
IEEE TRANSACTIONS ON NETWORK AND SERVICE MANAGEMENT, VOL. 21, NO. 2, APRIL 2024 1503

Dynamic Relation Graph Learning for Time-Aware
Service Recommendation

Chunyu Wei , Yushun Fan , Jia Zhang , Senior Member, IEEE, Zhixuan Jia , and Ruyu Yan

Abstract—Driven by Service-Oriented Computing, time-aware
service recommendation aims to support personalized mashup
development, adapting to the rapid shifts of users’ dynamic pref-
erences. Recently, users’ social connections have shown significant
benefits to time-aware service recommendation, and graph neural
networks have demonstrated great success in learning the pattern
of information flow among users. However, the current paradigm
always presumes a given social network, which is not necessarily
consistent with the similarities of service preferences among
users and is expensive to collect for most service platforms. We
propose a novel idea to learn the graph structure among historical
mashups and make time-aware service recommendation for
dynamic mashup creation collectively in a coupled framework.
This idea raises two challenges, i.e., scalability and accuracy. To
solve both challenges simultaneously, we introduce the Dynamic
Relation Graph Learning (DRGL) framework for time-aware
service recommendation. For scalability, our framework has a
coarse-to-fine recalling strategy to learn the graph structure
among the mashups, which enables the exploration of poten-
tial links among all historical mashups while maintaining a
tractable amount of computation. For accuracy, we leverage
recent advances in self-attention mechanisms to the mashup
modeling and propose a transformer-based mashup encoder,
which considers long-range dependencies in dense mashups for
more accurate mashup representations. Extensive experiments
show that the DRGL model consistently outperforms the state-
of-the-art methods in terms of prediction accuracy for mashup
creation.

Index Terms—Service recommendation, graph neural
networks, social network, time-aware, mashup creation.

I. INTRODUCTION

OVER the past decade, the widespread use of Service-
Oriented Architecture (SOA) has led to a rapid growth in

the number of Web services available on the Internet [1]. These
services can be combined as reusable components to create
value-added mashups, i.e., a sequence of services working in
proper order in a certain period. Mashup is a new technique
of application development, which allows users to integrate

Manuscript received 27 February 2023; revised 30 June 2023 and 6 October
2023; accepted 17 October 2023. Date of publication 19 October 2023; date
of current version 15 April 2024. This research has been supported by the
National Natural Science Foundation of China (No.62173199). The associate
editor coordinating the review of this article and approving it for publication
was D. Huang. (Corresponding author: Yushun Fan.)

Chunyu Wei, Yushun Fan, Zhixuan Jia, and Ruyu Yan are with
the Beijing National Research Center for Information Science and
Technology, Department of Automation, Tsinghua University, Beijing 100084,
China (e-mail: cy-wei19@mails.tsinghua.edu.cn; fanyus@tsinghua.edu.cn;
jzx21@tsinghua.edu.cn; yanry18@tsinghua.edu.cn).

Jia Zhang is with the Department of Computer Science, Southern Methodist
University, Dallas, TX 75205 USA (e-mail: jiazhang@smu.edu).

Digital Object Identifier 10.1109/TNSM.2023.3325977

existing Web services to create composite Web applications
and react to complex business needs. Compared with the need
to build everything from scratch, developers do not have to
reinvent the wheel for each new application. Instead, they
can focus on achieving the unique needs of the application,
which greatly releases the developer’s creativity. For example,
Vizlingo, a widely-used mobile app, brings text messages and
social media posts to life by animating each word with a
video clip created by the user. To offer a complete social
experience, it incorporates several APIs such as YouTube,
Facebook, and Twitter. These APIs work together in a specific
order to achieve the functionality of Vizlingo, better meeting
the needs of users.

Typically, developers can search for and assess potentially
valuable services in repositories and then use mashup tools to
centrally incorporate the chosen services into their applications
swiftly. However, the number of available Web APIs has
grown rapidly in recent years. To help users select the
optimal services from the vast array of candidates, service
recommendation has emerged as a crucial instrument, using
various filtering techniques, such as collaborative [2], content-
based [3], or hybrid [4] filtering. However, these methods only
consider users’ inherent interests and service characteristics,
without taking into account the time-dependent cooperation
relationships between services within a mashup. Furthermore,
users’ preferences can change over time [5]. To address these
limitations, time-aware service recommendation [1], [6], [7]
focuses on a user’s service invocation behaviors within a
period of time and predicts the next service needed by the user
to create a dynamic, personalized mashup.

To improve service recommendation with more useful
information, researchers have proposed social-aware ser-
vice recommendation [8], [9], which incorporates friends’
service invocation behaviors to generate interest-adaptive
services for target users. More recently, social information
has also been integrated into time-aware service recommen-
dation [10], [11], [12]. These methods typically utilize users’
social relationships to construct a relation graph, allowing
the propagation of users’ dynamic preferences in social
networks to be accurately modeled using advanced Graph
Neural Networks (GNNs) [10], [11]. This enables the timely
recommendation of the latest popular services to target users.

Existing graph-based methods for social-aware service rec-
ommendation often predefine a social network and utilize a
static graph as input for their models [10]. However, these
approaches have two limitations. First, it can be difficult for
real-world service platforms to obtain users’ social relations

1932-4537 c© 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: SOUTHERN METHODIST UNIV. Downloaded on October 18,2024 at 14:29:16 UTC from IEEE Xplore. Restrictions apply.

https://orcid.org/0000-0002-5802-5759
https://orcid.org/0000-0002-0071-4893
https://orcid.org/0000-0003-2148-0923
https://orcid.org/0000-0002-6221-4835
https://orcid.org/0000-0003-4037-8342

1504 IEEE TRANSACTIONS ON NETWORK AND SERVICE MANAGEMENT, VOL. 21, NO. 2, APRIL 2024

Fig. 1. The misalignment of social relations and service preference
similarities. We propose to learn relations between the target mashup and the
historical mashups to improve the time-aware service recommendation.

due to privacy restrictions, rendering the above graph-based
methods unusable without a given graph. Second, the social
relations among users may not align with similarities in service
preferences. Figure 1 provides an example where the target
user does not share similar service preferences with users
in his social network. In such cases, the introduction of a
social network may not only fail to help time-aware service
recommendation, but also introduce noise to the learning
process. Recent studies [13], [14] propose to learn the dynamic
relationships among users using hand-crafted rules or para-
metric weights in the network. However, each user is involved
with a large number of mashups over a long period of time,
and existing approaches often compromise by characterizing a
user’s service preferences based on recently invoked mashups,
potentially losing valuable information about past mashups.

We propose to collectively make time-aware service rec-
ommendations for dynamic mashup creation by learning the
graph structure, i.e., the relations among mashups, as illus-
trated in Figure 1. However, this approach faces two notable
challenges:

• Scalability. The number of historical mashups is much
larger in magnitude compared to the number of users in
the service ecosystem. Moreover, mining potential rela-
tions between two arbitrary mashups requires n2-order
calculation, where n is the overall number of mashups.
This can easily reach tens of thousands, especially with
an increase in the number of users and usage time. Hence,
it is crucial to solve the scalability issue to mine potential
relations among possible mashups.

• Accuracy. Current studies [10], [15] for time-aware ser-
vice recommendation use sequential neural networks,
such as Recurrent Neural Networks (RNNs), to learn
the temporal dependencies among services in a mashup.
However, RNN-based approaches are unsuitable for
large-scale parallel mashup computations on graphs,

as they suffer from time-consuming iterative propaga-
tion. Additionally, they often assume a rigidly ordered
sequence over mashups, which is not always true for user
behaviors in real-world applications. Moreover, gradient
explosion/vanishing can occur when capturing the long-
range dependency in the mashup.

To address these challenges synergistically, we propose a
novel framework called Dynamic Relation Graph Learning
(DRGL). DRGL is designed to make time-aware service
recommendations for dynamic mashup creation.

To address the scalability issue, we propose a coarse-to-fine
recalling strategy to learn the graph structure among mashups.
The coarse recalling process utilizes a non-parametric memory
bank to store the massive historical mashups as 0-1 vectors,
where each feature (contained service) for each mashup is
stored discretely. We formulate the mashup coarse recall-
ing process as a metric learning problem, where distances
(i.e., similarity) between mashups are calculated by counting
the number of shared items (i.e., inner-products of two vec-
tors). For the target mashups, we recall k1 potential neighbors
from all the historical mashups, enabling exploration of possi-
ble relations from the whole graph while maintaining tractable
computation. The fine recalling process is the self-adaptive
graph structure learning, which adaptively selects a smaller
number of similar neighbors (i.e., k2) from the coarse neighbor
recalling results. This stage uses more information, including
the temporal dependency and potential purpose contained in
mashups, to calculate similarities among mashups through a
finer-designed parametric network. The coarse-to-fine recalling
strategy allows us to scale up and learn graph structures from
massive historical mashups (i.e., n mashups), with the setting
of k2 < k1 � n .

To address the accuracy issue, we propose a transformer-
based mashup encoder that leverages recent advances in
self-attention mechanisms for mashup modeling [16], [17].
The transformer-based mashup encoder adaptively assigns
weights to each service at each time step, enabling consid-
eration of long-range dependencies in dense mashups. With
the self-attention mechanism, this encoder is much faster than
RNN-based approaches, particularly in computing multiple
mashups on a graph for relation learning. Moreover, it draws
context from all services in the mashup, while extracting the
essential services that contribute to the real purpose of the
dynamic mashup.

This paper presents the following main contributions:
• We propose DRGL, a framework that learns the graph

structure of historical mashups for time-aware service
recommendation, providing scalability and controllable
computation costs. This study is the first to learn the
graph structure of historical mashups directly for time-
aware service recommendation.

• We propose a transformer-based mashup encoder that
accurately extracts the purpose of a mashup and accel-
erates parallel computation of multiple mashups when
learning the graph structure.

• Our experiments on a real-life local service dataset show
that DRGL outperforms state-of-the-art methods and
proves the effectiveness of the learned graph structures.

Authorized licensed use limited to: SOUTHERN METHODIST UNIV. Downloaded on October 18,2024 at 14:29:16 UTC from IEEE Xplore. Restrictions apply.

WEI et al.: DRGL FOR TIME-AWARE SERVICE RECOMMENDATION 1505

The remainder of this article is organized as follows.
Section II formally defines the problem. Section III introduces
our DRGL model framework in detail. Section IV presents
conducted experiments with analyses. Section V discusses
related work. Finally, Section VI draws conclusions.

II. PROBLEM DEFINITION

In this section, we formally define the problem of time-
aware service recommendation for dynamic mashup creation,
and introduce some essential notations [10].

Definition 1 (Service Ecosystem): In a service ecosystem,
U = {u1, u2, . . . , uM } and S = {s1, s2, . . . , sN } denote the
sets of users and services, respectively.

Traditional service recommender systems suggest relevant
services to users based on their historical behaviors, without
considering the temporal order of their invoked services.
However, users’ service preferences change rapidly in most
service ecosystems, and thus the users’ recently involved
services are crucial for modeling their real purpose. In practice,
users tend to consume several services in a given time window
for a specific purpose, and these consumer-centric services can
be composed as a Mashup, which we define as follows:

Definition 2 (Mashup): A mashup mt represents a sequence
of services s1t , s

2
t , . . . , s

n
t invoked by a user sequentially

within a specific time period t, where snt represents the n-th
service invoked in the t-th mashup. The set of all mashups,
containing mashups invoked in different periods, is denoted as
M = m1,m2, . . . ,mt .

The importance of modeling the temporal order of services
in mashups motivates us to investigate time-aware service
recommendation for dynamic mashup creation. We formally
define the Time-aware Service Recommendation problem as
follows:

Definition 3 (Time-Aware Service Recommendation): Given
an ongoing mashup mt+1 = {s1t+1, s

2
t+1, . . . , s

n
t+1}, the goal

of time-aware service recommendation is to recommend a set
of services from S that the target user is likely to be interested
in during the next time step n + 1, i.e., sn+1

t+1 , which can work
in conjunction with the former services as a mashup.

Recent research has brought the graph structure into time-
aware service recommendation to model relevant interests
and mutual influence among mashups as in our previous
works [10], [14]. We formalize the mashup relation graph as
follows:

Definition 4 (Mashup Relation Graph): Let G = (M,E)
represent a mashup relation graph, where E ⊆ (M,M) is
the edge set in the graph denoting the relationships among the
comprising mashups. We do not differentiate between directed
and undirected graphs in this work.

Previous works have constructed mashup relation graphs
by leveraging existing social networks [10], [11], where the
relationships among users are treated as links between their
invoked mashups. However, there is a domain gap between
social relationships and mashup similarities, making them
misaligned in most cases. Additionally, social relationships are
expensive to collect and may become a limitation of graph
neural networks as they are static and fixed. Therefore, in

TABLE I
NOTATIONS AND EXPLANATIONS

this paper, we propose to learn the graph structures among
mashups and make time-aware service recommendations for
mashup creation in a synergistic way. We formally define this
problem as follows:

Problem Formulation: Given the existing mashup set M and
an ongoing mashup mt+1, our task is to first learn the relations
E
t+1 among M∪mt+1, which form a mashup relation graph

G
t+1 = (M ∪mt+1,E

t+1) as defined in Definition 4. Then,
we recommend suitable services to mt+1 based on G

t+1 for
dynamic mashup creation, as defined in Definition 3.

The notations used throughout the article are summarized
in Table I.

III. DRGL MODEL FRAMEWORK

In this section, we first outline the overall architecture of
our DRGL framework and give detailed descriptions of its
main components, then analyze its learning process including
the design of the loss function, followed by discussing the
computation complexity of DRGL.

A. Model Architecture

Figure 2 shows the architecture of DRGL, which consists
of five core modules. The framework is introduced from left
to right.

(1) The Coarse Mashup Recalling Layer computes a graph
adjacency matrix from the memory banks to discover hidden
associations among massive mashups.

(2) The Self-Attentive Mashup Encoder models the real
purpose of the dynamic mashup with a self-attention mecha-
nism, following the recent advance in Transformer.

(3) The Self-adaptive Graph Learning utilizes mashups’
dynamic purpose to adaptively discover a group of more
influential neighbors in the coarse recalling results and omit
those lower-impact edges in the graph.

(4) The Purpose Propagation Module leverages a graph-
convolution network to re-scale weights of the mashup’s
neighbors and propagate their real purpose to the target
mashup by a well-designed combination mechanism.

(5) The Service Recommendation Module obtains matching
scores by modeling the similarity between each candidate
service and the current target mashup.

Modules (1) and (3) implement a coarse-to-fine recalling
strategy for graph structure learning among massive mashups.
Modules (2) and (4) handle the mashup purpose modeling
and propagation process. These two processes are performed

Authorized licensed use limited to: SOUTHERN METHODIST UNIV. Downloaded on October 18,2024 at 14:29:16 UTC from IEEE Xplore. Restrictions apply.

1506 IEEE TRANSACTIONS ON NETWORK AND SERVICE MANAGEMENT, VOL. 21, NO. 2, APRIL 2024

Fig. 2. Model Framework. The overview of the model structure of DRGL. It consists of five parts: a coarse mashup recalling layer, a mashup modeling
module, a self-adaptive graph learning module, a purpose propagation module, and the final service recommendation module.

alternately and support each other to improve the time-aware
service recommendation for dynamic mashup creation.

B. Coarse Mashup Recalling

The service platform contains a vast number of historical
mashups, making it challenging to discover potential relation-
ships among them in a learnable way [14] while optimizing
model parameters efficiently. To overcome this problem, our
DRGL framework employs a non-parametric coarse mashup
recalling layer, which uses limited computing resources to
identify potential relations between the target mashup and
historical mashups.

For each mashup mt , we represent its components using
a service-level binary vector vt ∈ {0, 1}N , where N is the
total number of services in the platform. The i-th entry v it =
1 indicates that service si is included in mashup mt , while
v it = 0 means that it is absent. We can compute the similarity
between two mashups by taking the inner product of their
corresponding feature vectors Sij = viv

T
j , which represents

the number of common services between mashups mi and mj .
To recall potential neighbors from the historical mashups,

we maintain a feature memory bank V ∈ {0, 1}t×N to store
all t mashups as recalling candidates. For a batch of target
mashups, we concatenate their feature vectors into a query
matrix Vq = [v1, v2, . . .] and compute similarities between
the targets and all candidates as follows:

S = VqV
T . (1)

In practice, since only a small portion of the total N services
are included in each mashup, the service-level binary vector vt
is extremely sparse. Therefore, when computing the similarity
Sij = viv

T
j , we can only focus on the services contained in

the target mashup mi , i.e., we only need to consider the non-
zero entries in vi and the values of corresponding positions

in vj . For example, suppose mashup mi includes five services
[s1, s20, s500, s20000, s20005], when calculating Sij , we only
need to count the number of ones in the positions [1, 20, 500,
20000, 20005] of vj . This approach reduces the computation
complexity from O(N) to O(n), where n represents the average
number of services included in each mashup and n � N .
Moreover, with our binary 0-1 setting, we can model the inner
product of real-valued multiplication as the “and” operation in
the corresponding positions that computers are good at, which
further improves computational efficiency.

For each target mashup mi , we select the top k1 candidates
with the highest scores in Si · as its coarse recalling neighbors,
which can be denoted as: Ni = argtopk1(Si ·).

C. Self-Attentive Mashup Encoder

Once we have the coarse-recalled neighbors, we use a
self-attentive mashup encoder to capture the mashup’s fast-
changing purpose and comprehensive preference. Figure 3
illustrates how the mashup encoder is built using L stacked
Transformer layers. At each Transformer layer, the service
representation at each position is updated iteratively by
aggregating information from all positions at the previous
layer. Unlike conventional RNN-based methods, self-attention
creates a global receptive field that captures temporal depen-
dencies among services over long distances. In addition,
abandoning the recurrent structure enables parallel computing,
which enhances efficiency, especially when encoding numer-
ous mashup vertices simultaneously. Next, we will discuss the
mashup encoder’s components in more detail.

1) Embedding Layer: Distributed representation tech-
niques [18] have exhibited great potential in many fields. We
encode a service s into a low-dimension latent space with
an embedding vector es ∈ R

d , where d is the embedding
size. As mentioned above, the Transformer layer does not

Authorized licensed use limited to: SOUTHERN METHODIST UNIV. Downloaded on October 18,2024 at 14:29:16 UTC from IEEE Xplore. Restrictions apply.

WEI et al.: DRGL FOR TIME-AWARE SERVICE RECOMMENDATION 1507

Fig. 3. A schematic view of the self-attentive mashup encoder.

distinguish the order of the services in the input mashup. In
order to reflect the sequential feature of the mashup, we inject
positional embeddings [16] into the input service embedding
at the bottoms of the Transformer as shown in Figure 3, which
can be formalized as follows:

h0n = esn + pn , (2)

where pn ∈ R
d is the d-dimensional position embedding for

position index n.
2) Transformer layer: As illustrated in Figure 3, the

Transformer layer T contains two parts, namely Multi-Head
Attention and Position-aware Feed-Forward Network.

Multi-Head Attention: The multi-head attention first linearly
projects the service representation Hl = [hl1, h

l
2, . . . ,h

l
n] into

h subspaces with h groups of learnable parameters, followed
with an attention function to produce the head representation,
which is:

headi = Attention
(
HlWi ,l

Q ,HlWi ,l
K ,HlWi ,l

V

)
, (3)

where Wi ,l
Q ,Wi ,l

K ,Wi ,l
V ∈ R

d×d/h are learnable parameters
for headi at l-th Transformer layer. Specifically, the Attention
function is implemented as the scaled dot-product attention
following [16]:

Attention(Q,K,V) = softmax

(
QKT

√
d/h

)
V, (4)

where Q, K, and V are the projected result from the same Hl .
The term

√
d/h is known as the temperature for softmax to

avoid extremely small gradients. Afterward, we concatenate

all these heads followed by a linear projection to obtain the
self-attention output:

Hl
hidden = [head1; head2; . . . ; headh]W

l
O . (5)

Position-wise Feed-Forward Network: To depict the non-
linear and cross-dimension interaction of each service
representation, we also introduce the position-wise feed-
forward network to the output Hl

hidden of the self-attention. It
contains two fully connected layers and a GELU activation:

hl+1 = GELU
(
hlhiddenW

l
1 + bl1

)
Wl

2 + bl2, (6)

where GELU (x) = xΦ(x) is a derived ReLU activation from
Bert [17]. Φ(x) is the cumulative distribution function of the
standard Gaussian distribution.

To capture more complex interaction among services in a
mashup hierarchically, we stack multiple Transformer layers
to obtain a deep mashup encoder. Following [16], we adopt
the residual connection [19], layer normalization [20], and
dropout [21] to enable a deep architecture. Formally, we use
the output of the latest service from the last Transformer layer
hl+1
n as the mashup representation: hmt .

D. Self-Adaptive Graph Learning

In Section III-C, we obtained mashup representations that
capture the fast-changing purpose more accurately. We then
use self-adaptive graph learning to select related neighbors in a
finer way based on these representations. Existing methods for
graph structure learning typically construct a graph between a
user and their potential neighbors by multiplying two matrices
to measure node similarity [22], [23], [24]. However, these
approaches may limit the model’s ability to extract nonlinear
patterns among nodes. Thanks to the well-designed coarse
neighbor recalling process, we only need to calculate pairwise
similarities among a subset of mashups, allowing us to design
a more elaborate algorithm with controllable computation and
memory. To extract complex relationships between mashups,
we apply a two-layer neural network, which is illustrated by
the following equation:

S̃[t , k] = ReLU
(
lTReLU(Wconcat([hmt , hmk]) + b)

))
, (7)

Here, S̃[t , k] ∈ R refers to the inferred similarity from
mashup mt to its neighbor mk , and S̃ ∈ R

N×N denotes
the finer similarity matrix. Note that the entry S̃[t , k] is
only calculated when mk is in mashup mt ’s coarse-recalling
neighbors; otherwise, it is set to zero. Since we already make
the similarity matrix sparse through coarse neighbor recalling
in Section III-B, the computation cost can be greatly reduced
to learn the finer similarity matrix. W ∈ R

d×2d , b ∈ R
d

and l ∈ R
d are model parameters. We then select the top-k2

neighbors with the highest relevance for the target mashup mt

as the finer selection and set the other neighbors’ weights as
zeros to form the adjacency matrix Ã, which is formulated
as follows:

Ñt = argtopk2

(
S̃[t , :]

)
, (8)

Authorized licensed use limited to: SOUTHERN METHODIST UNIV. Downloaded on October 18,2024 at 14:29:16 UTC from IEEE Xplore. Restrictions apply.

1508 IEEE TRANSACTIONS ON NETWORK AND SERVICE MANAGEMENT, VOL. 21, NO. 2, APRIL 2024

Ã
[
t , k ′

]
=

{
Softmax

(
S̃
[
t , k ′

])
, k ′ ∈ Ñt

0, Otherwise
, (9)

where argtopk2 returns the index of the top-k2 most relevant
neighbors of the mashup and Ñu denotes the neighbors
selected from Nu after the similarity learning in Equation (7).
The neighbor-wise Softmax is applied to normalize the self-
adaptive adjacency matrix Ã.

E. Purpose Propagation Module

After obtaining the inferred fine-grained neighbors and their
influence weight from the graph structure learning process,
we use a GCN-based model to obtain the neighbor context
information of the target mashup by integrating its related
neighbor mashup. In this section, we first introduce how we
construct a purpose propagation graph, and then describe how
we use a graph convolutional network (GCN)-based model to
fuse related neighbors’ purpose representations to update the
target mashup’s purpose representation.

According to Section III-D, we build a weighted graph
with the nodes corresponding to target mt and its selected
neighbors in Ñt . We set the weight of each connected edge as
the entry value Ã[t , k ′] in the self-adaptive adjacency matrix
Ã. Based on Section III-C, we use the purpose representa-
tion [hm1 , hm2 , . . . ,hmt] as the node’s initial representation

[p
(0)
m1 , p

(0)
m2 , . . . ,p

(0)
mt]. We use P(0) to denote the original repre-

sentation matrices, where each of their rows P(0)[j , :] = p
(0)
mj .

To simulate purpose propagation between pairs of users, we
utilize a GCN-based module in DRGL. GCN is capable of
updating a node’s signal by aggregating and transforming its
neighborhood information through different graph convolution
operators, e.g., Chebyshev convolution and diffusion convolu-
tion [25]. By stacking multiple propagation layers, the mashup
vertex incrementally gains more and more information from
further reaches of the high-order neighbors. In this paper, we
define our GCN-based purpose propagation as follows:

P(l) = ReLU
((

ÃP(l−1) + P(l−1)
)
W(l)

)
, (10)

where W(l) is the shared and learnable weight matrix at layer
l and P(l) is the updated mashup representation matrix at layer
l. Note that we keep target mashups’ origin information by
adding the term P(l−1). We obtain the target mashup’s final
representation by stacking the purpose propagation layer L
times.

F. Service Recommendation

To avoid the issue of gradient vanishing, we embrace a skip
connection to add the mashup’s original purpose representation
p
(0)
mt+1 and the propagation output p(L)mt+1 :

pmt+1 = p
(0)
mt+1 + p

(L)
mt+1 , (11)

where pmt+1 is the final representation of the target mashup
mt+1’s purpose on the next service. We obtain the prob-
ability of service s becoming the next potential service in

the target mashup mt+1 on the whole service set S with a
softmax function:

prob
(
s |s1t+1, s

2
t+1, . . . , s

n
t+1;

{
mk , k ∈ Ñt+1

})

=
exp

(
eTs pmt+1

)
∑

i∈S exp
(
eTi pmt+1

) , (12)

where es is the embedding of the candidate service s. The
embedding of a service can be calculated from its inherent
features, such as the methods leveraging its functionality [26],
non-functional features (i.e., QoS) [2], and service descrip-
tions [27] etc.

G. Parameter Learning

In this section, we discuss parameter optimization and the
training efficiency of our DRGL framework.

1) Optimization: Our optimization process tries to
maximize the likelihood of positive services in the target
mashup. To this end, we choose the negative log-likelihood
as a loss function to supervise the training process, which is
formulated as follows:

L = −
T∑
t=1

log prob
(
snt+1|s1t+1, s

2
t+1, . . . ,

sn−1
t+1 ;

{
mk , k ∈ Ñt+1

})
, (13)

where n represents the number of services in the mashup.
2) Time Complexity Analysis: The computation in our

DRGL consists of four parts.
(1) In the coarse recalling layer, we match binary vectors in

the memory bank to recall mashups sharing the same services
as the target mashup. Let n be the average service number in a
mashup, then the time complexity of coarse screening is O(nt),
where t is the number of total mashups in the memory bank
V. The time complexity of argtopk1(·) operator for t mashups
is less than O(t), which is omitted.

(2) When inferring the comprehensive purpose of a target
mashup and its k1 neighbors, we use a transformer-based
mashup encoder to learn the node’s representation. Thus for a
target mashup and its k1 neighbors, the time complexity would
be O(k1(n

2d + nd2)), where d denotes the embedding size.
The term n2d comes from the self-attention, while nd2 comes
from the position-wise feed-forward network.

(3) The self-adaptive graph learning computes the scores of
the edges between the target mashup and each of its neighbors
based on a shallow network. The complexity for this part
is O(k1d). The time complexity of argtopk2(·) operator for
all k1 mashups is O(k1logk2), which can be omitted due to
k2 < d .

(4) According to the relevant scores from the (3), k2
neighbors’ purpose representation will be aggregated to update
the target mashup. The time will be O(k2dL), where L
denotes the number of propagation layers. Hence, the overall
theoretical time complexity for a target mashup in one full step
of model training is O(nt + k1n

2d + k1nd
2 + k1d + k2dL).

In practice, we set k2 < k1 � t and usually L ≤ 3.
From the analyses above, we can find that the heav-

iest computation, in theory, is from the coarse recalling

Authorized licensed use limited to: SOUTHERN METHODIST UNIV. Downloaded on October 18,2024 at 14:29:16 UTC from IEEE Xplore. Restrictions apply.

WEI et al.: DRGL FOR TIME-AWARE SERVICE RECOMMENDATION 1509

layer, nt. However, existing graph structure learning meth-
ods [14], [22], [23] require to build a t × t similarity matrix by
multiplying two embedding matrices for the global candidates
recalling process, which has a time complexity of O(td) for
each. In most cases, n < d and our non-parametric formula-
tion eliminate the need for computing and storing the gradients
for the embedding matrices, making it more scalable for big
data applications. What’s more, the self-attentive layer in the
mashup encoder is fully parallelizable, which is amenable to
GPU acceleration. In contrast, RNN-based methods [14] have
a dependency on time steps (i.e., computation on time step
n must wait for results from time step n − 1), which leads
to an O(n) time on sequential operations. In conclusion, our
algorithm is computationally feasible in practice, and thus will
support real-time queries in real-world service recommenda-
tion systems.

IV. EXPERIMENTS

In this section, we present our extensive experiments with
analysis.

A. Dataset Description

Because there lacks a large Web service repository con-
taining sufficient time-aware mashup invocation and social
connections for graph structure learning, We chose to use an
offline service repository to construct our testbed. According
to [10], offline services and Web services share three common
features:

• Both offline services and Web services are massive and
heterogeneous [3].

• Temporal dependencies exist in both fields. More specif-
ically, a series of services consumed in a time window
usually aim for some major purpose and are performed
in a relatively fixed order, which can be composed as a
“mashup” [1].

• Due to the inherent dependencies among services, there
exist massive mashups sharing similar purpose in the
historical database, and connections can be established
among them [14].

Gowalla is a known website where users can record and share
offline services they consume by checking-in, e.g., a meal in
a restaurant or a show in a theater. We adopted the Gowalla
platform to test and evaluate our DRGL on time-aware service
recommendation for mashup creation. Cho et al. [28] randomly
collected a total of 6,442,890 service records of 196,591
users over the time period of February 2009 - October 2010.
We constructed the associated social network of these users
using Gowalla’s public API. Note that we also include the
available social links to evaluate some social-based methods,
and the effectiveness of our learned structures compared with
the predefined social networks, even though DRGL does not
rely on these social features. To further verify the effectiveness
of our DRGL on datasets of different scales, we also introduce
another book service dataset, LibraryThing. LibraryThing is a
popular book-reviewing website that allows users to create an
online catalog of books they have read or want to read. We
treat each review as an observation of service invocation and

TABLE II
STATISTICS OF THE DATASETS

segment users’ behaviors into week-long mashups for their
high activeness. Similar to Gowalla, we also collect explicit
social network information on LibraryThing.

Table II summarizes the numerical properties of the
Gowalla and LibraryThing dataset.

In line with the approach taken by [10], our goal in the
task of time-aware service recommendation is to recommend
a service that is suitable for a target mashup, based on its con-
taining services, in order to enable cooperative functionality.
We treated each check-in in the dataset as a service consump-
tion and segmented the data into day-long sessions, where
each session can be seen as a mashup. Using the empirical
frequency of offline consumption, we chronologically reserved
the last six months for testing and filtered out services that did
not appear in the training set. We then randomly and equally
split these reserved mashups into a validation set and a test set.

B. Experimental Settings

1) Baselines: We compared our DRGL with four classes
of baseline methods to evaluate the performance of time-
aware service recommendation: (1) classical methods utilizing
only users’ implicit feedback; (2) social-aware methods that
incorporate social influence; (3) time-aware methods that
consider a user’s actions in his current mashup; (4) graph-
based time-aware models that consider both social relations
and temporal information of users. We used seven baseline
models in our experiments, and the class index of each model
is indicated beside its name. The baseline models are as
follows:

• BPR-MF [29] (1): A highly competitive method for
implicit feedback-based recommendation that improves
matrix factorization (MF) with the BPR objective
function.

• SBPR [30] (2): A ranking model that considers social
relationships in the learning process, assuming that users
tend to assign higher ranks to items that their friends
prefer.

• SoReg [31] (2): A method that utilizes the social network
to regularize the latent user factors of matrix factorization.

• GRU4Rec [32] (3): A state-of-the-art approach that
uses recurrent neural networks for session-based
recommendations.

• NARM [33] (3): A method that employs RNNs with an
attention mechanism to capture a user’s main purpose and
sequential behavior.

Authorized licensed use limited to: SOUTHERN METHODIST UNIV. Downloaded on October 18,2024 at 14:29:16 UTC from IEEE Xplore. Restrictions apply.

1510 IEEE TRANSACTIONS ON NETWORK AND SERVICE MANAGEMENT, VOL. 21, NO. 2, APRIL 2024

• BERT4Rec [34] (3): A sequential recommendation model
that employs deep bidirectional self-attention to model
user behavior sequences.

• DGRec [11] (4): A method that models dynamic user
behaviors with an RNN and context-dependent social
influence with graph attention neural networks based on
the given social networks.

• SGHAN [10] (4): A method that models the service-
level and friend-level differences existing in the mashup
relation graph defined by the existing social networks.

2) Evaluation Metrics: To evaluate the performance of all
algorithms for time-aware service recommendation, we used
two widely-used metrics: Normalized Discounted Cumulative
Gain@K (NDCG@K) and Hit Ratio@K (HR@K). Both met-
rics are higher the better. NDCG@K measures the position
of the hits by assigning higher scores to hits at top ranks,
making it position-aware. On the other hand, HR@K evaluates
whether the test item is present on the recommendation list or
not. The metrics are defined as follows:

NDCG@K =
1

RN

N∑
i=1

2reli−1

log2(1 + i)
(14)

HR@K =

∑K
i=1 reli
|y testu | (15)

where K is the size of the recommendation list, reli = 0 or 1
indicates whether the service at rank i is in the test set, and
RN is the maximum possible cumulative component through
ideal ranking. Also, |y testu | is the number of services used by
user u in the test set.

3) Implementation Details: We conducted all experiments
on an Ubuntu server with the following specifications: [CPU:
Intel Xeon E5-2680 v4 * 2, GPU: NVIDIA RTX 3090 * 4,
RAM: 384GB]. To implement DRGL, we used Pytorch [35],
a widely used Python library for neural networks.

We initialized the latent vectors with small random values
for all the models, and for fair comparisons, we fixed the
dimensions of latent factors to 100. Additionally, we set the
number of hidden units of LSTMs or RNNs in all comparison
models as 100. To tune hyperparameters, we conducted a grid
search for the learning rate, which we varied amongst [0.005,
0.01, 0.02, 0.05]. We also applied a decay rate of 0.9 every
five epochs. We used the Adam optimizer with β1 = 0.9,
β2 = 0.999, and ε = 1e−8. To prevent overfitting, we added
L2 norm with a coefficient tuned from [0.001, 0.005, 0.01,
0.02, 0.1]. We set the batch size of all experiments as 200 and
selected the best models by early stopping when the HR@20
on the validation set did not increase for 3 consecutive epochs.

For DRGL, we set the recall number k1 of the coarse
recalling as 100 and set k2 to 20 based on the observation
in Figure 5. We attempt to recall more potential neighbors
but observed no significant improvement. In DRGL, we used
an embedding matrix to represent service features, which
projected a service s into a latent space with an embedding
vector es . Note that various embedding methods can be
utilized for service representation learning. For example, Lam
and Rossiter [27] analyze service descriptions (i.e., WSDL file)
to obtain service embeddings. What’s more, some methods

TABLE III
OVERALL PERFORMANCE COMPARISON ON GOWALLA

[34]

TABLE IV
OVERALL PERFORMANCE COMPARISON ON LIBRARYTHING

[34]

propose to learn service embeddings based on their function-
ality [26] or non-functional features (i.e., QoS) [2]. However,
to illustrate the effectiveness of our DRGL, we only used
the ID feature of services to obtain the initial embeddings in
our experiments since these methods are not the focus of our
article.

C. Performance Comparisons

Table III summarizes the performance of different
algorithms in terms of HR@K and NDCG@K with
recommendation size K = 10, 20 on the Gowalla dataset. Our
DRGL outperforms other methods in all evaluation metrics,
and one-sample t-tests show that the improvements of DRGL
over the strongest baseline are statistically significant (p-value
< 0.05). Besides, We have the following observations:

• BPR-MF presents very limited performance, since it only
considers the overall unordered interaction histories of a
user. SBPR and SoReg perform better than BPR-MF in
most cases, indicating that social relation information can
help improve recommendation accuracy.

• Methods incorporating the temporal information bear bet-
ter performances than those which do not. For example,
GRU4Rec and NARM significantly outperform BPR-MF
and obtain better performance than SBPR and SoReg. It
might be because the temporal dependency of services in
the mashups implicitly contains the purpose of the user,
which is of great help to recommend the next service for
the target mashup.

Authorized licensed use limited to: SOUTHERN METHODIST UNIV. Downloaded on October 18,2024 at 14:29:16 UTC from IEEE Xplore. Restrictions apply.

WEI et al.: DRGL FOR TIME-AWARE SERVICE RECOMMENDATION 1511

Fig. 4. Performance of variants of DRGL.

• The graph-based methods, including our DRGL, consis-
tently outperform the other methods. These results verify
that incorporating mashup relations is essential to enrich
mashup representations and help with time-aware service
recommendation.

• DRGL outperforms both DGRec and SGHAN by a large
margin. DGRec and SGHAN are performed directly on
the user’s existing social networks. However, there exist
gaps between the social relations and the similarities
of mashup purpose among users, which may hamper
the mashup representation learning. The results demon-
strate that a learned graph structure has more expressive
power to capture the dynamical dependencies among
mashups, which is a critical issue in time-aware service
recommendations.

D. Study of Coarse Mashup Recalling

The coarse mashup recalling process is one of the key
characteristics in our proposed DRGL, allowing us to scale up
to explore the possible relations among massive (over 600,000)
historical mashups while maintaining an amount of tractable
computation. We designed experiments to further explore the
impacts of the coarse mashup recalling in DRGL and analyze
the effectiveness of the adopted non-parametric memory bank
matching, by constructing the following variants of DRGL:

• DRGL-R: A variant model of DRGL, in which the coarse
neighbor screening process is replaced by randomly
recalling k1 mashup from the historical mashups.

• DRGL-E: A variant model of DRGL, in which the non-
parametric feature matching is replaced by the inner
product of the mashup embeddings. We obtain the
mashup embedding by the average pooling of embed-
dings of its contained service.

Since it’s infeasible to apply the DRGL-E on complete
mashup set with its huge computation and memory cost
for parametric computing, we create a 1/10 subset from the
original Gowalla dataset to carry out the above experiments.

Figure 4 shows the experimental results of DRGL and its
two variants. For the interest of space, here we only show the
results of the NDCG@10 and HR@10 on the Gowalla dataset.
From Figure 4, two observations can be made.

TABLE V
ABLATION STUDY COMPARING DRGL AND ITS VARIANTS

First, DRGL-R show the worst performance. This shows
that randomly selected candidates in massive historical
mashups may have nothing to do with the purpose of the
target mashup. What’s worse, the noise introduced by the
irrelevant candidates may hamper the representation learning
of our model. Thus, the coarse neighbor recalling is essential
for the downstream graph learning by providing potentially
relevant neighbors. Second, DRGL exhibits close performance
to DRGL-E and even slightly surpasses it. This shows that
our non-parametric feature matching method is not weaker
than the learnable similarity calculation method in accuracy,
especially in the large-scale recalling scenarios. Also, the
average pooling operation may be affected by a few extremely
deviating noisy services in the mashup, so that the mashup
representation we get does not really reflect the purpose of the
current mashup, thus failing to recalling the relevant mashup
candidates. We argue that our non-parametric feature matching
method based on the simple majority principle in the coarse
stage recalling is more robust to noise and more able to recall
relevant mashups.

E. Study of Self-Attentive Mashup Encoder

We conducted ablation studies to validate the effectiveness
of our proposed transformer-based mashup encoder in DRGL
and gain further insights into its self-attentive mechanism. We
simply replace the mashup encoder in DRGL and create the
following three variants:

• DRGL-last: considers only the last service embeddings
in the mashup as the purpose of the mashup.

• DRGL-average: averages the service embeddings in the
mashup and does not consider temporal dependency in a
mashup.

• DRGL-RNN: uses the vanilla RNN as the mashup encoder
to encode the series of service in the mashup.

Table V shows the performance of different variants. DRGL-
last and DRGL-average perform the worst. DRGL-last ignore
the previous service invocation and the last service has limited
information to fully summarize the comprehensive purpose
of the entire mashup. DRGL-average fails to consider the
temporal dependencies among services in a mashup, thus
may not precisely capture the mashup’s evolving purpose.
Compared to DRGL-RNN, the full DRGL performs better,
suggesting that self-attention mechanism is a more powerful
tool for the temporal mashup encoding. The reason behind
may be that the transformer-based mashup encoder enables a
global receptive field on the entire mashup, which can extract
the real purpose of the dynamic mashup in terms of just a
small number of services that really matter.

Authorized licensed use limited to: SOUTHERN METHODIST UNIV. Downloaded on October 18,2024 at 14:29:16 UTC from IEEE Xplore. Restrictions apply.

1512 IEEE TRANSACTIONS ON NETWORK AND SERVICE MANAGEMENT, VOL. 21, NO. 2, APRIL 2024

Fig. 5. Performance of DRGL under different selected neighbor numbers.

Fig. 6. Performance of DRGL under different convolution layer numbers.

F. Parameter Sensitive Studies

1) Effect of Neighbor Number k2: This section investigates
the influence of parameter k2 controlling the number of
selected neighbors on the fine-grained self-adaptive graph
learning process. We vary k2 from 10 to 50 while keeping
other parameters fixed and measure the NDCG@20 and
HR@20 results, as shown in Figure 5. We observe from
Figure 5 that, with the increase of k2, the performance is
boosted at first since a larger group of neighbors can bring
more useful information for the purpose propagation module.
However, the performance drops after k2 = 20 which might
because it nullifies the second-stage graph structure learning
and brings too much noise when introducing too many dupli-
cate mashups.

2) Effect of Convolution Layers: DRGL uses a multi-
layered convolutional approach to propagate information from
high-order neighbors to enhance mashup representation learn-
ing and service recommendation. We experiment with layer
numbers ranging from 1 to 5 to investigate the effect of
multiple convolution layers on DRGL. Figure 6 shows the
results. From Figure 6, we have the following two observa-
tions: First, our DRGL with more than one single convolution
layer have better performance, demonstrating the benefits of
information propagation from a mashup’s high-order neigh-
bors. Second, when further stacking more convolution layers
on top of the 3-th layer, both metrics start to decrease. This
is likely due to over-smoothing, where the target mashup
absorbs too much neighbor information and loses its own.
Additionally, a deeper architecture may introduce noise, and

TABLE VI
COMPUTATION COST ON DIFFERENT USER SCALE

distant neighbors have little marginal improvement to offset
this noise. This finding confirms that 3 convolution layers are
optimal for our scenario, which is consistent with the finding
in [10].

G. Computational Cost

In addition to our theoretical analysis in Section III-G2, we
conducted empirical tests on synthetic datasets with varying
numbers of users to compare the computation costs of DRGL
and its variants. We introduce two variations: (1) DRGL-CN,
which solely relys on the first-stage coarse mashup recalling
to select neighbors; and (2) DRGL-SL, which solely relies
on the second-stage self-adaptive graph learning to select
neighbors. To create datasets of different user scales, we
randomly sampled 10,000 users and their interaction history
from the Gowalla dataset and replicated them several times.
Table VI displays the training time with a GTX3090.

By observing Table IV, we can draw two conclusions.
The first conclusion is that, the computation time of DRGL
increases linearly with the increase in user scale, which
demonstrates the excellent scalability of our algorithm in
dealing with real-world mashup creation scenarios. The second
conclusion is that the main bottleneck of the algorithm lies in
the self-attentive mashup encoder. When we abandon coarse
neighbor recalling and rely solely on the complex self-attentive
mashup encoder for full-user calculation, the computational
time will increase by multiple folds. This also reflects the
importance of our coarse-to-fine recalling strategy in improv-
ing computational efficiency, and enhancing the scalability of
the algorithm.

V. RELATED WORK

In this section, we discuss related work from four aspects:
mashup creation, time-aware service recommendation, atten-
tion mechanisms, and graph neural networks.

A. Mashup Creation

Instead of recommending individual services separately
based on their semantics [36], [37] or Quality-of-Service
(QoS) [2], [3], [38], [39], [40], mashup creation methods
recommend a bundle of compatible services to satisfy the
functional requirements of the mashup as completely as
possible. Our method aligns with this approach.

One approach to mashup creation is to use service co-
occurrence information, as frequent service compositions
suggest that these services are likely to collaborate with
each other again in the future [41]. For example, SoCo [42]

Authorized licensed use limited to: SOUTHERN METHODIST UNIV. Downloaded on October 18,2024 at 14:29:16 UTC from IEEE Xplore. Restrictions apply.

WEI et al.: DRGL FOR TIME-AWARE SERVICE RECOMMENDATION 1513

proposed a mashup creation algorithm that utilizes frequent
pair mining techniques, while in [43], a mashup cre-
ation algorithm mines reusable mashup composition patterns
with pattern matching and retrieval to recommend services.
However, these methods do not consider the functional
requirements of a mashup, making it difficult to guaran-
tee recommendation precision. In recent years, researchers
have introduced information retrieval techniques to improve
mashup creation. For instance, Bianchini et al. [44] present
a proactive recommendation system that uses the seman-
tic descriptions of mashup components to suggest mashup
designs. Category-aware service clustering and distributed
recommending methods are proposed for automatic mashup
creation in [45], while Jain et al. [46] propose an approach
that recommends APIs to create a mashup given a free-
form text description by incorporating three heterogeneous but
complementary semantic factors. To capture the deep relation-
ships among services, [47], [48] combined a relational topic
model and factorization machines technique for better mashup
creation. Samanta and Liu [49] integrated the hierarchical
Dirichlet process and probabilistic matrix factorization to rank
Web services for mashup creation.

Deep Learning (DL) has gained attention in mashup creation
and recommendation research due to its potential. Researchers
have explored the use of DL in various ways, such as an
integrated content and network-based service clustering and
recommendation method proposed by Cao et al. [50]. Att-
LDA [51] uses an attention-based topic model to highlight
functional-oriented features in service descriptions for accurate
semantic learning, while Wu et al. [52] propose a neural
framework (MTFM) based on multi-model fusion and multi-
task learning for precise mashup creation. Gu et al. [41]
propose a compositional semantics-based service bundle rec-
ommendation model (CSBR) that addresses the semantic gap
between mashup and service descriptions.

While existing studies on mashup creation are inspiring,
they often neglect the explicit relationships among mashups,
which can be leveraged to enhance the mashup creation. For
instance, Li et al. [53] proposed measuring interest similarity
between friends in video service systems to improve friend
recommendation. Similarly, Zhang et al. [54] define a “social
plane” that relies on recommended measurements to enable
network performance expectation management. Lu et al. [55]
propose a service recommendation model based on data
compensation and dynamic user interest grouping in social
networks. More recently, Wei et al. [10] proposed using the
social network among users to depict the relations among their
consumed mashups. However, relying on fixed social networks
and heuristic rules may not always be optimal. To address
this issue, we propose the DRGL framework in the paper,
which jointly learns the graph structure and creates a dynamic
mashup in a coupled framework.

B. Time-Aware Service Recommendation

In recent years, there has been a growing interest
in modeling users’ dynamic interests that change over
time [56], [57], [58]. To make service recommendations

more personalized, the time dimension has been incor-
porated into the service filtering process, resulting in a
new class of context-aware recommendation known as
Time-aware Service Recommendation (TASR). Different
approaches have been proposed to tackle the TASR problem,
which can be categorized into three groups: conventional,
latent representation-based, and neural network (NN)-based
methods.

Conventional methods utilize standard data mining or
machine learning techniques, such as integrating time
information into similarity measurement and QoS prediction
for improved service recommendation [59], or using evolu-
tionary clustering algorithms to evolve similar user clusters
and accurately model user preferences over time [60]. Latent
representation-based methods, such as [61], make recommen-
dations by employing low-dimensional latent representations
for each interaction within sequences with shallow models.
NN-based approaches aim to capture users’ current interests
effectively, such as GRU4Rec [32], which applies gated
recurrent units (GRU) to model sequential behaviors and make
recommendations. Recently, several methods, such as SR-
GNN [62], NISER+ [63], and GCE-GNN [64], have utilized
graph neural networks (GNNs) to further analyze complex
item transitions. In these methods, sequential user behaviors
are modeled as graph-structured data.

Recently, graph neural networks (GNNs) have shown
great potential in modeling complex relationships embed-
ded in graph-structured data, such as user relationships.
DGRec [11] and SGHAN [10] have combined graph attention
networks (GATs) [65] with recurrent neural networks (RNNs)
to model dynamic interests and mutual influence of users in
social networks. However, we argue that fixed social networks
may be suboptimal in depicting the relations among mashups
and propose DRGL to jointly learn the graph structure among
mashups and make time-aware service recommendations in a
coupled framework.

C. Attention Mechanisms

Attention mechanisms have proven to be effective in a
variety of tasks, including machine translation [66]. The under-
lying idea is that sequential outputs, such as candidate services
for a mashup, depend on relevant parts of some input, which
the model should focus on successively. Recent studies have
incorporated attention mechanisms into service recommen-
dation [10], [67], [68]. However, these methods essentially
added attention as an extra component to the original model,
e.g., attention+RNNs in [10]. Transformer [16], which
mostly relies on self-attention modules, achieved state-of-
the-art accuracy on machine translation tasks, outperforming
RNN/CNN-based approaches. Motivated by the success of
Transformer, we propose a new mashup encoder for TASR
based on self-attention mechanisms. Our method enables
considering long-range dependencies on dense mashups and
accurately extracting the true purpose of dynamic mashups.

BERT4Rec [34] also employs the deep bidirectional self-
attention to better model user behavior sequences. Due to
the state-of-the-art performance of transformers in sequence

Authorized licensed use limited to: SOUTHERN METHODIST UNIV. Downloaded on October 18,2024 at 14:29:16 UTC from IEEE Xplore. Restrictions apply.

1514 IEEE TRANSACTIONS ON NETWORK AND SERVICE MANAGEMENT, VOL. 21, NO. 2, APRIL 2024

modeling tasks, our paper adopts a similar structure to
BERT4Rec for modeling user preferences reflected in our
mashup. However, the main contribution of our paper lies
in establishing relations between mashups through complex
user preferences, thus further improving the representation
learning of mashups for achieving effective time-aware ser-
vice recommendation. In other words, our entire framework
is model-agnostic and widely applicable to all sequence
modeling methods, such as RNNs and LSTMs. Zeng and
Paik [69] propose to using service embedding pretrained
by lightweight BERT model to effectively perform dynamic
service recommendations in edge computing. This paper only
uses the BERT framework to obtain the pre-trained service
embeddings, while our paper leverages the powerful modeling
capabilities of transformers for serialized data to capture the
fast-changing purpose and comprehensive preference of users
in mashups. Moreover, this paper overlooks the impact of
mashup relations on user preferences.

D. Graph Neural Networks

In recent years, graph neural networks (GNNs) have gained
significant attention as they provide an efficient way to
represent real-world data in the form of graphs, such as
social networks, citation networks, and road maps. However,
traditional operations designed for Euclidean data (e.g., con-
volutions) cannot be directly applied to graphs that have
a variable size of unordered nodes and different numbers
of neighbors [70]. Here we mainly review important graph
convolutional network (GCN) models. Kipf and Welling [71]
introduced GCNs for semi-supervised graph classification,
which propagate node information along edges in the spa-
tial domain. Meanwhile, spatial-based graph convolutional
networks [72], [73] directly propagate node information along
edges in the spatial domain. However, in these methods, the
weights of neighbors rely on predefined static functions when
updating the node representations. To overcome this limitation,
Graph attention networks (GATs) [65] learn to assign different
weights to the neighbors when updating the target nodes.

In service platforms, data can be naturally represented
as a graph, where various entities such as users, services,
and mashups can be modeled as nodes, and their direct
interactions can be modeled as edges on the graph. Therefore,
more and more recommender systems are gradually based on
graph neural networks to capture deep collaborative signals
on service platforms. For example, PinSage [74] is a popular
graph neural network (GNN) model for item recommendation
that is an extension of the well-known GraphSage [75]
model. GraphRec [76] utilizes a graph attention network to
encode user-item interactions and user-user social relations
for social recommendations. NGCF [77] incorporates high-
order connectivities through message-passing propagation to
encode collaborative signals explicitly for recommendations. A
simplified version of NGCF is introduced as LightGCN [78],
which removes feature transformation and nonlinear acti-
vation, resulting in state-of-the-art prediction performance
for recommendations. With the prevalence of heterogeneous
graphs in real-world scenarios, which often involve various

node types and relations among these nodes, there has
been a growing interest in studying the methods for het-
erogeneous graph learning. For example, Guan et al. [79]
present a novel heterogeneous graph learning-based out-fit
recommendation scheme containing four types of entities,
and devise a bi-directional graph convolution algorithm to
fulfill the efficient optimization, which works on sequentially
transferring knowledge via repeating upwards and downwards
optimization. Also, Guan et al. [80] define a heterogeneous
graph to creatively unify three types of entities and relations
in the Personalized Fashion Compatibility Modeling context,
and present a metapath-guided personalized compatibility
modeling scheme to perform the heterogeneous graph learning,
which adopts the pre-defined metapaths to explore the high-
order relations among various entities, and hence strengthen
the user and item embeddings.

However, existing GNN methods usually assume the graphs
are given and fixed, while in this paper, we explore how to
learn graph structures among mashups beyond social networks.

SRaSLR [81] propose the service social networks to
model the relations among services, which is combined
with the service descriptions for better service label rec-
ommendation. SRaSLR only considers the relation between
individual services, while our paper models the relation
between mashups. As mentioned in the introduction, each
mashup is composed of multiple services working together
in a specific order to achieve the functionality. Therefore, we
need to further model the complex preferences and temporal
effects within mashups. SRaSLR pre-defines a service relation
network based on heuristic rules, while our method learns
the relation of mashups dynamically in a learnable way.
Fan et al. [82] propose Continuous Time Bipartite Graph
(CTBG) to unify sequential patterns and temporal collabora-
tive signals, which apply a temporal kernel to map continuous
timestamps on edges to vector. And they introduce TGSRec
to encode both sequential patterns and collaborative signals
for better sequential recommendation. TGSRec models the
temporal collaborative signals between users and items in
the form of a graph through ingenious data structure design,
and solves it using a graph transformer. However, it does
not model the relationships between mashup sequences. We
believe that neighbor mashups that are relevant to the target
mashup are crucial for inferring the next interaction. In
addition, TGSRec also establishes a graph structure based
on heuristic rules, but this model-free approach lacks certain
flexibility. KPGNN [83] formalize the task of social event
detection and utilize a novel heterogeneous GNN-based model
to detects events from the incoming social stream while
possessing the power of interpreting complex social data to
accumulate knowledge. KPGNN differs significantly from our
time-aware service recommendation task as it focuses on
addressing the social event detection problem. Therefore, the
model structure used in this article also differs greatly from our
DRGL. The article constructs a heterogeneous-graph based on
various event knowledge entities using heuristic rules, rather
than employing a learnable adaptive approach. Additionally,
this article overlooks the influence of introducing temporal
information into the nodes on the graph.

Authorized licensed use limited to: SOUTHERN METHODIST UNIV. Downloaded on October 18,2024 at 14:29:16 UTC from IEEE Xplore. Restrictions apply.

WEI et al.: DRGL FOR TIME-AWARE SERVICE RECOMMENDATION 1515

VI. CONCLUSION

Time-aware service recommendation is used to make rec-
ommendations more suitable for users’ dynamically changing
preferences. This approach uses a target user’s service invo-
cation behaviors within a period of time to predict the next
service and form a dynamic mashup. Although researchers
have proposed using advanced graph neural networks (GNNs)
to capture information flow on predefined social networks and
improve time-aware service recommendation, social networks
are not always available and may not be consistent with shared
interests among users.

To expand usage scenarios and further optimize recommen-
dation effects, we present DRGL in this article to learn the
graph structure and make time-aware service recommendations
collectively for dynamic mashup creation. We address two
notable challenges: the scalability issue and the accuracy
issue. To address scalability issue, we propose a coarse-to-fine
recalling strategy to learn the graph structure among mashups.
To address accuracy issue, we leverage recent advances in
self-attention mechanisms for mashup modeling and propose
a transformer-based mashup encoder. Experimental results on
a real-life local service dataset show that DRGL outperforms
state-of-the-art methods and demonstrates the effectiveness of
the learned graph structures.

REFERENCES

[1] Y. Zhong, Y. Fan, K. Huang, W. Tan, and J. Zhang, “Time-aware service
recommendation for mashup creation,” IEEE Trans. Services Comput.,
vol. 8, no. 3, pp. 356–368, May/Jun. 2015.

[2] Z. Zheng, H. Ma, M. R. Lyu, and I. King,
“QoS-aware Web service recommendation by collaborative filtering,”
IEEE Trans. Services Comput., vol. 4, no. 2, pp. 140–152, Apr.-
Jun. 2011.

[3] S. Wang, Y. Ma, B. Cheng, F. Yang, and R. N. Chang, “Multi-
dimensional QoS prediction for service recommendations,” IEEE Trans.
Services Comput., vol. 12, no. 1, pp. 47–57, Jan./Feb. 2019.

[4] H. Mezni and M. Fayala, “Time-aware service recommendation:
Taxonomy, review, and challenges,” Softw. Pract. Exp., vol. 48, no. 11,
pp. 2080–2108, 2018.

[5] G. Fazelnia, E. Simon, I. Anderson, B. Carterette, and M. Lalmas,
“Variational user modeling with slow and fast features,” in Proc. 15th
ACM Int. Conf. Web Search Data Min. (WSDM), Virtual Event, AZ,
USA, Feb. 2022, pp. 271–279.

[6] K. Huang, Y. Fan, and W. Tan, “Recommendation in an evolving service
ecosystem based on network prediction,” IEEE Trans. Autom. Sci. Eng.,
vol. 11, no. 3, pp. 906–920, Jul. 2014.

[7] C. Yu and L. Huang, “Time-aware collaborative filtering for QoS-based
service recommendation,” in Proc. IEEE Int. Conf. Web Services (ICWS),
Anchorage, AK, USA, 2014, pp. 265–272.

[8] C. Wei, Y. Fan, J. Zhang, and H. Lin, “A-HSG: Neural attentive service
recommendation based on high-order social graph,” in Proc. IEEE Int.
Conf. Web Services (ICWS), Beijing, China, 2020, pp. 338–346.

[9] T. Liang, L. Chen, J. Wu, G. Xu, and Z. Wu, “SMS: A framework
for service discovery by incorporating social media information,” IEEE
Trans. Services Comput., vol. 12, no. 3, pp. 384–397, May/Jun. 2019.

[10] C. Wei, Y. Fan, and J. Zhang, “Time-aware service recommendation
with social-powered graph hierarchical attention network,” IEEE Trans.
Services Comput., vol. 16, no. 3, pp. 2229–2240, May/Jun. 2023.

[11] W. Song, Z. Xiao, Y. Wang, L. Charlin, M. Zhang, and J. Tang, “Session-
based social recommendation via dynamic graph attention networks,” in
Proc. 11th ACM Int. Conf. Web Search Data Min., 2019, pp. 555–563.

[12] P. Gu, Y. Han, W. Gao, G. Xu, and J. Wu, “Enhancing session-based
social recommendation through item graph embedding and contex-
tual friendship modeling,” Neurocomputing, vol. 419, pp. 190–202,
Jan. 2021.

[13] L. Song, Y. Bi, M. Yao, Z. Wu, J. Wang, and J. Xiao, “DREAM: A
dynamic relation-aware model for social recommendation,” in Proc. 29th
ACM Int. Conf. Inf. Knowl. Manag., 2020, pp. 2225–2228.

[14] C. Wei, B. Bai, K. Bai, and F. Wang, “GSL4Rec: Session-based recom-
mendations with collective graph structure learning and next interaction
prediction,” in Proc. ACM Web Conf. (WWW), 2022, pp. 2120–2130.

[15] A. N. Ngaffo, W. E. Ayeb, and Z. Choukair, “A time-aware service
recommendation based on implicit trust relationships and enhanced
user similarities,” J. Ambient Intell. Humaniz. Comput., vol. 12, no. 2,
pp. 3017–3035, 2021.

[16] A. Vaswani et al., “Attention is all you need,” in Proc. 30th Annu. Conf.
Neural Inf. Process. Syst., 2017, pp. 5998–6008.

[17] J. Devlin, M. Chang, K. Lee, and K. Toutanova, “BERT: Pre-training
of deep bidirectional transformers for language understanding,” in Proc.
Conf. North Amer. Chapt. Assoc. Comput. Linguist. Human Lang.
Technol., 2019, pp. 4171–4186.

[18] T. Mikolov, I. Sutskever, K. Chen, G. S. Corrado, and J. Dean,
“Distributed representations of words and phrases and their composi-
tionality,” in Proc. Adv. Neural Inf. Process. Syst. (NeurIPS), 2013,
pp. 3111–3119.

[19] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image
recognition,” in Proc. IEEE Conf. Comput. Vis. Pattern Recognit., 2016,
pp. 770–778.

[20] L. J. Ba, J. R. Kiros, and G. E. Hinton, “Layer normalization,” 2016,
arXiv:1607.06450.

[21] N. Srivastava, G. E. Hinton, A. Krizhevsky, I. Sutskever, and
R. Salakhutdinov, “Dropout: A simple way to prevent neural networks
from overfitting,” J. Mach. Learn. Res., vol. 15, no. 1, pp. 1929–1958,
2014.

[22] Z. Wu, S. Pan, G. Long, J. Jiang, and C. Zhang, “Graph WaveNet for
deep spatial-temporal graph modeling,” in Proc. 28th Int. Joint Conf.
Artif. Intell., 2019, pp. 1907–1913.

[23] Z. Wu, S. Pan, G. Long, J. Jiang, X. Chang, and C. Zhang,
“Connecting the dots: Multivariate time series forecasting with graph
neural networks,” in Proc. 26th ACM SIGKDD Int. Conf. Knowl. Discov.
Data Mining, 2020, pp. 753–763.

[24] Q. Zhang, J. Chang, G. Meng, S. Xiang, and C. Pan, “Spatio-temporal
graph structure learning for traffic forecasting,” in Proc. AAAI Conf.
Artif. Intell., vol. 34, 2020, pp. 1177–1185.

[25] Y. Li, R. Yu, C. Shahabi, and Y. Liu, “Diffusion convolutional recurrent
neural network: Data-driven traffic forecasting,” in Proc. 6th Int. Conf.
Learn. Represent., 2018, pp. 1–16.

[26] A. V. Paliwal, B. Shafiq, J. Vaidya, H. Xiong, and N. Adam, “Semantics-
based automated service discovery,” IEEE Trans. Services Comput.,
vol. 5, no. 2, pp. 260–275, Apr.-Jun. 2011.

[27] G. Lam and D. Rossiter, “A Web service framework supporting
multimedia streaming,” IEEE Trans. Services Comput., vol. 6, no. 3,
pp. 400–413, Jul.-Sep. 2013.

[28] E. Cho, S. A. Myers, and J. Leskovec, “Friendship and mobility: User
movement in location-based social networks,” in Proc. 17th ACM Int.
Conf. Knowl. Discov. Data Min. (SIGKDD), San Diego, CA, USA, 2011,
pp. 1082–1090.

[29] S. Rendle, C. Freudenthaler, Z. Gantner, and L. Schmidt-Thieme, “BPR:
Bayesian personalized ranking from implicit feedback,” in Proc. 25th
Conf. Uncertain. Artif. Intell. (UAI), Montreal, QC, Canada, Jun. 2009,
pp. 452–461.

[30] T. Zhao, J. J. McAuley, and I. King, “Leveraging social connections to
improve personalized ranking for collaborative filtering,” in Proc. 23rd
ACM Int. Conf. Conf. Inf. Knowl. Manag. (CIKM), Shanghai, China,
Nov. 2014, pp. 261–270.

[31] H. Ma, D. Zhou, C. Liu, M. R. Lyu, and I. King, “Recommender systems
with social regularization,” in Proc. 4th Int. Conf. Web Search Web Data
Min. (WSDM), Hong Kong, China, Feb. 2011, pp. 287–296.

[32] B. Hidasi, A. Karatzoglou, L. Baltrunas, and D. Tikk, “Session-based
recommendations with recurrent neural networks,” in Proc. 4th Int. Conf.
Learn. Represent. (ICLR), San Juan, Puerto Rico, May 2016, pp. 1–10.

[33] J. Li, P. Ren, Z. Chen, Z. Ren, T. Lian, and J. Ma, “Neural attentive
session-based recommendation,” in Proc. ACM Conf. Inf. Knowl. Manag.
(CIKM), Singapore, Nov. 2017, pp. 1419–1428.

[34] F. Sun et al., “BERT4Rec: Sequential recommendation with bidirectional
encoder representations from transformer,” in Proc. 28th ACM Int. Conf.
Inf. Knowl. Manag., 2019, pp. 1441–1450.

[35] A. Paszke et al., “PyTorch: An imperative style, high-performance deep
learning library,” in Proc. Conf. Neural Inf. Process. Syst. (NeurIPS),
Vancouver, BC, Canada, Dec. 2019, pp. 8024–8035.

Authorized licensed use limited to: SOUTHERN METHODIST UNIV. Downloaded on October 18,2024 at 14:29:16 UTC from IEEE Xplore. Restrictions apply.

1516 IEEE TRANSACTIONS ON NETWORK AND SERVICE MANAGEMENT, VOL. 21, NO. 2, APRIL 2024

[36] C. Li, R. Zhang, J. Huai, X. Guo, and H. Sun, “A probabilistic approach
for Web service discovery,” in Proc. IEEE Int. Conf. Services Comput.
(SCC), Santa Clara, CA, USA, 2013, pp. 49–56.

[37] L. Chen, Y. Wang, Q. Yu, Z. Zheng, and J. Wu, “WT-LDA: User tagging
augmented LDA for Web service clustering,” in Proc. 11th Int. Conf.
Service-Orient. Comput. (ICSOC), Berlin, Germany, 2013, pp. 162–176.

[38] S. Li, J. Wen, F. Luo, M. Gao, J. Zeng, and Z. Y. Dong, “A new QoS-
aware Web service recommendation system based on contextual feature
recognition at server-side,” IEEE Trans. Netw. Service Manag., vol. 14,
no. 2, pp. 332–342, Jun. 2017.

[39] X. Su, M. Zhang, Y. Liang, Z. Cai, L. Guo, and Z. Ding, “A tensor-based
approach for the QoS evaluation in service-oriented environments,” IEEE
Trans. Netw. Service Manag., vol. 18, no. 3, pp. 3843–3857, Sep. 2021.

[40] G. Kang, J. Liu, Y. Xiao, B. Cao, Y. Xu, and M. Cao, “Neural and
attentional factorization machine-based Web API recommendation for
mashup development,” IEEE Trans. Netw. Service Manag., vol. 18, no. 4,
pp. 4183–4196, Dec. 2021.

[41] Q. Gu, J. Cao, and Y. Liu, “CSBR: A compositional semantics-based ser-
vice bundle recommendation approach for mashup development,” IEEE
Trans. Services Comput., vol. 15, no. 6, pp. 3170–3183, Nov./Dec. 2022.

[42] A. Maaradji, H. Hacid, R. Skraba, and A. Vakali, “Social Web mashups
full completion via frequent sequence mining,” in Proc. World Congr.
Services, 2011, pp. 9–16.

[43] S. R. Chowdhury, F. Daniel, and F. Casati, “Efficient, interactive
recommendation of mashup composition knowledge,” in Proc. 9th Int.
Conf. Service-Orient. Comput., vol. 7084, 2011, pp. 374–388.

[44] D. Bianchini, V. D. Antonellis, and M. Melchiori, “A recommendation
system for semantic mashup design,” in Proc. Int. Workshops Database
Exp. Syst. Appl. (DEXA), Bilbao, Spain, 2010, pp. 159–163.

[45] B. Xia, Y. Fan, W. Tan, K. Huang, J. Zhang, and C. Wu, “Category-aware
API clustering and distributed recommendation for automatic mashup
creation,” IEEE Trans. Services Comput., vol. 8, no. 5, pp. 674–687,
Sep./Oct. 2015.

[46] A. Jain, X. Liu, and Q. Yu, “Aggregating functionality, use history, and
popularity of APIs to recommend mashup creation,” in Proc. 13th Int.
Conf. Service-Orient. Comput., vol. 9435, 2015, pp. 188–202.

[47] J. Cao, Y. Lu, and N. Zhu, “Service package recommendation for
mashup development based on a multi-level relational network,” in Proc.
14th Int. Conf. Service-Orient. Comput., vol. 9936, 2016, pp. 666–674.

[48] B. Cao, M. Shi, X. F. Liu, J. Liu, and M. Tang, “Using relational topic
model and factorization machines to recommend Web APIs for mashup
creation,” in Proc. 10th Asia-Pac. Services Comput. Conf. Adv. Services
Comput., vol. 10065, 2016, pp. 391–407.

[49] P. Samanta and X. Liu, “Recommending services for new mashups
through service factors and top-K neighbors,” in Proc. IEEE Int. Conf.
Web Services (ICWS), 2017, pp. 381–388.

[50] B. Cao, X. F. Liu, M. M. Rahman, B. Li, J. Liu, and M. Tang,
“Integrated content and network-based service clustering and Web
APIs recommendation for mashup development,” IEEE Trans. Services
Comput., vol. 13, no. 1, pp. 99–113, Jan./Feb. 2020.

[51] M. Shi, Y. Tang, Y. Huang, and M. Lin, “Mashup tag completion with
attention-based topic model,” Service Orient. Comput. Appl., vol. 15,
no. 1, pp. 43–54, 2021.

[52] H. Wu, Y. Duan, K. Yue, and L. Zhang, “Mashup-oriented Web API
recommendation via multi-model fusion and multi-task learning,” IEEE
Trans. Services Comput., vol. 15, no. 6, pp. 3330–3343, Nov./Dec. 2022.

[53] Z. Li, J. Lin, K. Salamatian, and G. Xie, “Social connections in user-
generated content video systems: Analysis and recommendation,” IEEE
Trans. Netw. Service Manag., vol. 10, no. 1, pp. 70–83, Mar. 2013.

[54] Y. Zhang, P. Calyam, S. Debroy, and S. S. Nuguri, “Social plane for
recommenders in network performance expectation management,” IEEE
Trans. Netw. Service Manag., vol. 15, no. 1, pp. 97–111, Mar. 2018.

[55] X. Lu, J. Liu, S. Gan, T. Li, Y. Xiao, and Y. B. Liu, “Recommendation
model based on dynamic interest group identification and data compen-
sation,” IEEE Trans. Netw. Service Manag., vol. 19, no. 1, pp. 89–99,
Mar. 2022.

[56] L. Wang, Y. Zhang, and X. Zhu, “Concept drift-aware temporal cloud
service APIs recommendation for building composite cloud systems,” J.
Syst. Softw., vol. 174, Apr. 2021, Art. no. 110902.

[57] A. Zenebe, L. Zhou, and A. F. Norcio, “User preferences discovery using
fuzzy models,” Fuzzy Sets Syst., vol. 161, no. 23, pp. 3044–3063, 2010.

[58] Q. Zhang, D. Wu, G. Zhang, and J. Lu, “Fuzzy user-interest drift
detection based recommender systems,” in Proc. IEEE Int. Conf. Fuzzy
Syst. (FUZZ-IEEE), Vancouver, BC, Canada, Jul. 2016, pp. 1274–1281.

[59] Y. Hu, Q. Peng, X. Hu, and R. Yang, “Time aware and data sparsity
tolerant Web service recommendation based on improved collaborative
filtering,” IEEE Trans. Services Comput., vol. 8, no. 5, pp. 782–794,
Sep./Oct. 2015.

[60] C. Rana and S. K. Jain, “An evolutionary clustering algorithm based
on temporal features for dynamic recommender systems,” Swarm
Evol. Comput., vol. 14, pp. 21–30, Feb. 2014.

[61] L. Hu, L. Cao, S. Wang, G. Xu, J. Cao, and Z. Gu, “Diversifying
personalized recommendation with user-session context,” in Proc. 26th
Int. Joint Conf. Artif. Intell., 2017, pp. 1858–1864.

[62] S. Wu, Y. Tang, Y. Zhu, L. Wang, X. Xie, and T. Tan, “Session-based
recommendation with graph neural networks,” in Proc. 32rd AAAI Conf.
Artif. Intell., 2019, pp. 346–353.

[63] P. Gupta, D. Garg, P. Malhotra, L. Vig, and G. Shroff, “NISER:
Normalized item and session representations with graph neural
networks,” 2019, arXiv:1909.04276.

[64] Z. Wang, W. Wei, G. Cong, X. Li, X. Mao, and M. Qiu, “Global context
enhanced graph neural networks for session-based recommendation,” in
Proc. 43rd Int. ACM SIGIR Conf. Res. Develop. Inf. Retrieval (SIGIR),
Jul. 2020, pp. 169–178.

[65] P. Veličković, G. Cucurull, A. Casanova, A. Romero, P. Lio, and
Y. Bengio, “Graph attention networks,” in Proc. 6th Int. Conf. Learn.
Represent., 2018, pp. 1–12.

[66] D. Bahdanau, K. Cho, and Y. Bengio, “Neural machine translation by
jointly learning to align and translate,” in Proc. 3rd Int. Conf. Learn.
Represent., 2015.

[67] L. Huang, Y. Ma, S. Wang, and Y. Liu, “An attention-based spatiotempo-
ral LSTM network for next POI recommendation,” IEEE Trans. Services
Comput., vol. 14, no. 6, pp. 1585–1597, Nov./Dec. 2021.

[68] H. Jin, P. Zhang, H. Dong, Y. Zhu, and A. Bouguettaya, “Privacy-aware
forecasting of quality of service in mobile edge computing,” in Proc.
IEEE World Congr. Services, 2022, p. 18.

[69] K. Zeng and I. Paik, “Dynamic service recommendation using
lightweight BERT-based service embedding in edge computing,” in Proc.
14th IEEE Int. Symp. Embedded Multicore/Many-Core Syst.-Chip, 2021,
pp. 182–189.

[70] Z. Wu, S. Pan, F. Chen, G. Long, C. Zhang, and S. Y. Philip, “A
comprehensive survey on graph neural networks,” IEEE Trans. Neural
Netw. Learn. Syst., vol. 32, no. 1, pp. 4–24, Jan. 2021.

[71] T. N. Kipf and M. Welling, “Semi-supervised classification with graph
convolutional networks,” in Proc. 5th Int. Conf. Learn. Represent.
(ICLR), Toulon, France, Apr. 2017, pp. 1–14.

[72] M. Niepert, M. Ahmed, and K. Kutzkov, “Learning convolutional neural
networks for graphs,” in Proc. 33nd Int. Conf. Mach. Learn., 2016,
pp. 2014–2023.

[73] J. Atwood and D. Towsley, “Diffusion-convolutional neural networks,”
in Proc. Adv. Neural Inf. Process. Syst., 2016, pp. 1993–2001.

[74] R. Ying, R. He, K. Chen, P. Eksombatchai, W. L. Hamilton, and
J. Leskovec, “Graph convolutional neural networks for Web-scale
recommender systems,” in Proc. 24th ACM SIGKDD Int. Conf. Knowl.
Discov. Data Min., 2018, pp. 974–983.

[75] W. L. Hamilton, Z. Ying, and J. Leskovec, “Inductive representation
learning on large graphs,” in Proc. 30th Annu. Conf. Neural Inf. Process.
Syst., 2017, pp. 1024–1034.

[76] W. Fan et al., “A graph neural network framework for social recommen-
dations,” IEEE Trans. Knowl. Data Eng., vol. 34, no. 5, pp. 2033–2047,
May 2022.

[77] X. Wang, X. He, M. Wang, F. Feng, and T. Chua, “Neural graph
collaborative filtering,” in Proc. 42nd Int. ACM SIGIR Conf. Res.
Develop. Inf. Retrieval, 2019, pp. 165–174.

[78] X. He, K. Deng, X. Wang, Y. Li, Y. Zhang, and M. Wang, “LightGCN:
Simplifying and powering graph convolution network for recommenda-
tion,” in Proc. 43rd Int. ACM SIGIR Conf. Res. Develop. Inf. Retrieval,
2020, pp. 639–648.

[79] W. Guan, X. Song, H. Zhang, M. Liu, C. Yeh, and X. Chang,
“Bi-directional heterogeneous graph hashing towards efficient outfit
recommendation,” in Proc. 30th ACM Int. Conf. Multimedia, 2022,
pp. 268–276.

[80] W. Guan, F. Jiao, X. Song, H. Wen, C. Yeh, and X. Chang, “Personalized
fashion compatibility modeling via metapath-guided heterogeneous
graph learning,” in Proc. 45th Int. ACM SIGIR Conf. Res. Develop. Inf.
Retrieval, 2022, pp. 482–491.

[81] Y. Zhu, M. Liu, Z. Tu, T. Su, and Z. Wang, “SRaSLR: A novel social
relation aware service label recommendation model,” in Proc. IEEE Int.
Conf. Web Services, 2021, pp. 87–96.

[82] Z. Fan, Z. Liu, J. Zhang, Y. Xiong, L. Zheng, and P. S. Yu, “Continuous-
time sequential recommendation with temporal graph collaborative
transformer,” in Proc. 30th ACM Int. Conf. Inf. Knowl. Manag., 2021,
pp. 433–442.

[83] Y. Cao, H. Peng, J. Wu, Y. Dou, J. Li, and P. S. Yu, “Knowledge-
preserving incremental social event detection via heterogeneous GNNs,”
in Proc. Web Conf. WWW, 2021, pp. 3383–3395.

Authorized licensed use limited to: SOUTHERN METHODIST UNIV. Downloaded on October 18,2024 at 14:29:16 UTC from IEEE Xplore. Restrictions apply.

WEI et al.: DRGL FOR TIME-AWARE SERVICE RECOMMENDATION 1517

Chunyu Wei received the B.S. degree in control
theory and application from Tsinghua University,
China, in 2019, where he is currently pursuing the
Ph.D. degree with the Department of Automation.
His research interests include services management,
service recommendation, and social computing.

Yushun Fan received the Ph.D. degree in control
theory and application from Tsinghua University,
China, in 1990, where he is currently a Professor
with the Department of Automation and the
Director of the System Integration Institute and
the Networking Manufacturing Laboratory. From
September 1993 to 1995, he was a Visiting Scientist,
supported by Alexander von Humboldt Stiftung,
with the Fraunhofer Institute for Production System
and Design Technology (FHG/IPK), Germany. He
has authored ten books and published more than

300 research papers in journals and conferences. His research interests
include enterprise modeling methods and optimization analysis, business
process reengineering, workflow management, system integration, object-
oriented technologies and flexible software systems, petri nets modeling and
analysis, and workshop management and control.

Jia Zhang (Senior Member, IEEE) received the
B.S. and M.S. degrees in computer science from
Nanjing University, China, and the Ph.D. degree in
computer science from the University of Illinois at
Chicago. She is currently the Cruse C. and Marjorie
F. Calahan Centennial Chair of Engineering and a
Professor with the Department of Computer Science,
Southern Methodist University. She has published
more than 170 refereed journal papers, book chap-
ters, and conference papers. Her research interests
emphasize the application of machine learning and

information retrieval methods to tackle data science infrastructure problems,
with a recent focus on scientific workflows, provenance mining, software
discovery, knowledge graph, and interdisciplinary applications of all of these
interests in the area of earth science.

Zhixuan Jia is currently pursuing the Ph.D. degree
with the Department of Automation, Tsinghua
University. His research interests include services
computing, service recommendation, and spatial–
temporal data mining.

Ruyu Yan received the B.S. degree from Tsinghua
University, China, in 2018, where she is currently
pursuing the Ph.D. degree with the Department of
Automation. Her research interests include services
computing, recommender systems, and time-series
prediction.

Authorized licensed use limited to: SOUTHERN METHODIST UNIV. Downloaded on October 18,2024 at 14:29:16 UTC from IEEE Xplore. Restrictions apply.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /ComicSansMS
 /ComicSansMS-Bold
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FranklinGothic-Medium
 /FranklinGothic-MediumItalic
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /Helvetica
 /Helvetica-Bold
 /HelveticaBolditalic-BoldOblique
 /Helvetica-BoldOblique
 /Helvetica-Condensed-Bold
 /Helvetica-LightOblique
 /HelveticaNeue-Bold
 /HelveticaNeue-BoldItalic
 /HelveticaNeue-Condensed
 /HelveticaNeue-CondensedObl
 /HelveticaNeue-Italic
 /HelveticaNeueLightcon-LightCond
 /HelveticaNeue-MediumCond
 /HelveticaNeue-MediumCondObl
 /HelveticaNeue-Roman
 /HelveticaNeue-ThinCond
 /Helvetica-Oblique
 /HelvetisADF-Bold
 /HelvetisADF-BoldItalic
 /HelvetisADFCd-Bold
 /HelvetisADFCd-BoldItalic
 /HelvetisADFCd-Italic
 /HelvetisADFCd-Regular
 /HelvetisADFEx-Bold
 /HelvetisADFEx-BoldItalic
 /HelvetisADFEx-Italic
 /HelvetisADFEx-Regular
 /HelvetisADF-Italic
 /HelvetisADF-Regular
 /Impact
 /Kartika
 /Latha
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaConsole
 /LucidaSans
 /LucidaSans-Demi
 /LucidaSans-DemiItalic
 /LucidaSans-Italic
 /LucidaSansUnicode
 /Mangal-Regular
 /MicrosoftSansSerif
 /MonotypeCorsiva
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /MVBoli
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Raavi
 /Shruti
 /Sylfaen
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /Times-Bold
 /Times-BoldItalic
 /Times-Italic
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /Vrinda
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryITCbyBT-MediumItal
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 200
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Average
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 200
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Average
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 400
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Recommended" settings for PDF Specification 4.01)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

