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ABSTRACT 

 

Deep learning has revolutionized computer vision and 

natural language processing with various algorithms scaled 

using high-performance computing. The Data Science and 

Informatics Group (DSIG) at the NASA Marshall Space 

Flight Center (MSFC), has been using deep learning for a 

variety of Earth science applications.  This paper provides 

examples of the applications and also addresses some of the 

challenges that have been encountered.   

 

 

Index Terms— Deep learning, neural network, Earth 

science, classification, large-scaled labeled data, training 

 

1. INTRODUCTION 
 

Deep learning is a subfield of machine learning that 

includes algorithms inspired by the function of the brain.  It 

consists of a multilayer neural network of neurons (simple 

computational units). First, the lower layers learn low-level 

features, such as edges, and then the higher layers 

progressively learn high-level representations, such as 

complex shapes, followed by object parts [1]. The first layer 

is composed of the inputs to the neural network, followed by 

one or more hidden layers, with the last layer containing the 

outputs of the network. The difference between a traditional 

neural network and deep learning is that deep learning 

receives a set of inputs and performs progressively complex 

calculations to output a solution. In this hierarchical layout, 

each layer receives input from the output of the previous 

layer, breaking down complex patterns into a series of 

simpler patterns.  Deep learning algorithms have proven to 

be a powerful tool for various machine learning problems.  

Unlike the traditional approach in which of domain experts 

engineering hand-crafted features, deep learning algorithms 

learns the features in order to solve the same problems, 

eliminating the need for feature.  Here, we present the use of 

deep learning to address several outstanding Earth science 

problems.  Each application is unique and presents 

challenges, but a central issue is that algorithms require 

large amounts of labeled training data to construct features 

from data.  

There are many cases in industry where deep learning 

has scaled successfully.  For example, Facebook translates 

about 2 billion user posts per day in more than 40 languages.  

Microsoft products such as Bing and Xbox uses deep 

learning for speech recognition.  Google uses deep learning 

for almost all of its services.  In medical science, deep 

learning is used for diagnosis and language translation. Self-

driving cars are the latest advancements driven by deep 

learning.  One thing all of these applications have in 

common is that a large amount of training data has been 

constructed using various mechanisms.   Such a supply of 

training data does not always exist for the Earth science. We 

highlight and address this challenge for Earth science 

applications.  

 

2. EARTH SCIENCE APPLICATIONS 

 

In this section, we discuss our deep learning-based 

applications for Earth science.   

 
2.1. Earth Science Phenomena Detection 

 

Researchers typically use event (an instance of a 

phenomenon) data for case study analysis. Earth science 

data search systems are currently limited to specifying a 

query parameter that includes the space and time of an 

event. This is a current limitation that results in researchers 

spending a considerable amount of time sorting through data 

to study an event. An alternative search paradigm is to use a 

browse images-based search. Before a search based on 

images can be performed, the images in the Earth science 

database need to be classified. For most Earth science data, 

data archives also distribute corresponding browse images, 

which are much smaller in size compared to actual data files 

and include rendering of the data values.  The DSIG team 

applied the Convolutional Neural Networks (CNNs) [2][3], 

a deep learning algorithm that is most suitable for computer 

vision tasks, to classify images in Earth science databases to 

improve the search experience for event study [4].  The 

training dataset for the application was constructed using the 

NASA’s Land, Atmosphere Near real-time Capability for 

EOS (LANCE) rapid response which supports end users in 

monitoring and analyzing various phenomena. Domain 

experts also labeled images to further increase the size of the 

training dataset.  Sample labeled images of few phenomena 

are shown in Figure 1. 

 

2.2. Tropical Cyclone Intensity Estimation 

 

Severe impacts of tropical cyclones are well documented.  

The main factor that contributes to the resulting death toll or  
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Fig. 1 Sample labeled images for various phenomena: (a) 

hurricane, (b) dust storm, (c) smoke, and (d) none. 

 

damage amount is associated with the wind speed. Thus, 

being able to accurately estimate tropical cyclone intensity 

(wind speed) is essential for disaster preparedness and 

response. There are inherent issues with current techniques 

to estimate tropical cyclone wind speed, which mainly rely 

on the Dvorak technique [5].  Specifically, the issues relate 

to human subjectivity and generalization.  The issues were 

apparent for the most recent hurricane Ophelia where two 

human experts at Tropical Analysis and Forecast Branch 

(TAFB) and NOAA/NESDIS Satellite Analysis Branch 

(SAB) differed by 20 knots in their Dvorak analyses, and 

the automated version at the University of Wisconsin was 

12 kt lower than either of them. The DSIG team has adapted 

the Convolutional Neural Networks (CNNs) to address the 

issue of objectively and accurately estimating tropical 

cyclone intensity using satellite imageries [6]. The training 

dataset for this application was constructed by using two 

different datasets: tropical cyclone centric imageries from 

Naval Research Laboratories (http://www.nrlmry.navy.mil) 

and wind speed information from HURDAT2, the tropical 

cyclone best track reanalysis data 

(http://www.nhc.noaa.gov/data/#hurdat).  Figure 2 

illustrates a set of feature maps (outputs of convolution 

filters) for a hurricane. 

 

2.3. Severe Storm (Hailstorm) Detection 

 

Being able to detect hailstorm from radar imagery has 

implications for human safety and property protection.  

Many current hailstorm detection techniques rely on domain 

knowledge and substantial preprocessing.  To avoid this 

laborious and tedious process, the DSIG team has applied a 

parameter-optimized CNN for hailstorm detection with 

accuracy superior to existing techniques.  The training 

dataset was constructed by combining known instances of 

hailstorms from storms reports with corresponding 

NEXRAD images available from Iowa Environmental 

Mesonet [7] images.  Figure 3 shows correctly classified 

sample radar images with presence of hail. 

 

 
Fig. 2 CNN feature maps for a hurricane image. 

 

 
Fig. 3 An example that test images labeled as “Hail” are classified 

as “Hail” by our trained model. 

 

2.4. Earth Science Knowledge Graph Construction 

 

Published Earth science resources contain enormous 

amounts of knowledge that are not easy to extract.  The 

DSIG team is attempting to accurately extract entities and 

relationships across published Earth science resources and 

construct the Earth science knowledge graph that can be 

used to answer more advanced questions and discover new 

insights.   The approach taken includes deep learning 

methods for natural language processing to extract semantic 

entities from Earth science literature trained using known 

vocabularies and limited expert knowledgebase [8]. 

 

2.4. Transverse Bands Detection 

 

Transverse cirrus bands are ice clouds that are irregularly 

spaced bandlike cirrus clouds which often form in 

association with other weather phenomena such as 

mesoscale convective systems, hurricanes, and jet streaks. 

These bands are known to be associated with clear air 

turbulence.  Thus, automated detection of transverse cirrus 

bands in satellite imagery is of utility to aviation weather 

forecasting.  The DSIG team have used CNN to detect the 

transverse bands in satellite imageries with both spectral and 

morphological information and conducted climatology study 

of such events [9].  Domain experts manually created the 

training dataset for this application.  

 

2.6. Ephemeral Water Detection 

 

Ephemeral water is a temporary water body formed due to 

direct response to precipitation.  Ephemeral water is 

extremely important for regions that receive very little 

precipitation, like parts of Africa.  Detecting such water 
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body from satellite imageries can allow cattle farmers to 

direct their livestock for grazing.  However, detection of 

such water bodies is a difficult problem since the water body 

may be represented by only a pixel or two within satellite 

images of highest resolution.  The DSIG team is attempting 

to solve this problem using stacked auto encoder on Landsat 

imageries.  The training dataset was generated using water 

index and known water body shapefiles.  

 

3. ADDRESSING IDENTIFIED CHALLENGES  

 

Next, we share our lessons learned after applying deep 

learning on several outstanding Earth science problems over 

the past four years. We identified two main challenges: 

dealing with deep learning black box and creating labeled 

training datasets. 

 

 3.1. Deep Learning Black Box 

 

Even though deep learning performance for above 

mentioned applications was impressive, there is no clear 

understanding of why it performs so well, or how it could be 

improved.  From a scientific point of view, it is important to 

bring insight into the internal operation and behavior of the 

complex model.  Domain scientists are skeptical of the 

“black box” that is deep learning and want to know what 

physical conditions or mechanisms contribute to a given 

result. They prefer to better understand the learned features, 

the importance of features, and how they relate to their 

science.   

 To address this challenge an evaluation component 

that is geared towards understanding the physical meaning 

of the model is needed to provide a level of confidence for 

the scientists. Specifically, in the case of tropical cyclone 

intensity estimation, we developed visualization techniques 

to reveal the input pixels that are highly discriminative at 

any layer in the model.  Such visualization allows us to 

track the evolution of features during training. We also 

applied deconvolution network to project the filter outputs 

back to input pixel space.   

 

3.2. Labeled Training Data 

 

For each of the applications, constructing training datasets 

was by far the most tedious and time-consuming step. Deep 

learning algorithms can be adapted and tuned for most 

applications, however, the performance of the algorithms 

depends heavily on the size and quality of the training 

dataset. A large number of data points are needed to learn a 

large number of parameters in the model that machines have 

to learn.  Generic large-scale labeled datasets such as the 

ImageNet [10][11] are the fuel that drives the impressive 

accuracy of deep learning results. Creating large scaled 

labeled datasets in the Earth science domain is a big 

challenge because manual creation of labeled training data is 

a bottleneck and not scalable.  While there are ways to apply 

deep learning using limited labeled datasets, there is a need 

in the Earth sciences for creating large-scale labeled datasets 

for benchmarking and scaling deep learning applications. 

 From our observations, there is almost a linear 

relationship in the amount of data required and the size of 

the model. The model should be large enough to capture 

relationships in your data along with specifics of your 

problem. Initial layers of the model capture high-level 

relationships between the different parts of the input. Later 

layers capture information that helps discriminate between 

the desired outputs. Since most Earth science problems are 

rather constrained (For example: satellite image 

classification into 8 classes), the training dataset can be 

substantially smaller than a generic image classifier (For 

example: ImageNet where the number of output classes is 

1000).   

Next, we present a few approaches to address the 

challenge of creating large scaled labeled dataset for Earth 

science. 

 

3.2.1. Data Augmentation 

Data augmentation is an artificial way of increasing the 

number of training samples with label-preserving 

transformations.    Data augmentation is especially useful 

for computer vision tasks, as there are several image 

transformation techniques that can be used without affecting 

the class label.  Rotation, cropping, and color shifting of 

images are just a few data augmentation techniques.  All of 

our CNN-based applications use some form of data 

augmentation. 

 

3.2.2. Transfer Learning 

Transfer learning is a method wherein a model developed 

for a task is reused as the starting point of a model for a 

different task.  When a model is trained (“pre-trained”) the 

network gains knowledge from training data and compiles 

weights of the network.  The weights can be extracted and 

then transferred to another network.  In this way, instead of 

training the network from scratch, learned features are 

“transferred”, thus, requiring a smaller training dataset.  

There are several ways to fine tune the pre-trained model for 

a specific case: (a) use for feature extraction only, by 

removing the output layer, (b) use the network architecture 

of the pre-trained model but reinitialize the weights, and (c) 

use only a few layers from the pre-trained model while 

retraining the other layers.  There are empirically validated 

rules based on training data size and data similarity which 

can help determine how to fine-tune a pre-trained model or 

start from scratch.  We successfully applied transfer learning 

to the transverse bands detection application by re-using the 

network architecture of the pre-trained model.   

 

3.2.3. Permutation Invariance 

Permutation invariance occurs when a model produces the 

same output regardless of the order of elements in the input.  

It can be used to represent data that does not have a spatial 
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relationship.  Thus, we can use permutation invariance for 

constructing a large dataset of related words (entities) for 

the initial training set to build the Earth science knowledge 

graph. 

 

3.2.4. Data Programming 

Data programming involves programmatic creation of the 

training dataset where experts provide weak supervision 

strategies and a discriminative model to label the unlabeled 

data.  A few ways to perform weak supervision include: (i) 

domain rules and heuristics, (ii) distant supervision: existing 

ground-truth data that is not an exact fit, (iii) weak 

classifiers, and (iv) non-expert annotations or 

crowdsourcing.  Consider applying data programming to 

create a labeled data for dust storm study using sample text 

from literature: “Pronounced changes in the aerosol optical 

parameters, derived from AERONET, have been observed 

during dust storms”.  If our weak supervision consists of 

labeling functions as shown in Figure 4, then we can extract 

relevant entities to study dust storms.  Here, the 

labelingFunction1 leverages existing Earth science 

knowledge base such as SWEET [12], and the 

labelingFunction2 applies domain heuristics. 

 

 
Fig. 4 Labeling functions used for extracting entities and relations 

from text. 

 

Recently, we have started exploring a data programming 

framework, snorkel [13], which seems promising. 

 

4. CONCLUSION 

 

This paper presents applications of deep learning for Earth 

science. Such applications are not without challenges that 

persist, including improving scientists' trust in the developed 

model and creating large-scaled labeled datasets.  The DSIG 

group dealt with both issues in a systematic way. We also 

present other possible approaches to address the challenges. 

Our observation suggests that the deep learning algorithms 

can be adapted and tuned to tackle Earth science problems, 

however, the value is in the large-scaled labeled datasets.  

We believe that labeled training dataset will be the barrier 

for using deep learning for Earth science. Thus, we 

recommend management of existing and future datasets in a 

catalog for curation, search and discovery, and preservation.  
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