilization and energy

efficiency, and can greatly improve the traditional off-line

capacity planning process [4]. Note that, the static provisioning

is usually considered as a benchmark to evaluate new methods.

This study provides a way to allocate various heterogeneous

resources to requests of every intensive application in VCDC.

It enables dynamic fine-grained resource provisioning, which

turns on a minimum number of VMs to meet the current

demand and dispatches the workload among running VMs to

meet SLAs. In this regard, it is significant to realize the high

overall utilization of infrastructure resources, minimization of

energy cost, and maximization of the revenue of a VCDC

provider. Therefore, we focus on minimizing energy expendi-
ture and maximizing revenue while meeting the demand of

various intensive application services.

The key contributions of this paper are two-fold:

• Firstly, we propose a novel Smart Controller (SC) to

support a dynamic fine-grained resource provisioning

method in a non-equilibrium states VCDC.

• Secondly, we propose a hybrid meta-heuristic algorithm

to determine the allocation of CPU and I/O resources,

respectively, where the revenue of application services

is maximized and machine-level energy expenditure is

minimized.

The rest of the paper is organized as follows. Section II

discusses the related work. Section III describes the motivation

and VCDC architecture. Section IV constructs a system model.

Section V formulates the profit maximization problem of
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multiple resources, and proposes an algorithm to solve it.

Section VI presents its performance evaluation results. Section

VII concludes this paper.

II. RELATED WORK

Recently, a few studies have examined SLA resource al-

location issues for data centers, but they cannot be readily

adapted to cloud computing environments because they usually

assume equilibrium states and adopt mean value analysis.

For example, Urgaonkar et al. present an analytical model

of dynamic resource provisioning for multi-tier clusters [5].

However, they assume that available resources are always

sufficient, and fail to consider total profit maximization based

on different performance demands. Lama et al. propose an

efficient resource allocation optimization model [6]. Its inte-

gration with an independent fuzzy controller provides superior

performance in resource utilization and end-to-end response

time guarantee. However, the resource contention problem is

not addressed in their work. They fail to provide heterogeneous

server configuration in virtualized systems. Goudarzi et al.

pose an SLA-based resource allocation problem for cloud

computing environments [7]. They consider CPU, memory

and network resource requirement. However, their single and

simple M/M/1 queueing system cannot reflect real cases well.

Furthermore, a virtualization technology is an efficient re-

source sharing approach to support various intensive appli-

cations in VCDC [8]. It can allocate physical resources to

separate VMs and realize application isolation. However, the

high variability of workload poses a challenge to accurate-

ly predict the requirement of each resource. For example,

Kalyvianaki et al. adopt Kalman filters to track and control

CPU utilization in virtualized environments [9]. Khazaei et al.

present a fine-grained performance model for homogeneous

resources assignment in cloud computing centers [10]. In

contrast to these researches, our work can support a fine-

grained and heterogeneous resource allocation for a virtualized

cloud computing environment. Padala et al. present a resource

control system that achieves application performances by au-

tomatically adapting to dynamic workload changes [11]. They

provide a novel multi-input, multi-output (MIMO) resource

controller to manage multiple resources. However, our method

can not only provide differentiated service qualities but also

reduce energy cost. Moreover, we can accurately compute

request arrival rates according to various intensive applications

of different service classes in a VCDC.

Different from previous works, based on the variability of

workload for various applications, this work provides dynamic

fine-grained allocation for each virtualized resource by a

model that considers non-steady state situations through the

probabilistic analysis of a VCDC performance.

III. SYSTEM ARCHITECTURE

One particular motivation of this work is due to the clear

need to pack together applications with complementary multi-

resource allocation requirements, such as placing a CPU-

intensive and an I/O-intensive VM on the same PM. We

propose a Smart Controller (SC) architecture for this purpose,

as shown in Fig. 1.
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Fig. 1. System architecture.

To reduce overall VCDC provisioning and energy cost,

and meet the SLA of Gold and Silver services for various

applications, we assume that PMs and VMs are categorized

into three states: hot (i.e., turned on with running), warm

(turned on, but not ready), and cold (turned off) [12]. Turned

on PMs and VMs are placed in hot and warm clusters, while

turned off ones are placed in cold cluster to reduce energy

consumption during periods of small workload. Our proposed

SC can smartly allocate internal and external workloads to

designated VMs corresponding to different applications. SC

can also minimize the consumption of computing and storage

resources by specifying the number of PMs and VMs, as well

as CPU and I/O shares per VM. Due to different performance

levels of various service applications, in our work, Gold

services pose higher performance requirement than silver ones.

Besides, the operating systems are encapsulated into each

seperated VM. Thus, multiple VMs can be used for parallel

processing of different intensive applications.

IV. SYSTEM MODEL

A. System Dynamics

A VCDC is a group of VMs distributed across one or more

PMs, cooperating to host multiple applications. Its dynamics

for Gold and Silver service classes at multiple resources is

described by a discrete-time state space equation:

ηks (τ + 1)=ψ
(
ηks (τ), σ

k
s (τ), λ

k
s(τ)

)
(1)

where ηks (τ) is a system state at time τ ∈ {1, 2, ..., t}. σk
s (τ)

denotes control variables, and λks(τ) is a system input at time

τ . Function ψ captures the relationship among states, control

variables, and system inputs.

Its state of the s-th service class is denoted as:

ηks (τ)=
(
E(T k

s (τ)), q
k
i,s(τ), γ

k,C
s (τ), γk,Ns (τ)

)
(2)
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where E(T k
s (τ)) is its expected average response time. qki,s(τ)

is the expected number of queued requests into the i-th
resource type. γk,Cs (τ) and γk,Ns (τ) are the numbers of finished

and rejected requests in SLA of the k-th intensive application

for the s-th service class, respectively.

Its control variables related to the s-th service class are

denoted as:

σk
s (τ)=

(
N(τ), V (τ), ϕk

s(τ), c
k
s(τ), φ

k
s,v(τ), θ

k
s,v(τ), ω

k
s,v(τ)

)
(3)

where N(τ) and V (τ) are the number of turned on PMs

and VMs, respectively. ϕk
s(τ) and cks(τ) are system-wide

control variables indicating the number of hot PMs and VMs,

respectively. φks,v(τ) and θks,v(τ) are CPU and I/O allocations

of the v-th VM in the k-th intensive application for the s-

th service class, respectively. ωk
s,v(τ) is workload fraction

directed to the v-th VM. Note that for the sake of simplicity,

throughout the remainder of this paper, we will simplify

notations that contain τ , and remove τ from these notations.

For example, cks(τ) is simplified as cks .

The system input λks is the workload arrival rate. We design

ψ as a difference model for a VCDC. The average arrival rate

of the k-th intensive application for the s-th service class into

the i-th resource type in a VM is given by:

λki,s=r
k
i,s+

I∑
j=1

λkj,s·P k
(j,s),(i,s) (4)

where rki,s is an external workload arrival rate of a Poisson

process, and we adopt the Gauss-Seidel iterative method [13]

to approximate λki,s and λkj,s.

Then, the total average arrival rate from both the internal

and external of all intensive applications for the s-th service

class into the i-th resource type in a PM is denoted by Λi,s,n,

i.e.,

Λi,s,n=
K∑

k=1

λki,s=
K∑

k=1

⎡
⎣rki,s+ I∑

j=1

λkj,s·P k
(j,s),(i,s)

⎤
⎦ (5)

where λki,s (λkj,s) and rki,s denote average and external arrival

rate of the request of the k-th intensive applications for the s-th

service class into resource type i (j), respectively. P k
(j,s),(i,s)

denotes the probability that when a k-th intensive application

finishes at resource type j, it next moves to resource type i for

the s-th service class.

Thus, the total average arrival rate from both the internal

and external of all intensive applications for the s-th service

class into the i-th resource type is given by:

Λi,s=

ϕ∑
n=1

Λi,s,n (6)

The service rate μk
i,s of a VCDC is determined by the

number of VMs, and CPU and disk I/O allocations given to

each VM. Each VM is assigned a share of the PM’s CPU,

memory, and disk I/O. In addition, each VM uses the function

f(·) to map CPU φks,v and disk I/O θks,v allocations of the VM

v in a VCDC to a corresponding processing rate. Therefore,

we can obtain the following equations:

μk
i,s=

K∑
k=1

μk
i,s=

K∑
k=1

cks∑
v=1

μk
i,s,v (7)

[
μk
1,s,v, ..., μ

k
I,s,v

]
=f(φks,v, θ

k
s,v). (8)

We assume that the sampling period is T, e.g. 30 seconds, to

capture the system dynamics. The initially measured queueing

length is qki,s(τ − 1) at this time period. When λki,s is small, a

VCDC is not fully utilized. At this time period, we first mea-

sure the whole real service rate μk
i,s of a VCDC. We assume

that request arrival rate λki,s and service rate μk
i,s are fixed over

each time interval of length T. The instantaneous queueing

length qki,s(τ)≥0 at any time τ in the next sampling period

is obtained by using the current queueing length qki,s(τ − 1),
incoming workload λki,s dispatched to a VCDC, and service

rate λki,s. It can be obtained by:

qki,s(τ)=max
{
qki,s(τ − 1)+(λki,s−μk

i,s)·T, 0
}
. (9)

That is, the queueing length qki,s(τ) at any time τ in the

next sampling period equals to the current queueing length

qki,s(τ − 1) plus new arrivals of service requests, and minus

the number of service requests that are handled by a VCDC

within sampling period T.

Based on (9), the average length of the queue in the next

sampling period is:

q̄i,s=
K∑

k=1

q̄ki,s=
1

t

K∑
k=1

t∑
τ=1

qki,s(τ). (10)

In order to calculate the average response time of requests

in the next sampling period, we consider the following two

cases based on arrival and service rates.

1) If λki,s<μ
k
i,s=

cks∑
v=1

μk
i,s,v , the system is underloaded, i.e.,

the i-th type resource is enough to process all requests

of the k-th intensive application for the s-th service

class in a VCDC. Therefore, the system can stay at its

steady state. Here, the whole actual service rate μk
i,s is

related to λki,s. Besides, the queueing length in the next

sampling period decreases with time. Based on the initial

value of current queueing length qki,s(τ − 1), we further

consider the two sub-cases: a) if qki,s(τ − 1)=q̄ki,s(t), we

assume that the queueing system has already entered

a relatively steady state. Therefore, the response time

E(Ti,s) is calculated via a steady model [8]; b) if

qki,s(τ − 1)>q̄ki,s(t), the queue length begins to decrease

from the initial length qki,s(τ − 1). Then q̄i,s(t) can be

rewritten as:

q̄i,s=
K∑

k=1

q̄ki,s=
1

t

K∑
k=1

{[qki,s(τ − 1)+
T̂

2
·(λki,s−μk

i,s)]·T̂

+Lq·(t− T̂ )} (11)
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where Lq denotes the average number of requests wait-

ing in the queue. Based on the preceding steady state

analytic model, it is calculated as:

Lq=
∞∑

m=
K∑

k=1

cks

pm·(m−
K∑

k=1

cks).

where pm is the probability of the case that there are

m requests in the queue. We adopt the birth and death

state equilibrium equations of Markov processes [14] to

obtain pm.

Then, the average response time is obtained as:

E(Ti,s)=
q̄i,s+La

Λi,s
(12)

where La denotes the average number of requests that

are being processed in the queue. Based on the preceding

steady state analytic model, we have:

La=

K∑

k=1

cks−1∑
m=1

pm·m+
∞∑

m=
K∑

k=1

cks

pm·
K∑

k=1

cks .

2) If λki,s≥μk
i,s=

cks∑
v=1

μk
i,s,v , the system is at an overloaded

state, i.e., it cannot stay steady. Therefore, the whole

actual service rate is μk
i,s. The queueing length in the

next sampling period increases, i.e.,

q̄i,s=
K∑

k=1

q̄ki,s=
K∑

k=1

{qki,s(τ − 1)+
t

2
·(λki,s−μk

i,s)}. (13)

Then, given the average queueing length, based on the

Little’s Law [15], we have the average response time:

E(Ti,s)=

q̄i,s+
K∑

k=1

cki,s

μi,s
. (14)

Let E(Ti,s) denote the expected average response time

in a VCDC of the k-th intensive application for the s-th

service class.We use subscript k̃ to show resource type k, and

superscript k the k-th intensive application.

E(T k
s )=P

k
k̃,out

·E(Tk̃,s)+P
k
k̃,k̃
·[E(Tk̃,s)+E(T k

s )]+

I∑
i=1,i �=k̃

P k
k̃,i
·P k

i,k̃
·[E(Tk̃,s)+E(Ti,s)+E(T k

s )]

(15)

where E(Tk̃,s) (E(Ti,s)) denotes expected average response

time of resource type k̃ (i) for the s-th service class. P k
k̃,out

means the probability that the k-th intensive application from

type resource k̃ leaves VM v. P k
k̃,k̃

expresses the probability

that it from resource type k̃ returns to resource type k̃ to repeat

the process. P k
k̃,i

shows the probability that it from resource

type k̃ goes to resource type i. P k
i,k̃

denotes the probability

that the k-th intensive application from resource type i returns

to resource type k̃ to repeat the process. We assume that the

time for deploying an application, turning on and migration

VM is ignorable.

B. Energy Consumption

In order to reduce VCDC’s machine-level energy consump-

tion, the number of hot servers should be dynamically adjusted

according to the rate of receiving service requests. Each server

can only serve one request at a time in VCDC. However, a

VCDC typically runs multiple VMs on each PM. It is thus

highly desired to pack together requests with complementary

resource requirements. We thus use CPU utilization as the

main signal of machine-level activity. Therefore, we model

energy consumption for a VCDC such that it is proportional,

roughly linear, to its utilization. Multiple studies have shown

that CPU utilization is indeed a good estimator for power

usage [16]. We use Vmax to denote the maximal number of

VMs in a VCDC. Let c≤V denote that the number of hot

VMs c is not more than that of turn on VMs V at time τ . We

then have the machine-level power usage of a VCDC:

E(u)=F (V )+A(u, V )+ε (16)

where u ∈ [0, 1] denotes its average CPU utilization of the k-

th intensive application for the s-th service class at time τ . F ,

A, and ε are the fixed power, variable power, and empirically

derived correction constant, respectively [17]. Note that in our

works, ε is set to zero.

F (V )=V · (Eidle+(U−1)·Epeak) (17)

A(u, V )=V · (Epeak−Eidle)·u (18)

where Epeak denotes the average peak power when a VM is

handling a service request. Eidle is the average idle power draw

of a single VM of the k-th intensive application for the s-th

service class. U is the power usage effectiveness of a VCDC.

From (16), the energy consumption at a VCDC increases as

we turn on more VMs or hot VMs at higher utilization.

V. PROFIT MAXIMIZATION PROBLEM

A. Optimization Problem Formulation

In order to maximize profit, this work presents a profit

function. We focus on the multiple resource allocation problem

for various intensive applications of different service classes

in a VCDC. If η(τ) denotes the operating state and σ(τ) is

control variable, the profit generated at time τ is given by:

Profit(η(τ), σ(τ))=Revenue−Cost (19)

where revenue is determined by whether SLA is met or not

from the corresponding function, if E(T k
s )≤T

k

s , ”meeting

SLA” is of a reward type; otherwise, ”violating SLA” is of

a refund type or loss one. Cost is the machine-level energy

consumption as incurred by hot PMs and VMs according to

their operational states.
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1) Revenue Modeling
The total revenue function collected by a VCDC at sampling

period T can be calculated as:

Revenue =

⎧⎪⎪⎨
⎪⎪⎩

K∑
k=1

S∑
s=1

[
Ck

s · γk,Cs

] ·T if E(T k
s )≤T

k

s

K∑
k=1

S∑
s=1

[
Ck

s · γk,Cs −Nk
s · γk,Ns

] ·T otherwise

(20)

where Ck
s and Nk

s are the unit request revenue and re-

fund of the k-th intensive application for the s-th service

class, respectively. According to the predicted result of the

system metrics, we can conclude that if
I∑

i=1

λki,s<
I∑

i=1

μk
i,s,

γk,Cs =
I∑

i=1

λki,s·P (E(T k
s )≤T

k

s)·t and γk,Ns =0. γk,Cs and γk,Ns

denote the number of finished and rejected requests for the

k-th intensive application of the s-th service class, respec-

tively. Otherwise, if
I∑

i=1

λki,s≥
I∑

i=1

μk
i,s, to take advantage of

the steady-state queueing network model, we use a binary

search method to determine the threshold of the request

arrival rates, denoted as
I∑

i=1

Λk∗
i,s. Therefore, the number of

finished and rejected requests for the k-th intensive application

of the s-th service class is γk,Cs =
I∑

i=1

Λk∗
i,s·P (E(T k

s )≤T
k

s)·t

and γk,Ns =

[
I∑

i=1

λki,s−
I∑

i=1

Λk∗
i,s·P (E(T k

s )≤T
k

s)

]
·t, respective-

ly. (Ck
s ·γk,Cs )·T denotes the total revenue received by a VCDC

within time interval T for the requests of the k-th intensive

application for the s-th service class that are handled before

an SLA-deadline. (Nk
s ·γk,Ns )·T denotes the total refund paid

to customers within time interval T for the requests of the k-

th intensive application for the s-th service class that are not

handled before an SLA-deadline.
2) Cost Modeling
The machine-level power-consumption cost of a VCD-

C is usually determined by unit-time power usage E(u),
that is, the total energy cost of hot and warm VMs. The

request arrival rate of a VCDC is P (E(T k
s )≤T

k

s)·
I∑

i=1

λki,s

or P (E(T k
s )≤T

k

s)·
I∑

i=1

Λk∗
i,s service requests per second. A

VCDC’s average CPU utilization at time τ can be obtained

as:
1. unloaded:

u=
K∑

k=1

S∑
s=1

[
λki,s·P (E(T k

s )≤T
k

s)

μk
i,s

]
(21)

2. overloaded:

u=
K∑

k=1

S∑
s=1

[
Λk∗
i,s·P (E(T k

s )≤T
k

s)

μk
i,s

]
(22)

where since we consider the processing capacity of CPU only,

resource type i refers to CPU. Then, the machine-level energy

consumption associated with a VCDC at time τ can be given

by:

E(u)=V · [(Eidle+(U−1)·Epeak)+(Epeak−Eidle)·u] (23)

Let χ denote the instantaneous electricity price. Therefore,

the total machine-level energy consumption cost at the sam-

pling period T can be calculated as:

Cost=T · χ·E(u) (24)

In Section IV, we will use the pricing information to obtain

VCDC’s cost of electricity.

3) Profit Maximization
In this paper, we assume that a workload admission control

policy to a VCDC is provided ahead of time. The resource

allocation problem in question is how to dynamically allo-

cate CPU and I/O resources among VMs with the goal of

maximizing the global profit function, i.e., our work focuses

on minimizing VCDC’s energy expenditure and maximizing

their revenue for various intensive application services. Our

proposed SC’s goal is to find optimal CPU and I/O resource

allocations of N PMs for the set of V VMs.

Given the profit function in (19), we formulate a VCDC

resource provisioning problem as follows:

f1=max
η,σ

τ+h∑
y=τ+1

Revenue(η(y), σ(y))

f2=min
η,σ

τ+h∑
y=τ+1

Cost(η(y), σ(y))

s.t.

K∑
k=1

S∑
s=1

ϕk
s(y)≤N(y)≤Nmax,

∀s = 1, ..., S, k = 1, ...,K (25)
K∑

k=1

S∑
s=1

cks(y)≤V (y)≤Vmax (26)

cks(y)≥Qmin (27)

cks (y)∑
v=1

ωk
s,v(y)=1 (28)

K∑
k=1

S∑
s=1

cks,n(y)∑
v=1

dks,v,n(y)·φks,v(y)≤Hn
max,

dks,v,n(y)∈{0, 1}, n∈{1, ..., Nmax} (29)

K∑
k=1

S∑
s=1

cks,n(y)∑
v=1

dks,v,n(y)·θks,v(y)≤Hn
max (30)

E(T k
s (y))≤T

k

s (31){
λki,s(y)<μ

k
i,s(y)

λki,s(y)≥μk
i,s(y)

(32)

where h denotes control interval length. The control constraints

can be updated periodically at the beginning of each control
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interval, h·T , i.e., h=5, h·T=150 seconds, and are unchanged

in the control interval. Constraints (25) and (26) ensure that

the total number of hot PMs and VMs cannot exceed their

respective maximum number at sampling period T. Constraint

(27) forces the controller to conservatively operate at least

Qmin VMs at all times to accommodate a sudden spike in

request arrivals. Here, we set Qmin = 1. Constraint (28) shows

that ωk
s,v(y) is workload fraction directed to the v-th VM.

The decision variable dks,v,n(y)∈{0, 1} indicates whether the

v-th VM of the k-th intensive application for the s-th service

class is allocated to PM n∈{1, ..., Nmax}. Constraints (29) and

(30) ensure that the cumulative CPU and I/O given to VMs

does not exceed the maximum capacity available on PM n.

Constraint (31) states that the expected average response time

E(T k
s (y)) cannot exceed the target response time T

k

s of the

k-th intensive application for the s-th service class specified

in SLA. Constraint (32) shows that the request arrival rate of

the k-th intensive application for the s-th service class cannot

exceed the capacity of all VMs.

B. Solution Algorithm

In the problem, the objective functions f1 and f2 are

nonlinear. Besides, N,V, ϕk
s and cks are integer variables, while

φks,v, θ
k
s,v and ωk

s,v are continuous ones. Therefore, the problem

is a mixed integer non-linear programming (MINLP) that is

NP-complete. Existing methods (e.g., equality relaxation, and

branch and bound) usually rely on the problem structure.

Besides, they converge to global optima at the cost of long

execution time. Metaheuristic algorithms are robust and do not

rely on any specific structure of the problem. Though they do

not guarantee to obtain global optima, they have been widely

adopted to solve MINLP.

Different metaheuristic algorithms own their respective

strengths and weaknesses. For example, particle swarm op-

timization (PSO) can converge quickly, but it may easily

trap into local optima [18]. Simulated annealing (SA) can

converge to global optima by accepting worse solutions based

on the Metropolis criterion [19], but its convergence speed

is unsatisfying. Therefore, we adopt a hybrid meta-heuristic

algorithm that combines strengths of PSO and SA algorithms.

In this algorithm, old and new positions of each particle are

compared in terms of the achieved profit. Better solutions

are directly accepted while worse ones are accepted based

on the metropolis criterion of SA. Therefore, this algorithm

can increase the possibility of obtaining global optima of the

formulated problem. Due to the length limit, details of the

hybrid meta-heuristic algorithm is omitted from this paper.

VI. PERFORMANCE EVALUATION

A. Simulation Setup

We use two applications about different web-based service

classes in our experiments including RUBiS [20], an online

auction site benchmark, and TPC-W [21], a transactional web

e-Commerce benchmark. To simulate the total workload, we

adopt two request traces with different service classes for

VMs: (1) the publicly available log files from the Soccer

World Cup 1998 Web site from June 14 to July 29, 1998

[22] as the service request trend for two service classes of

RUBiS, respectively; (2) the web transaction workload traces

from Google’s data center [23] for two service classes of TPC-

W. Note that RUBiS and TPC-W are CPU-intensive and I/O-

intensive applications, respectively.

Consider a VCDC with Nmax = 500 PMs and Vmax =
1500 VMs, respectively. The exact number of hot PMs and

VMs are updated periodically at the beginning of each control

interval, h·T=150 seconds, respectively. For each hot VM, with

power-management, the idle power consumption can be as low

as 50-65% of the peak power consumption, which can range

from 100-250 Watts. We assume that the energy model is 65%

idle, 1.3 U [16]. The electricity price information is based on

the real-time pricing tariffs in Illinois Zone I, on Jan. 1, 2015

[24].

In order to evaluate the applicability of the proposed model

in complex cases, we set different values for parameters, as

shown in Tables I, II and III.

TABLE I
ENERGY MODEL PARAMETERS FOR GOLD AND SILVER VMS.

Bounds Classes Epeak (Watts) Eidle (Watts) U
1 (Gold) 250 125 1.7

CPU-intensive VM
2 (Silver) 240 120 1.5
1 (Gold) 130 85 1.3

I/O-intensive VM
2 (Silver) 100 50 1.0

B. Analysis and Results

For comparison, we adopt two alternative resource provi-

sioning solutions including non-capped [25] and static [26] to

evaluate the proposed method in a VCDC using trace-driven

simulations. Experiments with the same parameter setting are

repeated. They are based on a discrete-event simulator and

resources are allocated periodically. The non-capped method

permits VMs to make the most of idle CPU and I/O resources

beyond their shares. In the static method, the CPU and I/O

shares are predefined before initiating the execution, and they

remain the same during the processing. Our method can pro-

vide performance separation for multiple intensive applications

in a VCDC, where available CPU and I/O resources for a

VM must be part of its resident PM, while idle CPU and I/O

resources are not available in a control interval of SC.

In our experiments, we first accurately compute request

arrival rates based on external and internal workload for

RUBiS and TPC-W applications, respectively. Furthermore,

we establish an analytic probabilistic system model to deal

with non-equilibrium states in a VCDC. At the same time, we

apply the proposed SC to validate our fine-grained resource

provisioning method.

We show the results of resource usages for two intensive

applications in Fig. 2. We observe that the percentages of

shared CPU and I/O generated from our proposed model are

higher than those of the other two methods. These results

demonstrate that the system model we presented in Section
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TABLE II
SLA PARAMETERS FOR RUBIS AND TPC-W.

Bounds Classes SLA-deadline (ms) C ($ per ms) N ($ per ms)
1 (Gold) 300 0.00006 0.000022

RUBiS
2 (Silver) 100 0.00004 0.000005
1 (Gold) 400 0.00007 0.000032

TPC-W
2 (Silver) 200 0.00005 0.000013

TABLE III
PARAMETERS OF CPU AND I/O-INTENSIVE VM INSTANCE TYPES.

Bounds Classes Name vCPU CPU Speed (GHz) Disk (GB)
1 (Gold) c3.2Xlarge 10 2.4GHz 2× 80 SSD

CPU-intensive VM
2 (Silver) c3.Xlarge 5 2.4GHz 2× 40 SSD

1 (Gold) i3.2Xlarge 10 2.4GHz 2× 800 SSD
I/O-intensive VM

2 (Silver) i3.Xlarge 5 2.4GHz 1× 800 SSD
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Fig. 2. Resource allocations comparisons on a PM: (a) CPU allocations (b)
Disk I/O allocations.

IV is effective to satisfy CPU and I/O resource requirements.

As we can see, the static method fixes CPU and I/O optimal

assignments to be 70% and 55% for two intensive applications,

respectively. However, such resource assignment results in

under-utilization or over-utilization during the entire execution

period. Besides, the non-capped method is not suitable for I/O-

intensive applications that may share the same CPU and I/O

resources. Thus, the percentage of shared I/O of this method

is less.

In comparison, our method first calculates accurate CPU and

I/O request arrival rates before actually changing the current

resources allocations for CPU and I/O intensive applications.

By doing this, we are able to improve the total utilization

of a VCDC and reduce the usage CPU and I/O resources.

The total utilization is an important factor in saving energy

cost. Reducing the frequency of resource reallocations is

also important for stability of a VCDC. To avoid incidental

instability of performance when VCDC resources are occupied

almost completely, we both set the upper limits of CPU and

I/O utilizations of each PM in SC to 90%. If the whole VCDC

is overloaded, our method rejects some service requests to

maximize the profit. We set control interval length in SC to

h=5 and each control interval to h·T=150 seconds. To reduce

the frequency of resource reallocations, the control constraints

remain unchanged in the control interval.
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Fig. 3. Accumulated profit.

Our proposed hybrid meta-heuristic algorithm is able to

maximize the revenue and minimize the energy cost, while

meeting all the relevant control constraints. The result il-

lustrated in Fig. 3 shows the accumulated total profit in a

VCDC. It can be clearly shown that our method can always

perform better than the non-capped and static methods. The

non-capped method gives an ideal value for maximizing

revenue. Since each resource request is always satisfied, the

maximum revenue is achieved. We can obtain that although

the revenue achieved by the non-capped method is about

12.4% higher than that achieved by our proposed method, its

energy cost is about 65% higher than that of our proposed
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one. The reasons for the high energy cost of the non-capped
method include: First, reallocating CPU and I/O resources are

expensive, especially when it is done in each sampling period

of parameter adaptation. Second, the non-capped method

ignores service classes and request execution time. Hence,

high service class request with long execution time can occupy

more resources for processing. Compared with non-capped
and static methods, the number of occupied resources in our

model is less. Hence, our proposed method causes much less

energy cost in the control interval.

Above experiments show that we can evaluate the accuracy

of our resource models in comparison to the non-capped
method and static baseline method. Therefore, our method can

realize lower energy cost and achieve higher application profit

for various application services in a VCDC.

VII. CONCLUSIONS AND FUTURE WORKS

This paper presents a novel analytical model to calculate

profit in a virtualized cloud data center (VCDC). It considers

several factors including the practical service-level agree-

ments that currently exist between cloud providers and their

customers, the amount of finished requests, the amount of

rejected requests, and th electricity price. We first accurately

compute request arrival rates based on the external and internal

workloads for VCDC, and establish an analytic probabilistic

system model to deal with non-equilibrium states in VCDC

for the first time. Then, we propose a novel smart controller

that can realize dynamic fine-grained resource provisioning

and sharing for multiple intensive applications with different

service classes. We show that the formulated optimization

problem is a mixed integer non-linear programming. Then,

it is solved by the proposed hybrid meta-heuristic algorithm

based on particle swarm optimization and simulated annealing.

Finally, simulation results based on various realistic workload

traces demonstrate the accuracy of the proposed model and

effectiveness of the proposed profit maximization method.

In future research, we would like to investigate how the cur-

rent approach can be generalized to support different intensive

application services deployed in geographically distributed

cloud data centers.
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